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FEEDBACK - 5/30

" |n solving HW3 with one producer and two consumer threads
with synchronized access to the bounder buffer via single
mutex without using signal and conditions, my program is
working as expected. | am wondering why would | use signal
and condition? It would be a great help if you explain me that
a little more...

= With a large bounded buffer, and a small number of tasks, the
buffer will never fill to stress the system

= Try:
= Shrinking bounded buffer to a very small size
= Dramatically increasing the number (and complexity) of tasks
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EVALUATING LOCK IMPLEMENTATIONS

= Correctness
* Does the lock work?
= Are critical sections mutually exclusive?
(atomic-as a unit?)

= Fairness

= Are threads competing for a lock have a fair chance of
acquiring it?

EUvetuead Recall this earlier SLIDE |
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OBJECTIVES - 5/30

= HW3 Questions

= Finish Chapter 20

= Chapter 21 - Swap memory - paging to disk
= Chapter 22 - Page replacement algorithms
® Introduce: Chapter 36 - 1/0 Devices

= Thursday June 1st
= Finish Chapter 36 - 1/0 Devices
= Chapter 37 - Hard Disk Drives
= Chapter 39 - File Systems
= Practice Final Exam
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OBJECTIVES

= Chapter 21
= Virtual “Swap” Memory

= Chapter 22
= Page replacement algorithms

= Replacement algorithm effectiveness
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MEMORY HIERARCHY

= Disks (HDD, SSD) provide another level of storage in the
memory hierarchy

Registers

Cache

Main Memory

Mass Storage( hard disk, tape, etc...)

Memory Hierarchy in modern system
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MOTIVATION FOR

physical RAM

= For a single process
= Convenience
= Ease of use

= For multiple processes
= Large virtual memory space for many concurrent
processes

EXPANDING THE ADDRESS SPACE

= Can provide illusion of an address space larger than
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LATENCY TIMES

= Design considerations
= SSDs 4x the time of DRAM
= HDDs 80x the time of DRAM

Action Latency (ns) (ps)
L1 cache reference 0.5ns
L2 cache reference 7ns 14x L1 cache
Mutex lock/unlock 25 ns
Main memory reference 100 ns 20x L2 cache, 200x L1
Read 4K randomly from S5D* 150,000 ns 150 ps ~1GBfsec S5D
Read 1 MB sequentially from memory 250,000 ns 250 pis
Read 1 MB sequentially from S5D* 1,000,000 ns 1,000 ps | 1 ms ~1GB/sec$SD,4X memory
Read 1 MB sequentially from disk 20,000,000 ns 20,000 ps 20 ms 80x memory, 20X 55D

= Latency numbers every programmer should know
= From: https://gist.github.com/jboner/2841832#file-latency-txt
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SWAP SPACE

= Disk space for storing memory pages

PEN O PN 1 PFN 2 PFN 3
Physical Proc0 Proc 1 Proc 1 Proc2
Memory | vpN 0] [VPN 2] [VPN 3] VPN 0]

= “Swap” them in and out of memory to disk as needed

Block 0 Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 Block 7
Swap | proc0 | Proc0 | (g | Procl | Procl | Proc3 | Proc2 | Proc3
Space | [VPN 1] [VPN 2] [VPN 0] [VPN 1] [VPN 0] [VPN 1] [VPN 1]
Physical Memory and Swap Space
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PAGE LOCATION

= Page table pages are:
= Stored in memory
=Swapped to disk

= Present bit
=In the page table entry (PTE) indicates if page is present

= Page fault
= Memory page is accessed, but has been swapped to disk
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PAGE FAULT

= 0S steps in to handle the page fault

= Page-Fault Algorithm

= Loading page from disk requires a free memory page

PFN = FindFreePhysicalPage ()
iT (PPN == -1}

PFN = EvictPage ()
DiskRead (PTE.DiskAddr, pfn)
PTE.present = True
PTE.PFN = PEN

T S ORI

RetryInstruction()
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PAGE REPLACEMENTS

= Page daemon
= Background threads which monitors swapped pages

= Low watermark (LW)
=Threshold for when to swap pages to disk
=Daemon checks: free pages < LW
= Begin swapping to disk until reaching the highwater mark

= High watermark (HW)
=Target threshold of free memory pages
= Daemon free until: free pages >= HW
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REPLACEMENT

POLICIES
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P Y
CHANGES

CACHE MANAGEMENT

= Replacement policies apply to “any” cache
= Goal is to minimize the number of misses
= Average memory access time can be estimated:

[ amar = @ T+ a1y |

Argument Meaning

Ty The cost of accessing memory (time)

Tp The cost of accessing disk (time)

Puic The probability of finding the data item in the cachefa hit)
Patiss The probability of not finding the data in the cache(a miss)

= Consider Ty, = 100 ns, T, = 10ms
= Consider Py, = .9 (90%), Pss = -1
= Consider Py = .999 (99.9%), Pss = .001
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= What if:
= We could predict the future (... with a magical oracle)
= All future page accesses are known
= Always replace the page in the cache used farthest in

= Used for a comparison

= Provides a “best case” replacement policy

accesses:

0120130312

OPTIMAL REPLACEMENT POLICY

the future

= Consider a 3-element empty cache with the following page

What Is the hit/miss ratlo?

FIFO REPLACEMENT

= Queue based

= Always replace the oldest element

= Simple to implement

= Doesn’t consider importance... just arrival ordering

= Consider a 3-element empty cache with the following
page accesses:

01201303121

= What is the hit/miss ratio?
= How is FIFO different than LRU?

LRU incorporates history
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RANDOM REPLACEMENT

= Pick a page at random to replace
= Simple and fast implementation
= Performance depends on luck of random choices

01201303121

50

40 1

Frequency

—— . .
1 2 3 a 5 6
Number of Hits

Random Performance over 10,000 Trials

HISTORY-BASED POLICIES

= LRU: Least recently used
= Always replace page with oldest access time
= Consider when a page was last accessed

01201303121

= | FU: Least frequently used
= Always replace page with fewest accesses
= Consider frequency of page accesses

Hit/miss ratlo Is=

01201303121

What Is the hit/miss ratlo?
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WORKLOAD EXAMPLES: NO-LOCALITY

= No-Locality (Random Access) Workload
= Perform 10,000 random page accesses
= Across set of 100 memory pages
The No-Locality Workload

100%.

When the cache is

;- % /£ large enough to fit
I 7 Y. the entire workload,
%/ it doesn’t matter

which policy you use.

Cache Size (Blocks)

WORKLOAD EXAMPLES: 80/20

= 80/20 Workload
= Perform 10,000 page accesses, against set of 100 pages
= 80% of accesses are to 20% of pages (hot pages)
= 20% of accesses are to 80% of pages (cold pages)

The 80-20 Workload

LRU is more likely
to hold onto
hot pages

Hit Rate

(recalls history)

T T T T T T
0 4 & 8 100

Cache Size (Blocks)
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WORKLOAD EXAMPLES: SEQUENTIAL

= Looping sequential workload
= Refer to 50 pages in sequence: 0, 1, ..., 49
= Repeat loop

The Looping-Sequential Workload

Random performs
better than FIFO and
LRU for

IMPLEMENTING LRU

= Implementing last recently used (LRU) requires tracking
access time for all system memory pages

= Times can be tracked with a list
= For cache eviction, we must scan an entire list

= Consider: 4GB memory system (232),
with 4KB pages (212)

= This requires 22° comparisons !!!

= Simplification is needed
= Consider how to approximate the oldest page access

£ o y cache sizes < 50
£
40% 4 /
/ / N .
w /) Algorithms should provide
s “scan resistance”
RS
Cache Size (Blocks)
May 30, 2017 TCSS422: Operating Systems [Spring 2017] | ur
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IMPLEMENTING LRU - 2

= Harness the Page Table Entry (PTE) Use Bit
= HW sets to 1 when page is used
m0S setsto O

= Clock algorithm (approximate LRU)
=Refer to pages in a circular list
=Clock hand points to current page

=Loops around
IF USE_BIT=1 set to USE_BIT = 0
IF USE_BIT=0 replace page

CLOCK ALGORITHM

= Not as efficient as LRU, but better than other
replacement algorithms that do not consider history
The 80-20 Workload .

100% - S
80%-
2
o 60% — OPT
H — LRU
. Clock
RO — FIFO
— RAND
20%— )/
T T T T T T
0 40 &0 8 100
Cache Size (Blocks)
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CLOCK ALGORITHM - 2

= Consider dirty pages in cache
= |f DIRTY (modified) bit is FALSE
=No cost to evict page from cache

= |f DIRTY (modified) bit is TRUE
=Cache eviction requires updating memory
=Contents have changed

= Clock algorithm should favor no cost eviction

5/30/2017
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WHEN TO LOAD PAGES

= On demand > demand paging

= Prefetching
= Preload pages based on anticipated demand

= Prediction based on locality
= Access page P, suggest page P+1 may be used

= What other techniques might help anticipate required
memory pages?
Prediction models, historical analysis
In general: accuracy vs. effort tradeoff
High analysis techniques struggle to respond in real time

TCS5422: Operating Systems [Spring 2017)
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OTHER SWAPPING POLICIES

= Page swaps / writes
=Group/cluster pages together
=Collect pending writes, perform as batch

= Thrashing

processes and is low in memory

=Grouping disk writes helps amortize latency costs

=QOccurs when system runs many memory intensive

=Everything is constantly swapped to-and-from disk

TCS5422: Operating Systems [Spring 2017)
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OTHER SWAPPING POLICIES - 2

= Working sets
=Groups of related processes

=When thrashing: prevent one or more working
set(s) from running

=Temporarily reduces memory burden
=Allows some processes to run, reduces thrashing

TCS5422: Operating Systems [Spring 2017)
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1/0 DEVICES
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OBJECTIVES

= Chapter 36

= Polling vs Interrupts

= Programmed 1/0 (P10)

= Direct memory Access (DMA)
= Port-mapped I/0 (PMIO)

= Memory-mapped I/0 (MMIO)
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O DEVICES COMPUTER SYSTEM ARCHITECTURE

= Modern computer systems interact with a variety of devices
input

Keyboard

ut | ‘ Memory Bus

(proprietary)

out

Head phones

Head 58

General /O Bus
(e, PCD

Oplcalpen o ey Laser printer

Peripheral /O Bus
(e.g. SCSI, SATA, USB)

Scanner

Bar code reader

Speakers

22

Memory bus

General I/0 bus

TCSS422: Of ting Syste [Spring 2017] TCSS422: O ting Systs [Spring 2017]
May 30, 2017 Instiute of Technoloy, Univerty of Washington - Tacoma | st \ May 30, 2017 T T e e w2
= Buses = Consider an arbitrary canonical device
= Buses closer to the CPU are faster
= Can support fewer devices Registerss [ status | [ command | [ pata | interface

= Further buses are slower, but support more devices | | | 777TTTTTToooTmmmTmmTomoomm oo
Micro-controller(CPU)

Memory (DRAM or SRAM or both) internals
" Physics and costs dictate “levels” OtherHardwate;speciiic Chips

= Memory bus
= General I/0 bus
= Peripheral /0 bus

Canonical Device

= Two primary components
= Interface (registers for communication)

= Tradeoff space: speed vs. locality - :::Lr;adlz;laosc;ltx::le,)memory, Speile @ills, TimEie

May 30, 2017 TCS5422: Operating Systems [Spring 2017)
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CANONICAL DEVICE: OS DEVICE INTERACTION

HARDWARE INTERFACE

= Status register = Common example of device interaction
= Maintains current device status

while ( sTaTus == Busy) <mmm Pol

//wait until devic

I-Is device available?
n busy
L}
Command register write data to data register 4= Command parameterization
write command to command register - Send command
Doing so starts the device and executes the command
= Data register while ( STATUS == BUSY)  {mmm Poll - Is device done?

= Used to send and receive data to the device -

= Where commands for interaction are sent

General concept:

controls device behavior
device registers.

May 30, 2017 TCS5422: Operating Systems [Spring 2017)
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POLLING

= 0S checks if device is READY by repeatedly checking the
STATUS register
= Simple approach
= CPU cycles are wasted without doing meaningful work
= Ok if only a few cycles, for rapid devices that are often READY
= BUT polling, as with “spin locks” we understand is inefficient

“waiting 10"

task 1 E polling

e [ea[a[a]s]elelelelela]i i 1]1]

oisk EYENENEY

CPU utilization by polling

TCS5422: Operating Systems [Spring 2017)
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INTERRUPTS VS POLLING

= For longer waits, put process waiting on I/0 to sleep

= Context switch (C/S) to another process

= When I/0 completes, fire an interrupt to initiate C/S back
= Advantage: better multi-tasking and CPU utilization
= Avoids: unproductive CPU cycles (polling)

ev [1[a]a]s]s [2T202 2] 2 [1 ]2 ]2 ]1]

Disk
Diagram of CPU utilization by interrupt
TCS$422: Operating Systems [Spring 2017]
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INTERRUPTS VS POLLING - 2

What is the tradeoff space

= Interrupts are not always the best solution

=How long does the device 1/0 require?

= What is the cost of context switching?

polling

interrupts

TCS5422: Operating Systems [Spring 2017)

LTy i) Institute of Technology, University of Washington - Tacoma

INTERRUPTS VS POLLING - 3

= One solution is a two-phase hybrid approach
= Initially poll, then sleep and use interrupts

= Livelock problem
= Common with network 1I/0
= Many arriving packets generate many many interrupts
= Overloads the CPU!
= No time to execute code, just interrupt handlers!

= Livelock optimization

= Coalesce multiple arriving packets (for different processes) into
fewer interrupts

= Must consider number of interrupts a device could generate

DEVICE 1/0
=To interact with a device we must send/receive
DATA
=There are two general approaches:
=Programmed I/0 (PI10)

=Direct memory access (DMA)

TCS5422: Operating Systems [Spring 2017)
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e =
Transfer Modes
Mode P # - Maxi'"""l"M::;sm' e s | cvciatmne e

[ 3.3 600 ns
1 52 383 ns
PIO 2 8.3 240 ns
3 111 180 ns
a 167 120 ns
[ 2.1 960 ns
Single-word DMA 1 a2 480 ns
2 83 240 ns
o 42 480 ns
1 133 150 ns
Multi-word DMA 2 16.7 120 ns
30541 20 | 100 ns
] 25 80ns

[ 16.7 240ns = 2

1 250 160 ns + 2

2 (Ultra ATA/33) 333 120ns + 2

e — 3 4.4 90 ns = 2

4 (Ultra ATA/66) 66.7 60 ns + 2

5 (Ultra ATA/100) 100 40ns + 2

& (Ultra ATA/133) 133 30ns+2

| 7 (Ultra ATA/167)1 167 24ns+2

o it oo wikine dia ool AL
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PROGRAMMED 1/0 (P10)

= Spend CPU time to perform 1/0
= CPU is involved with the data movement (input/output)
= PIO is slow -CPU is occupied with meaningless work

PIO “over-burdened” ttaskl :task2
R

ov [1]1]1]1 [clele | EIEEEE 1]

ois [1]

Diagram of CPU utilization

5/30/2017
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P10 DEVICES

= Legacy serial ports

= Legacy parallel ports

= PS/2 keyboard and mouse
= Legacy MIDI, joysticks

= Old network interfaces

TCS5422: Operating Systems [Spring 2017)
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DIRECT MEMORY ACCESS (DMA)

= Copy data in memory by offloading to a “DMA controller”
= Many devices (including CPUs) have DMA controllers

= Give DMA memory address, size, and copy instruction

= DMA performs I/0 independent of the CPU

wir [ w2
R —

o [afi[a 1222 22 22 2] 1 [1]1]

DMA
Disk
Diagram of CPU utilization by DMA
May 30,2017 e e i [ e

DEVICE INTERACTION

=Two primary methods

" Port mapped I/0 (PMIO)

= Memory mapped |/0 (MMIO)

TCS5422: Operating Systems [Spring 2017)
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PORT MAPPED 1/0 (PMIO)

= Device specific CPU I/0 Instructions
= Follows a CISC model: extra instructions
= x86-x86-64: in and out instructions

" outb, outw, outl
=1, 2 4 byte copy from EAX = device’s I/0 port

TCS5422: Operating Systems [Spring 2017)
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MEMORY MAPPED 1/0 (MMIO)

= Device’s memory is mapped to CPU memory

= Tenet of RISC CPUs: instructions are eliminated, CPU is
simpler

= Old days: 16-bit CPUs didn’t have a lot of spare memory space

= Today’'s CPUs: 32-bit (4GB addr space) & 64-bit (128 TB addr
space)

= Regular CPU instructions used to access device: mapped to
memory

= Devices monitor CPU address bus and respond to their
addresses

= |/0 device address areas of memory are reserved for 1/0
= Must not be available for normal memory operations.

TCS5422: Operating Systems [Spring 2017)
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DEVICE INTERACTION

= The OS must interact with a variety of devices

= Example: for DISK I/0 consider the variety of disks:

= SCSI, IDE, USB flash drive, DVD, etc.

= Device drivers use abstraction to provide general
interfaces for vendor specific hardware

= In Linux: block devices

5/30/2017
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FILE SYSTEM ABSTRACTION

= Layers of 1/0 abstraction in Linux

= C functions (open, read, write) issue block read and write
requests to the generic block layer

‘ Application user

__________ POSIX API [open, read, write, close, etc] = — = = = = = = = =

kernel

Generic Block Interface [block read/write]

i Generic Block Layer

Specific Block Interface [protocol-specific read/write]

The File System Stack

TCS5422: Operating Systems [Spring 2017)
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FILE SYSTEM ABSTRACTION ISSUES

= Too much abstractlon

= Many devices provide special capabilities
= Example: SCSI Error handling
= SCSI devices provide extra detail which are lost to the OS

= Buggy device drivers

= 70% of OS code is in device drivers
= Device drivers are required for every device plugged in

= Drivers are often 3" party, which is not quality controlled at
the same level as the OS (Linux, Windows, MacOS, etc.)

TCS5422: Operating Systems [Spring 2017)
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QUESTIONS
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