
TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

05/25/2017

Slides by Wes J. Lloyd L16.1

Paging
Smaller Tables

Wes J. Lloyd
Institute of Technology
University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 For clarification, is it always a miss whenever a page is
initially accessed, based on the array access example?

 YES, as long as the array in the user’s program has not
been previously accessed recently (temporal locality)
 AND, as long as there was no other data in the user

program besides the array accessed from the page
beforehand

 How do you find misses and hits?
 In practice? We check if the VPN is in the TLB. This is a

HIT.
IF not in the TLB, this is a **MISS**

May 25, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L16.2

FEEDBACK FROM 5/23

 How do you find misses and hits?
 Recall, all address translations go through the TLB

 If a TLB miss, the TLB fetches the VPNPFN translation from the
page table (in RAM), and cache the entry in the TLB, then we must
requery the TLB…

May 25, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L16.3

FEEDBACK - 2

Chapter 20

Smaller tables

Hybrid tables

Multi-level page tables

May 25, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L16.4

OBJECTIVES

Consider array-based page tables:
 Each process has its own page table

 32-bit process address space (up to 4GB)

With 4 KB pages

 20 bits for VPN

 12 bits for the page offset

May 25, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L16.5

LINEAR PAGE TABLES

 Page tables stored in RAM

 Support potential storage of 220 translations
= 1,048,576 pages per process @ 4 bytes/page

 Page table size 4MB / process

 Consider 100+ OS processes
 Requires 400+ MB of RAM to store process information

May 25, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L16.6

LINEAR PAGE TABLES - 2

Page tables are too big and
consume too much memory.

TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

05/25/2017

Slides by Wes J. Lloyd L16.2

 Larger pages = 16KB = 214

 32-bit address space: 232

 218 = 262,144 pages

 Memory requirement cut to ¼

 However pages are huge

 Internal fragmentation results

 16KB page(s) allocated for small programs with only a
few variables

May 25, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L16.7

PAGING: USE LARGER PAGES

 Process: 16KB Address Space w/ 1KB pages

May 25, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L16.8

PAGE TABLES: WASTED SPACE

Page Table

 Process: 16KB Address Space w/ 1KB pages

May 25, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L16.9

PAGE TABLES: WASTED SPACE

Page Table

Most of the page table is unused
and full of wasted space. (73%)

 Combine segments and page tables

 Use stack, heap, code
segment base/bound registers

 Base register: point to page table

 Bounds register: store end of page table

May 25, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L16.10

HYBRID TABLES

 Each process has (3) page tables

 1 each for code, stack, heap segments

 Base register stores address of start of table

 216 bits for VPN, can only address 65,536 pages/segment

May 25, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L16.11

HYBRID TABLES - 2

 HW must look up page table ADDR on TLB miss

 Segment (SN) bits: indicate which base/bound registers to use

 SEG_MASK = 1100 0000 0000 0000 0000 0000 0000 0000

 SN_SHIFT = 30 bits (shift 30 bits right)

 VPN_MASK = 0011 1111 1111 1111 1111 0000 0000 0000

 VPN_SHIFT = 12 bits (shift 12 bits right)

 PTE ADDR = Base of table + VPN * size of a page table entry

May 25, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L16.12

HYBRID TABLES:
COMPUTING PAGE TABLE ADDRESS

TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

05/25/2017

Slides by Wes J. Lloyd L16.3

 Consider 3 Segments, w/ 4KB pages
 3 code pgs (3 x 4KB), 1 stack pg (1 x 4KB), 3 heap pgs (3 x 4KB)

 3 sets of base/bounds registers (3 x 16 B)

 32-bit VPN bit -string:
 2 bits – segment type bit code
 2 bits – status bits
 16 bits – virtual page number VPN (indexes 65,536 pages)
 12 bits – page offset (indexes 4KB pages)

 How much memory is required?
 4 bytes per PTE x 65,536 pages = 262,144 bytes per segment
 3 segments = 786,432 bytes (pg tables) + 48 bytes (registers)
 786480 bytes ÷ 1024 KB/byte = ~ 768 KB per process

 How much memory can be addressed?
 256 MB (216 pages x 4KB)
 Overhead= 768 KB / 256 MB (.3%)

May 25, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L16.13

HYBRID TABLE EXAMPLE:

 Consider a page table:

 32-bit addressing, 4KB pages

 220 page table entries

 Even if memory is sparsely populated the per process page
table requires:

 Often most of the 4MB per process page table is empty

 Page table must be placed in 4MB contiguous block of RAM

 MUST SAVE MEMORY!

May 25, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L16.14

MULTI-LEVEL PAGE TABLES

 Add level of indirection, the “page directory”

May 25, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L16.15

MULTI-LEVEL PAGE TABLES - 2

 Add level of indirection, the “page directory”

May 25, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L16.16

MULTI-LEVEL PAGE TABLES - 2

Two level page table:
220 pages addressed with

two level-indexing
(page directory index, page table index)

 Advantages

 Only allocates page table space in proportion to the
address space actually used

 Can easily grab next free page to expand page table

 Disadvantages

Multi-level page tables are an example of a time-space
tradeoff

 Sacrifice address translation time (now 2-level) for space

 Complexity: multi-level schemes are more complex

May 25, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L16.17

MULTI-LEVEL PAGE TABLES - 3

 16KB address space, 64byte pages

 How large would a one-level page table need to be?

 214 (address space) / 26 (page size) = 28 = 256 (pages)

May 25, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L16.18

EXAMPLE

TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

05/25/2017

Slides by Wes J. Lloyd L16.4

 256 total page table entries (64 bytes each)

 1,024 bytes page table size, stored using 64-byte pages
= (1024/64) = 16 page directory entries (PDEs)

 Each page directory entry (PDE) can hold 16 page table
entries (PTEs) e.g. lookups

 16 page directory entries (PDE) x 16 page table entries (PTE)
= 256 total PTEs

 Key idea: the page table is stored using pages too!

May 25, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L16.19

EXAMPLE - 2

 Now, let’s split the page table into two:

 8 bit VPN to map 256 pages

 4 bits for page directory index (PDI – 1st level page table)

 6 bits offset into 64-byte page

May 25, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L16.20

PAGE DIRECTORY INDEX

 4 bits page directory index (PDI – 1st level)

 4 bits page table index (PTI – 2nd level)

 To dereference one 64-byte memory page,

 We need one page directory entry (PDE)

 One page table Index (PTI) – can address 16 pages

May 25, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L16.21

PAGE TABLE INDEX

 For this example, how much space is required to store as a
s ingle-level page table with any number of PTEs?

 16KB address space, 64 byte pages
 256 page frames, 4 byte page size
 1,024 bytes required (single level)

 How much space is required for a two-level page table with
only 4 page table entries (PTEs) ?

 Page directory = 16 entries x 4 bytes (1 x 64 byte page)
 Page table = 4 entries x 4 bytes (1 x 64 byte page)
 128 bytes required (2 x 64 byte pages)
 Savings = using just 12.5% the space !!!

May 25, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L16.22

EXAMPLE - 3

 Consider: 32-bit address space, 4KB pages, 220 pages

 Only 4 mapped pages

 Single level: 4 MB (we’ve done this before)

 Two level: (old VPN was 20 bits, split in half)

 Page directory = 210 entries x 4 bytes = 1 x 4 KB page

 Page table = 4 entries x 4 bytes (mapped to 1 4KB page)

 8KB (8,192 bytes) required

 Savings = using just .78 % the space !!!

 100 sparse processes now require < 1MB for page tables

May 25, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L16.23

32-BIT EXAMPLE

 Consider: page size is 29 = 512 bytes

 Page size 512 bytes / Page entry size 4 bytes

 VPN is 21 bits

May 25, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L16.24

MORE THAN TWO LEVELS

TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

05/25/2017

Slides by Wes J. Lloyd L16.5

 Page table entries per page = 512 / 4 = 128

 7 bytes – for page table index (PTI)

May 25, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L16.25

MORE THAN TWO LEVELS - 2

 To map 1 GB address space (230=1GB RAM, 512-byte pages)

 214 = 16,384 page directory entries (PDEs) are required

 When using 27 (128 entry) page tables…

 Page size = 512 bytes / 4 bytes per addr

May 25, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L16.26

MORE THAN TWO LEVELS - 3

 To map 1 GB address space (230=1GB RAM, 512-byte pages)

 214 = 16,384 page directory entries (PDEs) are required

 When using 27 (128 entry) page tables…

 Page size = 512 bytes / 4 bytes per addr

May 25, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L16.27

MORE THAN TWO LEVELS - 3

Can’t Store Page Directory with 16K
pages, using 512 bytes pages.

Pages only dereference 128 addresses
(512 bytes / 32 bytes)

 To map 1 GB address space (230=1GB RAM, 512-byte pages)

 214 = 16,384 page directory entries (PDEs) are required

 When using 27 (128 entry) page tables…

 Page size = 512 bytes / 4 bytes per addr

May 25, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L16.28

MORE THAN TWO LEVELS - 3

Can’t Store Page Directory with 16K
pages, using 512 bytes pages.

Pages only dereference 128 addresses
(512 bytes / 32 bytes)

Need three level page table:
Page directory 0 (PD Index 0)
Page directory 1 (PD Index 1)

Page Table Index

 We can now address 1GB with“fine grained” 512 byte pages

 Using multiple levels of indirection

 Consider the implications for address translation!

 How much space is required for a virtual address space with 4
entries on a 512-byte page? (let’s say 4 32-bit integers)

 PD0 1 page, PD1 1 page, PT 1 page = 1,536 bytes

 Savings = 1,536 / 8,388,608 (8mb) = .0183% !!!

May 25, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L16.29

MORE THAN TWO LEVELS - 4

May 25, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L16.30

ADDRESS TRANSLATION - 1

(01) Extract the virtual page number (VPN)(02-03) Check if TLB holds VPN translation(05-07) Generate physical address from TLB

TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

05/25/2017

Slides by Wes J. Lloyd L16.6

May 25, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L16.31

ADDRESS TRANSLATION - 2

(12-13) Extract PDIndex and PDEAddr(14) Get page directory entry(15-17) Check if PDE is valid, if so fetch entry from page table

May 25, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L16.32

ADDRESS TRANSLATION - 3

 Keep a single page table for each physical page of memory

 Consider 4GB physical memory

 Using 4KB pages, page table requires 4MB to map all of RAM

 Page table stores

 Which process uses each page

 Which process virtual page (from process virtual address
space) maps to the physical page

 Finding process memory pages requires search of 220 pages

 Hash table: can index memory and speed lookups

May 25, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L16.33

INVERTED PAGE TABLES
QUESTIONS

May 25, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma L16.34

May 25, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L16.35

 Consider a large sparsely populated heap

 Heap may have been enlarged for memory which was freed

 Free-ing memory doesn’t necessarily shrink the heap
 Consider our realloc example

 Large sparse segments waste space

 Page tables are now of variable size (no longer fixed)

 Can be 1 to many actual pages

 Must find space for variable sized page tables

 Fragmentation is possible

 Need a free space list

May 25, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L16.36

HYBRID TABLES - 4

