TCSS 422: Operating Systems [Spring 2017] 05/25/2017
Institute of Technology, UW-Tacoma

FEEDBACK FROM 5/23

TCSS 422: OPERATING SYSTEMS
| |

= For clarification, is it always a miss whenever a page is
initially accessed, based on the array access example?

Paging " . i 3 =YES, as long as the array in the user’s program has not
Smaller Tables | i been previously accessed recently (temporal locality)
3381 = AND, as long as there was no other data in the user
program besldes the array accessed from the page

beforehand
Wes J. Lloyd
Institute of Technology = How do you find misses and hits?
University of Washington - Tacoma = In practice? We check if the VPN is in the TLB. Thisis a
* ok HIT* %
IF not in the TLB, this is a **MISS* *
May 25, 2017 P e B
FEEDBACK - 2 OBJECTIVES
" How do you find misses and hits? = Chapter 20

= Recall, all address translations go through the TLB

= |f a TLB miss, the TLB fetches the VPN-> PFN translation from the
page table (in RAM), and cache the entry in the TLB, then we must
requery the TLB...

=Smaller tables

78))
Logical Lookup LB Physical =Hybrid tables
Address | TLB Address
popular v to ¢
e Page 0 =Multi-level page tables
age Table
all v to p entries Page 1
Page 2

Address Translation with MMU Physical Memory

TCS5422: Operating Systems [Spring 2017)
Institute of Technology, University of Washington - Tacoma

TCSS422: Operating Systems [Spring 2017]
Lie3 W2 P [See ot Techolo syl niersityofWashinstonmiecome! uea

| May 25, 2017

LINEAR PAGE TABLES LINEAR PAGE TABLES - 2

= Consider array-based page tables: = Page tables stored in RAM
= Support potential storage of 220 translations

= 1,048,576 pages per process @ 4 bytes/page
= Page table size 4MB / process

= Each process has its own page table
= 32-bit process address space (up to 4GB)
= With 4 KB pages

= 20 bits for VPN Page tables are too big and
= 12 bits for the page offset consume too much memory.

= Consider 100+ OS processes
= Requires 400+ MB of RAM to store process information

TCS5422: Operating Systems [Spring 2017)
Institute of Technology, University of Washington - Tacoma

TCS5422: Operating Systems [Spring 2017)

uss
Institute of Technology, University of Washington - Tacoma |

May 25, 2017

ues

May 25,2017

Slides by Wes J. Lloyd L16.1

TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

PAGING: USE LARGER PAGES

= Larger pages = 16KB = 214
= 32-bit address space: 232
m 218 = 262,144 pages

32
zT, *4 =1MB per page table

= Memory requirement cut to %
= However pages are huge
= Internal fragmentation results

= 16 KB page(s) allocated for small programs with only a
few variables

05/25/2017

May 25, 2017 TCS5422: Operating Systems [Spring 2017)

Institute of Technology, University of Washington - Tacoma uer

PAGE TABLES: WASTED SPACE

= Process: 16KB Address Space w/ 1KB pages
Page Table Physical Memory

Virtual Address
code o
1\ Allocate y "
5 PFN valid prot present dirty
5 A [10 1 x 1 0
heap 1 0 - -
° 0
6
7 . 0 .
8 15 1 W 1 1
9 5 .
0
" 9 - -
12 3 1 w- 1 1
stack 13 23 i w- 1 1
e
A Page Table For 16KB Address Space

A 16KB Address Space with 1KB Pages

May 25, 2017 TCS5422: Operating Systems [Spring 2017)

Institute of Technology, University of Washington - Tacoma | es

PAGE TABLES: WASTED SPACE

= Process: 16 KB Address Space w/ 1KB pages
Page Table Physical Memory

Virtual Address

code

Allocate

PFN valid prot present

dirty

heap Most of the page table is unused
and full of wasted space. (73%)

3
3 23 1 w- 1 1

stack

A Page Table For 16KB Address Space

A 16KB Address Space with 1KB Pages

TCS5422: Operating Systems [Spring 2017]
L2) Inttute of Technoloay)Universitylof Washington®Tacomal

HYBRID TABLES

= Combine segments and page tables ??
= Use stack, heap, code ? ?
segment base/bound registers a B

= Base register: point to page table

= Bounds register: store end of page table

May 25, 2017 TCS5422: Operating Systems [Spring 2017)

Institute of Technology, University of Washington - Tacoma ueo

HYBRID TABLES - 2

= Each process has (3) page tables

= 1 each for code, stack, heap segments

= Base register stores address of start of table

= 216 pjts for VPN, can only address 65,536 pages/segment
313029282726252423222120191817161514131211109 8 765 4 321 0
BRI T e
" : :

VPN Offset

32-bit Virtual address space with 4KB pages

Seg value Content

00 unused segment
01 code
10 heap.
11 stack

TCS5422: Operating Systems [Spring 2017)

Ly 2) Institute of Technology, University of Washington - Tacoma

HYBRID TABLES:
COMPUTING PAGE TABLE ADDRESS

= HW must look up page table ADDR on TLB miss
= Segment (SN) bits: indicate which base/bound registers to use

01: SN = (VirtualAddress & SEG_MASK) >> SN_SHIFT
02: VEN = (VirtualAddress & VPN_MASK) >> VPN_SHIFT
03: AddressOfPTE = Base[SN] + (VPN * sizeof (PTE))

= SEG_MASK = 1100 0000 0000 0000 0000 0000 0000 0000
= SN_SHIFT = 30 bits (shift 30 bits right)

= VPN_MASK = 0011 1111 1111 1111 1111 0000 0000 0000
= VPN_SHIFT = 12 bits (shift 12 bits right)

= PTE ADDR = Base of table + VPN * size of a page table entry

May 25, 2017 TCS5422: Operating Systems [Spring 2017)

12
Institute of Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

L16.2

TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

05/25/2017

HYBRID TABLE EXAMPLE:

= Consider 3 Segments, w/ 4KB pages

= 3 sets of base/bounds registers (3 x 16 B)
= 32-bit VPN bit-string:
= 2 bits - segment type bit code
= 2 bits - status bits
= 16 bits - virtual page number VPN (indexes 65,536 pages)
= 12 bits - page offset (indexes 4KB pages)
= How much memory is required?
= 4 bytes per PTE x 65,536 pages = 262,144 bytes per segment
= 3 segments = 786,432 bytes (pg tables) + 48 bytes (registers)
= 786480 bytes + 1024 KB/byte = ~ 768 KB per process
= How much memory can be addressed?
= 256 MB (21¢ pages x 4KB)

9
TCS5422: Operating Systems [Spring 2017)

havi2e 2l Institute of Technology, University of Washington - Tacoma

= 3 code pgs (3 x 4KB), 1 stack pg (1 x 4KB), 3 heap pgs (3 x 4KB)

MULTI-LEVEL PAGE TABLES

= Consider a page table:

= 32-bit addressing, 4KB pages

® 220 page table entries

= Even if memory is sparsely populated the per process page
table requires:

32
Page table size = % * 4Byte = 4MByte

= Often most of the 4MB per process page table is empty
= Page table must be placed in 4MB contiguous block of RAM

= MUST SAVE MEMORY!

TCS5422: Operating Systems [Spring 2017)
Institute of Technology, University of Washington - Tacoma

May 25,2017

Le14

MULTI-LEVEL PAGE TABLES - 2

= Add level of indirection, the “page directory”

Linear Page Table Multi-level Page Table

Institute of Technology, University of Washington - Tacoma

PBTR | 201 }—‘ PETR | 200

=
= B k] =
= s W S PN & g. PFN
L2 T o [T~ =

= S S [o] - B = 5|3
0 & £ o] - 0 |2
— i | w0 %
o g The Page Directory [Page 1 of PT:Not Allocated]
o g il
o
0] o
0 - 8 [J .
| 8 |& of - - 1§
w15 o | e |&

]
Linear (Left) And Multi-Level (Right) Page Tables
ay 252007 TCS5422: Operating Systems [Spring 2017] | et ‘

MULTI-LEVEL PAGE TABLES - 2

= Add level of indirection, the “page directory”
Linear Page Table Multi-level Page Table
PBIR | 201 PBTR | 200

220 pages addressed with

two level-indexing
(page directory index, page table index)

PFN203

PFN204

0
0
1
i

Linear (Left) And Multi-Level (Right) Page Tables

TCS5422: Operating Systems [Spring 2017)

av2e 200 Institute of Technology, University of Washington - Tacoma

Ls1s

MULTI-LEVEL PAGE TABLES - 3

= Advantages

address space actually used

= Disadvantages

tradeoff

= Complexity: multi-level schemes are more complex

= Only allocates page table space in proportion to the

= Can easily grab next free page to expand page table

= Multi-level page tables are an example of a time-space

= Sacrifice address translation time (now 2-level) for space

TCS5422: Operating Systems [Spring 2017)

Ly 2) Institute of Technology, University of Washington - Tacoma

EXAMPLE

= 16KB address space, 64byte pages
= How large would a one-level page table need to be?
= 214 (address space) / 2© (page size) = 28 = 256 (pages)

0000 000___code

0000 0001 code
(free) Address space 16 KB
(free) Page size 64 byte
Sy Virtual address 14 bit
heap) VPN 8bit
ffie8) Offset 6 bit
= Page table entry 23 (256)
stack

111111 stack A 16-KB Address Space With 64-byte Pages

[13]12]ua]w0]o[8]7[6[5]4]3]2]1]0]

Offset

TCS5422: Operating Systems [Spring 2017)
Institute of Technology, University of Washington - Tacoma

May 25,2017

Le1s

Slides by Wes J. Lloyd

L16.3

TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

EXAMPLE - 2

= 256 total page table entries (64 bytes each)

= 1,024 bytes page table size, stored using 64-byte pages
= (1024/64) = 16 page directory entries (PDEs)

= Each page directory entry (PDE) can hold 16 page table
entries (PTEs) e.g. lookups

= 16 page directory entries (PDE) x 16 page table entries (PTE)
= 256 total PTEs

= Key Idea: the page table Is stored using pages too!

05/25/2017

TCS5422: Operating Systems [Spring 2017]

havi2e 2l Institute of Technology, University of Washington - Tacoma

PAGE DIRECTORY INDEX

= Now, let’s split the page table into two:
= 8 bit VPN to map 256 pages
= 4 bits for page directory index (PDI - 1%t level page table)
= 6 bits offset into 64-byte page

| Page Directory Index _,

(Bl o[7[e[5]4a]3]2]1]0]
: VPN . Offset !
14-bits Virtual address

TCS5422: Operating Systems [Spring 2017)

Institute of Technology, University of Washington - Tacoma e

May 25,2017

PAGE TABLE INDEX

= 4 bits page directory index (PDI - 1st|evel)
= 4 bits page table index (PTI - 2" level)

Page Directory Index _, ~ Page Table Index

13|12|11|1o[9]s[7|6 s[a[3]2]1]0]
VPN Offset '
14-bits Virtual address

= To dereference one 64-byte memory page,
= We need one page directory entry (PDE)
= One page table Index (PTl) - can address 16 pages

TCS5422: Operating Systems [Spring 2017]

May 25, 2017 Institute of Technology, University of Washington - Tacoma

EXAMPLE - 3

= For this example, how much space is required to store as a
single-level page table with any number of PTEs?

= 16KB address space, 64 byte pages
= 256 page frames, 4 byte page size
= 1,024 bytes required (single level)

= How much space is required for a two-level page table with
only 4 page table entries (PTEs) ?

= Page directory = 16 entries x 4 bytes (1 x 64 byte page)
= Page table = 4 entries x 4 bytes (1 x 64 byte page)
= 128 bytes required (2 x 64 byte pages)

= Savings = using just 12.5% the space !!!

TCS5422: Operating Systems [Spring 2017)

ue22
Institute of Technology, University of Washington - Tacoma

May 25,2017

32-BIT EXAMPLE

= Consider: 32-bit address space, 4KB pages, 22° pages
= Only 4 mapped pages

= Single level: 4 MB (we’ve done this before)

= Two level: (old VPN was 20 bits, split in half)

= Page directory = 210 entries x 4 bytes = 1 x 4 KB page

= Page table = 4 entries x 4 bytes (mapped to 1 4KB page)
= 8KB (8,192 bytes) required

= Savings = using just .78 % the space !!!

= 100 sparse processes now require < 1MB for page tables

TCS5422: Operating Systems [Spring 2017)

May 25, 2017 Institute of Technology, University of Washington - Tacoma

MORE THAN TWO LEVELS

= Consider: page size is 2° = 512 bytes
= Page size 512 bytes / Page entry size 4 bytes
= VPN is 21 bits

30292827262524232221201918171615141312111098 7654 3 21 0

[T T [TT1

VPN offset
Virtual address 30 bit
Page size 512 byte
VPN 21 bit
Offset 9 bit

TCS5422: Operating Systems [Spring 2017)

U624
Institute of Technology, University of Washington - Tacoma

May 25,2017

Slides by Wes J. Lloyd

L16.4

TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

05/25/2017

MORE THAN TWO LEVELS - 2

= Page table entries per page = 512 / 4 = 128
= 7 bytes - for page table index (PTI)

30292827262524232221201918171615141312111098 7 6 54 3 21 0
[T T A
Page Directory Index | Page Ta »
VPN offset
Virtual address 30 bit
Page size 512 byte
VPN 21 bit
Offset 9 bit
Page entry per page 128 PTEs —T > log,128 =7

MORE THAN TWO LEVELS - 3

= To map 1 GB address space (23°=1GB RAM, 512-byte pages)
= 214 = 16,384 page directory entries (PDEs) are required

= When using 27 (128 entry) page tables...

= Page size = 512 bytes / 4 bytes per addr

3029282726252423222120191817161514131211109 8 7654 3 2 1

[TTTTTITITTT T A ||||||0\i

Page Directory Index i

VPN offset
Virtual address 30 bit
Page size 512 byte
VPN 21 bit
Offset 9 bit
Page entry per page 128 PTEs ———> log,128 =7

TCS5422: Operating Systems [Spring 2017)

Ly 2) T e a0l 2 U nvers o Washins tonsTace el | L6z

TCS5422: Operating Systems [Spring 2017)

Institute of Technology, University of Washington - Tacoma e

May 25,2017

MORE THAN TWO LEVELS - 3

= To map 1 GB address space (23°=1GB RAM, 512-byte pages)
= 214 = 16,384 page directory entries (PDEs) are required

= When using 27 (128 entry) page tables...
= Pagosad f a

Can'’t Store Page Directory with 16K
pages, using 512 bytes pages.

Pages only dereference 128 addresses
(512 bytes / 32 bytes)

irtual address 30 bit
Page size 512 byte
VPN 21 bit
Offset 9 bit
Page entry per page | 128 PTEs ——F—> log,128 =7

MORE THAN TWO LEVELS - 3

= To map 1 GB address space (23°=1GB RAM, 512-byte pages)
= 214 = 16,384 page directory entries (PDEs) are required

= When using 27 (128 entry) page tables...

" Pagosad i

Need three level page table:
Page directory 0 (PD Index 0)
Page directory 1 (PD Index 1)

Page Table Index

Virtual address 0 bit

Page size 512 byte

VPN 21 bit

Offset 9 bit

Page entry per page | 128 PTEs ——> log,128 =7

TCS5422: Operating Systems [Spring 2017)

Institute of Technology, University of Washington - Tacoma | e

May 25, 2017

TCS5422: Operating Systems [Spring 2017)
Institute of Technology, University of Washington - Tacoma

May 25, 2017 116.28

MORE THAN TWO LEVELS - 4

= We can now address 1GB with“fine grained” 512 byte pages
= Using multiple levels of indirection

3029282726252423222120191817161514131211109 876 54 3 21 0

EENARNARNRRNN NN NNARNARENE

" Page Table Index.

VPN

= Consider the implications for address translation!

= How much space is required for a virtual address space with 4
entries on a 512-byte page? (let’s say 4 32-bit integers)

= PDO 1 page, PD1 1 page, PT 1 page = 1,536 bytes

= Savings = 1,536 / 8,388,608 (8mb) = .0183% !!!

ADDRESS TRANSLATION - 1

01: VEN = (VirtualAddress & VPN_MASK) >> SHIFT

02: (Success, T1bEntry) = TLB_Lookup (VEN)

03: (Success == True) 1 it

04: (CanAccess (T1bEntry.ProtectBits) == True)

05: Offset = VirtualAddress & OFFSET_MASK

06: PhysAddr = (T1bEntry.PFN << SHIFT) | Offset
07: Register = AccessMemory (PhysAddr)

08: RaiseException (PROTECTION_FAULT) ;

09: // perform the 1

I (05-07) Generate physical address from TLB |

TCS5422: Operating Systems [Spring 2017)

Ly 2) Institute o Technoloay)Universitylof Washington®Tacomal | L2

TCS5422: Operating Systems [Spring 2017)

Institute of Technology, University of Washington - Tacoma a0

May 25,2017

Slides by Wes J. Lloyd

L16.5

TCSS 422: Operating

Systems [Spring 2017]

Institute of Technology, UW-Tacoma

ADDRESS TRANSLATION - 2

PDIndex = (VEN & PD_MASK) >> PD_SHIFT
PDEAGr = PDBR + (PDIndex * sizeof (PDE))

BDE = AccessMemory (PDEAAdr)

(PDE.Valid == False)

RaiseException (SEGMENTATION_FAULT)

| (15-17) Check if PDE is valid, if so fetch entry from page table

|

| May 25, 2017

TCS5422: Operating Systems [Spring 2017)
Institute of Technology, University of Washington - Tacoma

05/25/2017

ADDRESS TRANS

18: PTIndex = (VPN & PT_MASK) >> PT_SHIFT
19: PTEAdr = (PDE.PFN << SHIFT) + (PTIndex * sizeof (PTE))
20: PTE = AccessMemory (PTEAAr)
21: (PTE.Valid == False)
22: RaiseException (SEGMENTATION FAULT)
23: (CanAccess (PTE.ProtectBits) == False)
24: RaiseException (PROTECTION_FAULT) ;
25:
263 TLB_Insert (VEN, PTE.PFN , PTE.ProtectBits)
275 RetryInstruction()
a0 oy Unvaraey o Washington Tacoma

INVERTED PAGE TABLES

= Consider 4GB physical memory

= Page table stores
= Which process uses each page

space) maps to the physical page

= Hash table: can index memory and speed lookups

= Which process virtual page (from process virtual address

= Keep a single page table for each physical page of memory

= Using 4KB pages, page table requires 4MB to map all of RAM

= Finding process memory pages requires search of 22° pages

TCS5422: Operating Systems [Spring 2017)

QUESTIONS

TCSS422: Operating Systems [Spring 2017]

v 2 Institute of Technology, University of Washington - Tacoma

L2) Inttute of Technoloay)Universitylof Washington®Tacomal | Le33 ‘
TCS5422: Operating Systems [Spring 2017]
Ly 2) Institute o Technoloay)Universitylof Washington®Tacomal ue3s

HYBRID TABLES - 4

= Consider a large sparsely populated heap
= Heap may have been enlarged for memory which was freed
= Free-ing memory doesn’t necessarily shrink the heap
= Consider our realloc example
= Large sparse segments waste space

= Page tables are now of variable size (no longer fixed)
= Can be 1 to many actual pages

= Must find space for variable sized page tables

= Fragmentation is possible

= Need a free space list

TCS5422: Operating Systems [Spring 2017)

W2 P Institute of Technology, University of Washington - Tacoma

636

Slides by Wes J. Lloyd

L16.6

