
TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

5/11/2017

Slides by Wes J. Lloyd L12.1

Address Translation
Memory Segmentation

Wes J. Lloyd
Institute of Technology
University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 Assignment 2 clarifications:
 Source file should be called procReport.c
 Source dir should be called procReport
 Source tar gz file should be called procReport.tar.gz
 Proc file should be called proc_report

 Should the output of the kernel module be visible with dmesg?

 Recommend tracing the log file using “tail”:
 tail –fn 100 /var/log/messages

 Will display 100 most recent lines
 Printk function will print to /var/log/messages
 Trace dmesg for kernel messages: “dmesg --wk”

May 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L12.2

FEEDBACK – 5/9

 Can I write my code (entire output) inside 1 printk()
statement?

 How to access or see what is in linux.h from terminal?

 If wanting to see the struct task_struct data structure, check
out:

 vi /usr/src/kernels/$(uname -r)/include/linux/sched.h

 Type “:1257”
 Goes to line ~ 1257

 Type “:q” or “:q!” to quit vi editor

May 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L12.3

FEEDBACK - 2

 Why can’t you call free() on a pointer twice?
 Why does it cause a core dump?

 Free releases memory pointed to by free

 The heap memory is deallocated

 Memory is added back to the “free” list for reuse

 Once released the memory is no longer valid

 Pointer still refers to the same vir tual memory address, and
the information is still there

 Can’t free/deallocate twice

May 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L12.4

FEEDBACK - 3

 Is physical memory the same as RAM?
 Yes

 What is multiplexing?
 Doing two (or more) things at the same time

 Is there a way to get the program to output the line numbers
that cause the seg fault?

 free.c example:

 Add “-g” compiler option to add debugging info

 gdb free

 >run

 >where

May 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L12.5

FEEDBACK - 4

 How did you figure out what the base/bounds are in the table?
 This is just a hypothetical example. Numbers are provided.

 Since you can get access to functions on the stack, can you
change the values in these memory addresses?
 The code segment is read only
 Printing the address of a function, just shows location
 There is no variable to change…

May 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L12.6

FEEDBACK - 5

Virtual Address Physical Address

0 16384

1024 17408

3000 19384

4400 20784 (out of bounds)

TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

5/11/2017

Slides by Wes J. Lloyd L12.2

 Why is it when we print the addresses in a program that they
are vir tual?

 Why is it only the OS knows about the real addresses of
things?

May 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L12.7

FEEDBACK - 6

 Chapter 15
 Address Translation

 Chapter 16
 Memory Segmentation

 Chapter 17
 Free Space Management

May 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L12.8

OBJECTIVES

CHAPTER 15: ADDRESS
TRANSLATION

May 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma L12.9

 Address translation

 Base and bounds

 HW and OS Support

 Memory segments

 Memory fragmentation

May 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L12.10

OBJECTIVES

 64KB
Address space
example

 Translation:
mapping
vir tual to
physical

May 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L12.11

ADDRESS TRANSLATION

Virtual mapping

Address Space

 Dynamic relocation

 Two registers base & bounds: on the CPU

 OS places program in memory

 Sets base register

 Bounds register
 Stores size of program address space (16KB)

 OS verifies that every address:

May 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L12.12

BASE AND BOUNDS

0 ≤ ݏݏ݁ݎ݀݀ܽ ݈ܽݑݐݎ݅ݒ < ݏ݀݊ݑܾ

TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

5/11/2017

Slides by Wes J. Lloyd L12.3

 Base = 32768

 Bounds =16384

 Fetch instruction at 128 (vir t addr) ↑
 Phy addr = virt addr + base reg

 32896 = 128 + 32768 (base)

 Execute instruction
 Load from address (var x is @ 15kb=15360)

 48128 = 15360 + 32768 (base) -- found x…

 Bounds register: terminate process if
 ACCESS VIOLATION: Virtual address > bounds reg

May 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L12.13

INSTRUCTION EXAMPLE

Int x

 MMU
 Portion of the CPU dedicated to address translation

 Contains base & bounds registers

 Base & Bounds Example:
 Consider address translation

 4 KB (4096 bytes) address space, loaded at 16 KB physical location

May 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L12.14

MEMORY MANAGEMENT UNIT

Virtual Address Physical Address

0 16384

1024 17408

3000 19384

4400 20784 (out of bounds)FAULT

May 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L12.15

DYNAMIC RELOCATION OF PROGRAMS

 Hardware requirements:

Requirements HW support

Privileged mode CPU modes: kernel, user

Base / bounds registers Registers to support address translation

Translate virtual addr; check if in
bounds

Translation circuitry, check limits

Privileged instruction(s) to
update base / bounds regs

Instructions for modifying base/bound
registers

Privileged instruction(s)
to register exception handlers

Set code pointers to OS code to handle faults

Ability to raise exceptions For out-of-bounds memory access, or
attempts to access privileged instr.

 For base and bounds OS support required

When process starts running
 Allocate address space in physical memory

When a process is terminated
 Reclaiming memory for use

When context switch occurs
 Saving and storing the base-bounds pair

 Exception handlers
 Function pointers set at OS boot time

May 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L12.16

OS SUPPORT FOR MEMORY
VIRTUALIZATION

 OS searches for free space for new process
 Free list: data structure that tracks available memory slots

May 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L12.17

OS: WHEN PROCESS STARTS RUNNING

 OS places memory back on the free list

May 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L12.18

OS: WHEN PROCESS IS TERMINATED

TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

5/11/2017

Slides by Wes J. Lloyd L12.4

 OS must save base and bounds registers
 Saved to the Process Control Block PCB (task_struct in Linux)

May 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L12.19

OS: WHEN CONTEXT SWITCH OCCURS

 OS can move process data when not running

1. OS deschedules process from scheduler

2. OS copies address space from current to new location

3. OS updates PCB (base and bounds registers)

4. OS reschedules process

 When process runs new base register is restored to CPU

 Process doesn’t know it was even moved!

May 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L12.20

DYNAMIC RELOCATION

CHAPTER 16:
SEGMENTATION

May 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma L12.21

 Address space

 Contains significant unused memory

 Is relatively large
 Preallocates space to handle stack/heap growth

 Large address spaces
 Hard to fit in memory

 How can these issues be addressed?

May 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L12.22

BASE AND BOUNDS INEFFICIENCIES

Memory segmentation

Address space has (3) segments

Contiguous portions of address space

Logically separate segments for: code, stack, heap

Each segment can placed separately

 Track base and bounds for each segment
(registers)

May 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L12.23

MULTIPLE SEGMENTS

 Consider 3 segments:

May 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L12.24

SEGMENTS IN MEMORY

Much smaller

TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

5/11/2017

Slides by Wes J. Lloyd L12.5

Virtual Address Space Physical Address Space

 Code segment - physically starts at 32KB (base)

 Starts at “0” in vir tual address space

May 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L12.25

ADDRESS TRANSLATION: CODE SEGMENT

Bounds check:
Is virtual address within 2KB

address space?

 Heap starts at vir tual address 4096

 The data is at 4200

 Offset= 4200 – 4096 = 104 (vir t addr – virt heap start)

 Physical address = 104 + 34816 (offset + heap base)

May 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L12.26

ADDRESS TRANSLATION: HEAP

࢙࢙ࢋ࢘ࢊࢊࢇ ࢇ࢛࢚࢘ࢂ + ࢋ࢙ࢇ࢈ is not the correct physical address.

 Access beyond the address space

 Heap starts at virtual address: 4096

 Data pointer is to 7KB (7168)

 Is data pointer valid?

 Heap starts at 4096 + 2 KB seg size = 6144

 Offset= 7168 > 4096 + 2048 (6144)

May 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L12.27

SEGMENTATION FAULT

 Used to dereference memory during translation

 First two bits identify segment type

 Remaining bits identify memory offset

 Example: vir tual heap address 4200 (01000001101000)

May 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L12.28

SEGMENT REGISTERS

 VIRTUAL ADDRESS = 01000001101000 (on heap)
 SEG_MASK = 0x3000 (11000000000000)
 SEG_SHIFT = 01 heap (mask gives us segment code)
 OFFSET_MASK = 0xFFF (00111111111111)
 OFFSET = 000001101000 = 104 (isolates segment offset)
 OFFSET < BOUNDS : 104 < 2048

May 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L12.29

SEGMENTATION DEREFERENCE

Stack grows backwards (FILO)

Requires hardware support:

Direction bit: tracks direction segment grows

May 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L12.30

STACK SEGMENT

TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

5/11/2017

Slides by Wes J. Lloyd L12.6

 Code sharing: enabled with HW support

 Supports storing shared libraries in memory only once

 DLL: dynamic linked library

 .so (linux): shraed object in Linux (under /usr/lib)

 Many programs can access them

 Protection bits: track permissions to segment

May 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L12.31

SHARED CODE SEGMENTS

Coarse-grained

Manage memory as large purpose
based segments:

Code segment

Heap segment

Stack segment

May 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L12.32

SEGMENTATION GRANULARITY

 Fine-grained

 Manage memory as list of segments

 Code, heap, stack segments composed
of multiple smaller segments

 Segment table

 On early systems

 Stored in memory

 Tracked large number of segments

May 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L12.33

SEGMENTATION GRANULARITY - 2

 Consider how much free space?

 We’ll say about 24 KB

 Request arrives to allocate a 20 KB heap
segment

 Can we fulfil the request for 20 KB of
contiguous memory?

May 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L12.34

MEMORY FRAGMENTATION

 Supports rearranging memory

 Can we fulfil the request for 20 KB of
contiguous memory?

 Drawback: Compaction is slow
 Rearranging memory is time consuming

 64KB is fast

 4GB+ … slow

 Algorithms:
 Best fit: keep list of free spaces, allocate the

most snug segment for the request

 Others: worst fit, first fit… (in future chapters)

May 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L12.35

COMPACTION

CHAPTER 17: FREE
SPACE MANAGEMENT

May 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma L12.36

TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

5/11/2017

Slides by Wes J. Lloyd L12.7

 Management of memory using

 Only fixed-sized units

 Easy: keep a list

Memory request return first free entry
 Simple search

 With variable sized units

More challenging

 Results from variable sized malloc requests

 Leads to fragmentation

May 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L12.37

FREE SPACE MANAGEMENT

 Consider a 30-byte heap

 Request for 15-bytes

 Free space: 20 bytes

 No available contiguous chunk return NULL

May 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L12.38

FRAGMENTATION

 External: we can compact

 Example: Client asks for 100 bytes: malloc(100)

 OS: No 100byte contiguous chunk(s) available:
returns NULL

Memory is externally fragmented - - Compaction can fix!

 Internal: lost space – can’t compact

 OS returns memory units that are too large

 Example: Client asks for 100 bytes: malloc(100)

 OS: Returns 125 byte chunk

 Fragmentation is *in* the allocated chunk

Memory is lost, and unaccounted for – can’t compact
May 11, 2017 TCSS422: Operating Systems [Spring 2017]

Institute of Technology, University of Washington - Tacoma
L12.39

FRAGMENTATION - 2

 Request for 1 byte of memory: malloc(1)

 OS locates a free chunk to satisfy request

 Splits chunk into two, returns first chunk

May 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L12.40

ALLOCATION STRATEGY: SPLITTING

 Consider 30-byte heap

 Free() frees all 10 bytes segments (l ist of 3-free 10-byte chunks)

 Request arrives: malloc(30)

 No contiguous 30-byte chunk exists

 Coalescing regroups chunks into contiguous chunk

 Allocation can now proceed

May 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L12.41

ALLOCATION STRATEGY: COALESCING

 free(void *ptr): Does not require a size parameter

 How does the OS know how much memory to free?

 Header block

 Small descriptive block of memory at start of chunk

May 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L12.42

MEMORY HEADERS

TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

5/11/2017

Slides by Wes J. Lloyd L12.8

 Contains size

 Pointers: for faster memory access

 Magic number: integrity checking

May 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L12.43

MEMORY HEADERS - 2

 Size of memory chunk is:

 Header size + user malloc size

 N bytes + sizeof(header)

 Easy to determine address of header

May 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L12.44

MEMORY HEADERS - 3

 Simple free list struct

 Use mmap to create free list

 4kb heap, 4 byte header, one contiguous free chunk

May 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L12.45

THE FREE LIST

 Create and initialize free-list “heap”

 Heap layout:

May 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L12.46

FREE LIST - 2

 Consider a request for a 100 bytes: malloc(100)

 Header block requires 8 bytes
 4 bytes for size, 4 bytes for magic number

 Split the heap – header goes with each block

May 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L12.47

FREE LIST: MALLOC() CALL

First block
is used

 Addresses of chunks

 Start=16384
+ 108 (end of 1st chunk)
+ 108 (end of 2nd chunk)
+ 108 (end of 3rd chunk)
= 16708

May 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L12.48

FREE LIST: FREE() CALL

Free this
block

TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

5/11/2017

Slides by Wes J. Lloyd L12.9

 Free(sptr)

 Our 3 chunks start at 16 KB
(@ 16,384 bytes)

 Free chunk #2 - sptr

 Sptr = 16500
 addr – sizeof(node_t)

 Actual start of chunk #2
 16492

May 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L12.49

FREE LIST:
FREE() CHUNK #2

Block
Now Free

 Now free remaining chunks:

 Free(16392)
 Free(16608)

 Walk back 8 bytes for actual
start of chunk

 External fragmentation
 Free chunk pointers

out of order

 Coalescing of next
pointers is needed

May 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L12.50

FREE LIST- FREE ALL CHUNKS

QUESTIONS

May 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma L12.51

