
TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

5/11/2017

Slides by Wes J. Lloyd L12.1

Address Translation
Memory Segmentation

Wes J. Lloyd
Institute of Technology
University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 Assignment 2 clarifications:
 Source file should be called procReport.c
 Source dir should be called procReport
 Source tar gz file should be called procReport.tar.gz
 Proc file should be called proc_report

 Should the output of the kernel module be visible with dmesg?

 Recommend tracing the log file using “tail”:
 tail –fn 100 /var/log/messages

 Will display 100 most recent lines
 Printk function will print to /var/log/messages
 Trace dmesg for kernel messages: “dmesg --wk”

May 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L12.2

FEEDBACK – 5/9

 Can I write my code (entire output) inside 1 printk()
statement?

 How to access or see what is in linux.h from terminal?

 If wanting to see the struct task_struct data structure, check
out:

 vi /usr/src/kernels/$(uname -r)/include/linux/sched.h

 Type “:1257”
 Goes to line ~ 1257

 Type “:q” or “:q!” to quit vi editor

May 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L12.3

FEEDBACK - 2

 Why can’t you call free() on a pointer twice?
 Why does it cause a core dump?

 Free releases memory pointed to by free

 The heap memory is deallocated

 Memory is added back to the “free” list for reuse

 Once released the memory is no longer valid

 Pointer still refers to the same vir tual memory address, and
the information is still there

 Can’t free/deallocate twice

May 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L12.4

FEEDBACK - 3

 Is physical memory the same as RAM?
 Yes

 What is multiplexing?
 Doing two (or more) things at the same time

 Is there a way to get the program to output the line numbers
that cause the seg fault?

 free.c example:

 Add “-g” compiler option to add debugging info

 gdb free

 >run

 >where

May 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L12.5

FEEDBACK - 4

 How did you figure out what the base/bounds are in the table?
 This is just a hypothetical example. Numbers are provided.

 Since you can get access to functions on the stack, can you
change the values in these memory addresses?
 The code segment is read only
 Printing the address of a function, just shows location
 There is no variable to change…

May 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L12.6

FEEDBACK - 5

Virtual Address Physical Address

0 16384

1024 17408

3000 19384

4400 20784 (out of bounds)

TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

5/11/2017

Slides by Wes J. Lloyd L12.2

 Why is it when we print the addresses in a program that they
are vir tual?

 Why is it only the OS knows about the real addresses of
things?

May 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L12.7

FEEDBACK - 6

 Chapter 15
 Address Translation

 Chapter 16
 Memory Segmentation

 Chapter 17
 Free Space Management

May 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L12.8

OBJECTIVES

CHAPTER 15: ADDRESS
TRANSLATION

May 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma L12.9

 Address translation

 Base and bounds

 HW and OS Support

 Memory segments

 Memory fragmentation

May 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L12.10

OBJECTIVES

 64KB
Address space
example

 Translation:
mapping
vir tual to
physical

May 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L12.11

ADDRESS TRANSLATION

Virtual mapping

Address Space

 Dynamic relocation

 Two registers base & bounds: on the CPU

 OS places program in memory

 Sets base register

 Bounds register
 Stores size of program address space (16KB)

 OS verifies that every address:

May 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L12.12

BASE AND BOUNDS

0 ≤ ݏݏ݁ݎ݀݀ܽ ݈ܽݑݐݎ݅ݒ < ݏ݀݊ݑ݋ܾ

TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

5/11/2017

Slides by Wes J. Lloyd L12.3

 Base = 32768

 Bounds =16384

 Fetch instruction at 128 (vir t addr) ↑
 Phy addr = virt addr + base reg

 32896 = 128 + 32768 (base)

 Execute instruction
 Load from address (var x is @ 15kb=15360)

 48128 = 15360 + 32768 (base) -- found x…

 Bounds register: terminate process if
 ACCESS VIOLATION: Virtual address > bounds reg

May 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L12.13

INSTRUCTION EXAMPLE

Int x

 MMU
 Portion of the CPU dedicated to address translation

 Contains base & bounds registers

 Base & Bounds Example:
 Consider address translation

 4 KB (4096 bytes) address space, loaded at 16 KB physical location

May 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L12.14

MEMORY MANAGEMENT UNIT

Virtual Address Physical Address

0 16384

1024 17408

3000 19384

4400 20784 (out of bounds)FAULT

May 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L12.15

DYNAMIC RELOCATION OF PROGRAMS

 Hardware requirements:

Requirements HW support

Privileged mode CPU modes: kernel, user

Base / bounds registers Registers to support address translation

Translate virtual addr; check if in
bounds

Translation circuitry, check limits

Privileged instruction(s) to
update base / bounds regs

Instructions for modifying base/bound
registers

Privileged instruction(s)
to register exception handlers

Set code pointers to OS code to handle faults

Ability to raise exceptions For out-of-bounds memory access, or
attempts to access privileged instr.

 For base and bounds OS support required

When process starts running
 Allocate address space in physical memory

When a process is terminated
 Reclaiming memory for use

When context switch occurs
 Saving and storing the base-bounds pair

 Exception handlers
 Function pointers set at OS boot time

May 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L12.16

OS SUPPORT FOR MEMORY
VIRTUALIZATION

 OS searches for free space for new process
 Free list: data structure that tracks available memory slots

May 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L12.17

OS: WHEN PROCESS STARTS RUNNING

 OS places memory back on the free list

May 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L12.18

OS: WHEN PROCESS IS TERMINATED

TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

5/11/2017

Slides by Wes J. Lloyd L12.4

 OS must save base and bounds registers
 Saved to the Process Control Block PCB (task_struct in Linux)

May 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L12.19

OS: WHEN CONTEXT SWITCH OCCURS

 OS can move process data when not running

1. OS deschedules process from scheduler

2. OS copies address space from current to new location

3. OS updates PCB (base and bounds registers)

4. OS reschedules process

 When process runs new base register is restored to CPU

 Process doesn’t know it was even moved!

May 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L12.20

DYNAMIC RELOCATION

CHAPTER 16:
SEGMENTATION

May 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma L12.21

 Address space

 Contains significant unused memory

 Is relatively large
 Preallocates space to handle stack/heap growth

 Large address spaces
 Hard to fit in memory

 How can these issues be addressed?

May 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L12.22

BASE AND BOUNDS INEFFICIENCIES

Memory segmentation

Address space has (3) segments

Contiguous portions of address space

Logically separate segments for: code, stack, heap

Each segment can placed separately

 Track base and bounds for each segment
(registers)

May 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L12.23

MULTIPLE SEGMENTS

 Consider 3 segments:

May 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L12.24

SEGMENTS IN MEMORY

Much smaller

TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

5/11/2017

Slides by Wes J. Lloyd L12.5

Virtual Address Space Physical Address Space

 Code segment - physically starts at 32KB (base)

 Starts at “0” in vir tual address space

May 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L12.25

ADDRESS TRANSLATION: CODE SEGMENT

Bounds check:
Is virtual address within 2KB

address space?

 Heap starts at vir tual address 4096

 The data is at 4200

 Offset= 4200 – 4096 = 104 (vir t addr – virt heap start)

 Physical address = 104 + 34816 (offset + heap base)

May 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L12.26

ADDRESS TRANSLATION: HEAP

࢙࢙ࢋ࢘ࢊࢊࢇ ࢒ࢇ࢛࢚࢘࢏ࢂ + ࢋ࢙ࢇ࢈ is not the correct physical address.

 Access beyond the address space

 Heap starts at virtual address: 4096

 Data pointer is to 7KB (7168)

 Is data pointer valid?

 Heap starts at 4096 + 2 KB seg size = 6144

 Offset= 7168 > 4096 + 2048 (6144)

May 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L12.27

SEGMENTATION FAULT

 Used to dereference memory during translation

 First two bits identify segment type

 Remaining bits identify memory offset

 Example: vir tual heap address 4200 (01000001101000)

May 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L12.28

SEGMENT REGISTERS

 VIRTUAL ADDRESS = 01000001101000 (on heap)
 SEG_MASK = 0x3000 (11000000000000)
 SEG_SHIFT = 01  heap (mask gives us segment code)
 OFFSET_MASK = 0xFFF (00111111111111)
 OFFSET = 000001101000 = 104 (isolates segment offset)
 OFFSET < BOUNDS : 104 < 2048

May 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L12.29

SEGMENTATION DEREFERENCE

Stack grows backwards (FILO)

Requires hardware support:

Direction bit: tracks direction segment grows

May 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L12.30

STACK SEGMENT

TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

5/11/2017

Slides by Wes J. Lloyd L12.6

 Code sharing: enabled with HW support

 Supports storing shared libraries in memory only once

 DLL: dynamic linked library

 .so (linux): shraed object in Linux (under /usr/lib)

 Many programs can access them

 Protection bits: track permissions to segment

May 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L12.31

SHARED CODE SEGMENTS

Coarse-grained

Manage memory as large purpose
based segments:

Code segment

Heap segment

Stack segment

May 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L12.32

SEGMENTATION GRANULARITY

 Fine-grained

 Manage memory as list of segments

 Code, heap, stack segments composed
of multiple smaller segments

 Segment table

 On early systems

 Stored in memory

 Tracked large number of segments

May 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L12.33

SEGMENTATION GRANULARITY - 2

 Consider how much free space?

 We’ll say about 24 KB

 Request arrives to allocate a 20 KB heap
segment

 Can we fulfil the request for 20 KB of
contiguous memory?

May 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L12.34

MEMORY FRAGMENTATION

 Supports rearranging memory

 Can we fulfil the request for 20 KB of
contiguous memory?

 Drawback: Compaction is slow
 Rearranging memory is time consuming

 64KB is fast

 4GB+ … slow

 Algorithms:
 Best fit: keep list of free spaces, allocate the

most snug segment for the request

 Others: worst fit, first fit… (in future chapters)

May 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L12.35

COMPACTION

CHAPTER 17: FREE
SPACE MANAGEMENT

May 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma L12.36

TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

5/11/2017

Slides by Wes J. Lloyd L12.7

 Management of memory using

 Only fixed-sized units

 Easy: keep a list

Memory request  return first free entry
 Simple search

 With variable sized units

More challenging

 Results from variable sized malloc requests

 Leads to fragmentation

May 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L12.37

FREE SPACE MANAGEMENT

 Consider a 30-byte heap

 Request for 15-bytes

 Free space: 20 bytes

 No available contiguous chunk  return NULL

May 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L12.38

FRAGMENTATION

 External: we can compact

 Example: Client asks for 100 bytes: malloc(100)

 OS: No 100byte contiguous chunk(s) available:
returns NULL

Memory is externally fragmented - - Compaction can fix!

 Internal: lost space – can’t compact

 OS returns memory units that are too large

 Example: Client asks for 100 bytes: malloc(100)

 OS: Returns 125 byte chunk

 Fragmentation is *in* the allocated chunk

Memory is lost, and unaccounted for – can’t compact
May 11, 2017 TCSS422: Operating Systems [Spring 2017]

Institute of Technology, University of Washington - Tacoma
L12.39

FRAGMENTATION - 2

 Request for 1 byte of memory: malloc(1)

 OS locates a free chunk to satisfy request

 Splits chunk into two, returns first chunk

May 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L12.40

ALLOCATION STRATEGY: SPLITTING

 Consider 30-byte heap

 Free() frees all 10 bytes segments (l ist of 3-free 10-byte chunks)

 Request arrives: malloc(30)

 No contiguous 30-byte chunk exists

 Coalescing regroups chunks into contiguous chunk

 Allocation can now proceed

May 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L12.41

ALLOCATION STRATEGY: COALESCING

 free(void *ptr): Does not require a size parameter

 How does the OS know how much memory to free?

 Header block

 Small descriptive block of memory at start of chunk

May 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L12.42

MEMORY HEADERS

TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

5/11/2017

Slides by Wes J. Lloyd L12.8

 Contains size

 Pointers: for faster memory access

 Magic number: integrity checking

May 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L12.43

MEMORY HEADERS - 2

 Size of memory chunk is:

 Header size + user malloc size

 N bytes + sizeof(header)

 Easy to determine address of header

May 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L12.44

MEMORY HEADERS - 3

 Simple free list struct

 Use mmap to create free list

 4kb heap, 4 byte header, one contiguous free chunk

May 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L12.45

THE FREE LIST

 Create and initialize free-list “heap”

 Heap layout:

May 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L12.46

FREE LIST - 2

 Consider a request for a 100 bytes: malloc(100)

 Header block requires 8 bytes
 4 bytes for size, 4 bytes for magic number

 Split the heap – header goes with each block

May 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L12.47

FREE LIST: MALLOC() CALL

First block
is used

 Addresses of chunks

 Start=16384
+ 108 (end of 1st chunk)
+ 108 (end of 2nd chunk)
+ 108 (end of 3rd chunk)
= 16708

May 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L12.48

FREE LIST: FREE() CALL

Free this
block

TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

5/11/2017

Slides by Wes J. Lloyd L12.9

 Free(sptr)

 Our 3 chunks start at 16 KB
(@ 16,384 bytes)

 Free chunk #2 - sptr

 Sptr = 16500
 addr – sizeof(node_t)

 Actual start of chunk #2
 16492

May 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L12.49

FREE LIST:
FREE() CHUNK #2

Block
Now Free

 Now free remaining chunks:

 Free(16392)
 Free(16608)

 Walk back 8 bytes for actual
start of chunk

 External fragmentation
 Free chunk pointers

out of order

 Coalescing of next
pointers is needed

May 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L12.50

FREE LIST- FREE ALL CHUNKS

QUESTIONS

May 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma L12.51

