TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

Concurrency
Problems

Wes J. Lloyd
Institute of Technology
University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS
| |

FEEDBACK - 4/27/2017

= How does using a signal on a condition variable fire off a
routine?

= MANPAGE: man pthread cond_signal:

= pthread_cond_signal restarts one of the threads that are
waiting on the condition variable. If no threads are waiting,
nothing happens.

Waiting threads are tracked in a data structure associated
with the condition variable.

If several threads are waiting, exactly one is restarted, but it
is not specified which.

= Can you think of a way to coordinate exactly which thread to
run when signaling? Hint: use pthread_cond_broadcast

May 2, 2017 TCS5422: Operating Systems [Spring 2017)

Institute of Technology, University of Washington - Tacoma | oz

FEEDBACK - 2

How to make one?
What is ‘clean’?

= Can we do more in-class tutorials?

assignments?
= Tutorial #1 posted

® Can you walk us through what a makefile is made of?

With concepts/code related to what we have to do in the

TCS5422: Operating Systems [Spring 2017]
R Inttute of Technoloay)Universitylof Washington®Tacomal

OBJECTIVES

= Chapter 32:
= Non-deadlock concurrency bugs

= Deadlock causes
= Deadlock prevention

= Mock midterm

May 2, 2017 TCS5422: Operating Systems [Spring 2017)

Institute of Technology, University of Washington - Tacoma | o4

CONCURRENCY BUGS IN

OPEN SOURCE SOFTWARE

Real World Concurrency Bug Characteristics”
=Shan Lu et al.

Operating Systems (ASPLOS 2008), Seattle WA

= “Learning from Mistakes - A Comprehensive Study on

= Architectural Support For Programming Languages and

Institute of Technology, University of Washington - Tacoma

Application What it does Non-Deadlock Deadlock
MySQL Database Server 14 9
Apache Web Server 13 4
Mozilla Web Browser 41 16
Open Office Office Suite 6 2
Total 74 31
May2,2017 TCS5422: Operating Systems [Spring 2017) o5 ‘

NON-DEADLOCK BUGS

= Majority of concurrency bugs

= Most common:
= Atomicity violation: forget to use locks

=Qrder violation: failure to initialize lock/condition
before use

May 2, 2017 TCS5422: Operating Systems [Spring 2017)

L10s
Institute of Technology, University of Washington - Tacoma |

Slides by Wes J. Lloyd

5/2/2017

L10.1

TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

ATOMICITY VIOLATION - MYSQL

= Two threads access the proc_info field in struct thd

ENULLisOinC

= Serialized access to shared memory among separate
threads is not enforced (e.g. non-atomic)

= Simple example:

: Threadl::
2 (thd->proc_info) {
3 -
. 4 fputs (thd->proc_info , ..);
Programmer intended 5
variable to be accessed 6 }
atomically... 7
8 Thread2::
9 thd->proc_info = NULL;
May 2,2017 TCSS422: Operating Systems [Spring 2017]

o7

Institute of Technology, University of Washington - Tacoma

ATOMICITY VIOLATION - SOLUTION

= Add locks for all uses of: thd->proc_info

1 pthread mutex_t lock = PTHREAD _MUTEX INITIALIZER;
2

3 Threadi::

4 pthread mutex_lock(slock);

5 if (thd->proc_info){

6 .A -

7 fputs (thd->proc_info , ..):
8

9

10 pthread mutex_unlock (slock) ;

11

12 Thread2::

13 pthread_mutex_lock(&lock);
14 thd->proc_info = NULL;

15 pthread mutex_unlock (slock);

TCS5422: Operating Systems [Spring 2017]
ME2Re s S 1 T, Pt G e TP uoe

ORDER VIOLATION BUGS

= Desired order between memory accesses is flipped
mE.g. something is checked before it is set
= Example:

Threadl: :
oid init () {
mrhread = PR _CreateThread (mMain, ..);

94
mState = mThread->State

= What if mThread is not initialized?

May2,2017 TCS5422: Operating Systems [Spring 2017]

L9
Institute of Technology, University of Washington - Tacoma

ORDER VIOLATION - SOLUTION

= Use condition variable to enforce order

1 pthread mutex_t mtLock = PTHREAD MUTEX_INITIALIZER;
2 pthread_cond t mtCond = PTHREAD_COND_INITIALIZER;
3 int mtInit = 0;
4
5 Thread 1::
6 void init(){
7
8 mThread = FRﬁC!‘eatEThIEad(lﬂM&ln,.)i
9
10 signal that the thread cr
11 pthre. tex_lock (smtLoc
12 mtInit = 17
13 pthread_cond_signal (smtCond) ;
14 pthread_mutex_unlock (&mtLock) ;
15
16)
17
18 Threadz::
19 void mMain(..){
20
TCSS422: Operating Systems [Spring 2017]
ME2Re N Institute of ?(echno?o; Unive[rs‘il(y f!Wasr]\ingwn— Tacoma oo

ORDER VIOLATION - SOLUTION 2

21 ait the thread to be initialized
22 pthread_mutex_lock (smtLock) ;
23 vhile mEInit == 0)
24 pthread_cond wait (smtCond, &mtLock);
25 pthread_mutex_unlock (amtLock) ;
26
27 mState = mThread->State;
28
29)
TCS5422: Operating Systems [Spring 2017
Wiy 2 20 \nsliluleo!flfechnu?ugvy,Unive[rs?wcffWasf]\inglonrTacuma | o ‘

NON-DEADLOCK BUGS - 1

= 97% of Non-Deadlock Bugs were
= Atomicity
=Order violations

= Consider what is involved in “spotting” these
bugs in code

mDesire for automated tool support (IDE)

May 2, 2017 TCS5422: Operating Systems [Spring 2017)

o012
Institute of Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

5/2/2017

L10.2

TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

NON-DEADLOCK BUGS - 2

= Atomicity
= How can we tell if a given variable is shared?
Can search the code for uses
=How do we know if all instances of its use are shared?
Can some non-synchronized (non-atomic) uses be legal?
Before threads are created, after threads exit
Must verify the scope

= Order violation
= Must consider all variable accesses
= Must known desired order

TCS5422: Operating Systems [Spring 2017]

Wiy 2 205 Institute of Technology, University of Washington - Tacoma

DEADLOCK BUGS

&

= Presence of a cycle in code
= Thread 1 acquires lock L1, waits for lock L2
= Thread 2 acquires lock L2, waits for lock L1

Thread 1: Thread 2:

Holds
lock(L1): lock (L2); = | Lock L1
lock(L2): lock(Ll);

z g
<
= Both threads can block, unless g g
one manages to acquire both locks 2 g
Lock L2
Holds

TCS5422: Operating Systems [Spring 2017)

Institute of Technology, University of Washington - Tacoma o

May 2, 2017

REASONS FOR DEADLOCKS

= Complex code

= Must avoid circular dependencies - can be hard to find...
= Encapsulation hides potential locking conflicts

= Easy-to-use APls embed locks inside

= Programmer doesn’t know they are there

= Consider the Java Vector class:

X Vector v1,v2;
v1.AddA1l(v2) 7

= Vector is thread safe (synchronized) by design
= If there is a v2.AddAll(v1); call at nearly the same time
deadlock could result

CONDITIONS FOR DEADLOCK

= Four conditions are required for dead lock to occur

Condition

Mutual Exclusion | Threads claim exclusive control of resources that they require.

Threads hold resources allocated to them while waiting for additional
resources

Hold-and-wait

No preemption | Resources cannot be forcibly removed from threads that are holding them.

There exists a circular chain of threads such that each thread holds one more

TCS5422: Operating Systems [Spring 2017]

R Institute of Technology, University of Washington - Tacoma

Circular wait y 3 2
resources that are being requested by the next thread in the chain
TCS5422: Operating Systems [Spring 2017)
ME2Re N [See ot Techolo syl niersityofWashinstonmiecome! Liote

PREVENTION - MUTUAL EXCLUSION

= Build wait-free data structures
= Eliminate locks altogether

= Build structures using CompareAndSwap atomic CPU (
instruction

= C pseudo code for CompareAndSwap
= Hardware executes this code atomically

HW)

1 int CompareAndSwap(int *address, int expected, int new)({
2 if (*address == expected)
3 *address = new;
4 return 17 success
5 }
6 return 0;
7 }
May2,2017 TCS5422: Operating Systems [Spring 2017) | o1

Institute of Technology, University of Washington - Tacoma

PREVENTION - MUTUAL EXCLUSION - 2

= Recall atomic increment

AtomicIncrement (int *value, int amount) {

int old = *value;
Jwhile(CompareAndswap (value, old, old+amount)==0);

e

= Compare and Swap tries over and over until
successful

= CompareAndSwap is guaranteed to be atomic
= When it runs it is ALWAYS atomic (at HW level)

TCS5422: Operating Systems [Spring 2017)

L8
Institute of Technology, University of Washington - Tacoma

May 2, 2017

Slides by Wes J. Lloyd

5/2/2017

L10.3

TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

= Consider list insertion

MUTUAL EXCLUSION: LIST INSERTION

Institute of Technology, University of Washington - Tacoma

1 void insert(int value){
2 node_t * n = malloc(sizeof (node_t));
3 assert(n != NULL);
4 n->value = value ;
5 n->next = head;
6 head = n;
7 1
iy 212017 TCS5422: Operating Systems [Spring 2017] | o ‘

= Wait free (no lock) implementation

value) {
11oc (sizeof (node_t)) ;

n->next = head;
} (CompareAndSwap (shead, n->next, n));

@ e W

m Assign &head to n (new node ptr)
= 0Only when head = n->next

MUTUAL EXCLUSION - LIST INSERTION - 3

TCS5422: Operating Systems [Spring 2017]

R Institute of Technology, University of Washington - Tacoma

PREVENTION - HOLD AND WAIT

= Problem: acquire all locks atomically
= Solution: use a “lock” “lock”... (like a guard lock)

lock (prevention) ;
lock(L1);

MUTUAL EXCLUSION - LIST INSERTION - 2

®Lock based implementation

id insert(int value){
node_t * n = malloc(sizeof (node_t)):
assert(n NULL)i
n->value = value ;
lock(Listlock) ; begin critical section
n->next = head;
head =n;
unlock(listlock) ; end critical sectio

oo g wn e

TCS5422: Operating Systems [Spring 2017)

Institute of Technology, University of Washington - Tacoma o2

May 2, 2017

CONDITIONS FOR DEADLOCK

= Four conditions are required for dead lock to occur

Mutual Exclusion | Threads claim exclusive control of resources that they require.

. Threads hold resources allocated to them while waiting for additional
Hold-and-wait
resources

No preemption | Resources cannot be forcibly removed from threads that are holding them.

There exists a circular chain of threads such that each thread holds one more

Circular wait y 3 2
resources that are being requested by the next thread in the chain
TCS5422: Operating Systems [Spring 2017)
ME2Re N [See ot Techolo syl niersityofWashinstonmiecome! o2z

CONDITIONS FOR DEADLOCK

= Four conditions are required for dead lock to occur

Con

i

2

3 lock(L2) 7
4

=

unlock (prevention) ;

= Effective solution - guarantees no race conditions while
acquiring L1, L2, etc.

= Order doesn’t matter for L1, L2

= Prevention (GLOBAL) lock decreases concurrency of code
= Acts Lowers lock granularity

= Encapsulation: consider the Java Vector class...

TCS5422: Operating Systems [Spring 2017)

May 2,207 Institute of Technology, University of Washington - Tacoma | oz ‘

Slides by Wes J. Lloyd

Mutual Exclusion

Threads claim exclusive control of resources that they require.

Hold-and-wait

Threads hold resources allocated to them while waiting for additional
resources

»No preemption

Resources cannot be forcibly removed from threads that are holding them.

Circular wait

There exists a circular chain of threads such that each thread holds one more
resources that are being requested by the next thread in the chain

May 2, 2017

TCS5422: Operating Systems [Spring 2017)

1024
Institute of Technology, University of Washington - Tacoma

5/2/2017

L10.4

TCSS 422: Operating Systems [Spring 2017] 5/2/12017
Institute of Technology, UW-Tacoma

PREVENTION - NO PREEMPTION NO PREEMPTION - LIVELOCKS PROBLEM
= When acquiring locks, don’t BLOCK forever if ECan lead to livelock
unavailable... o
= pthread_mutex_trylock() - try once ££(trylock(2) = -1)

unlock(Ll)
goto top:

e W e

mpthread_mutex_timedlock() - try and wait awhile)

T top: =Two threads execute code in parallel >

3 170 trybock(a) = - NO always fail to obtain both locks

4 unlock (L1) ;

AN = STOPPING Add random del

L] random dela
ANY b .
.
= Eliminates deadlocks TIME A_IIOWS CHO UL T ; 2
) livelock race! »1?;
= M gon- o

CONDITIONS FOR DEADLOCK PREVENTION - CIRCULAR WAIT

=Four conditions are required for dead lock to occur =Provide total ordering of lock acquisition
throughout code
“ Always acquire locks in same order
Mutual Exclusion | Threads claim exclusive control of resources that they require. L1, L2 L3
Threads hold resources allocated to them while waiting for additional ’ ’ . n
resources =Never mix: L2, L1, L3; L2, L3, L1; L3, L1, L2....

No preemption | Resources cannot be forcibly removed from threads that are holding them.

Hold-and-wait

Cliclsvisil There exists a circular chain of threads such that each thread holds one more - . -
resources that are being requested by the next thread in the chain M ust ca I’ry out same o rd eri ng th ro ugh entire
program
TCS5422: Operating Systems [Spring 2017] TCS5422: Operating Systems [Spring 2017)
| Cryesay Institute of Technology, University of Washington - Tacoma | e ‘ CE/BEIY Institute of Technology, University of Washington - Tacoma .

DEADLOCK AVOIDANCE

VIA INTELLIGENT SCHEDULING INTELLIGENT SCHEDULING - 2

= Consider a smart scheduler mScheduler produces schedule:
=Scheduler knows which locks threads use wv: S

= Consider this scenario: cPU 2
=4 Threads (T1, T2, T3, T4)
=2 Locks (L1, L2) =No deadlock can occur
= Lock requirements of threads: = Consider:
L1 yes yes no no L1 yes yes yes no
[[e [v | v | m | [[ve | yes | yes | o

TCS5422: Operating Systems [Spring 2017)

Wiy 2 20 Institute of Technology, University of Washington - Tacoma

TCS5422: Operating Systems [Spring 2017)
Institute of Technology, University of Washington - Tacoma

May 2, 2017

1030

Slides by Wes J. Lloyd L10.5

TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

INTELLIGENT SCHEDULING - 3

= Scheduler produces schedule

= Scheduler must be conservative and not take risks
= Slows down execution - many threads

thread

= There has been limited use of these approaches given the
difficulty having intimate lock knowledge about every

TCS5422: Operating Systems [Spring 2017)

Wiy 2 205 Institute of Technology, University of Washington - Tacoma

L1031

DETECT AND RECOVER

= Allow deadlock to occasionally occur and then take some
action.

= Example: When OS freezes, reboot...

= How often is this acceptable?

= Many database systems employ deadlock detection and
recovery techniques.

TCS5422: Operating Systems [Spring 2017)

ME2Re s S 1 T, Pt G e TP

1032

QUESTIONS

TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

May 2, 2017

Slides by Wes J. Lloyd

5/2/2017

L10.6

