
Page 1 of 5

TCSS 422: Operating Systems Institute of Technology
Spring 2017 University of Washington – Tacoma
http://faculty.washington.edu/wlloyd/courses/tcss422 Instructor: Wes Lloyd

Assignment 1

1
Mash Shell

Due Date: Monday May 1st, 2017 @ 11:59 pm, tentative

Objective
The purpose of this assignment is to use the fork, wait, and exec commands to write a very simple Linux
shell. This shell is called “mash”, and the goal of mash is to **mash** three Linux command requests
together and run them against the same input file. The user will provide three distinct Linux commands
with arguments, and a single file name. The mash shell will **mash** the requests together executing
each command separately against the backend file.

For this program, you are to implement the mash shell using fork, exec, and wait commands.

The following limitations and/or requirements define how mash should operate:

1. User commands will not exceed 255 characters

2. The filename will not exceed 255 characters. The file will either be in the local directory, or the
user will provide a fully qualified path name which is 255 characters or less. The mash shell is
not responsible for finding the input file.

3. Commands run in “mash” will assume the user’s original path:

Type “echo $PATH” to see the current path variable setting.

4. For each command, the maximum number of arguments including the command itself will not
exceed 5. So this implies 4 arguments, plus the command.

5. If the user makes a mistake typing a command and/or its arguments, mash should simply fail to
run the command. A simple error should be shown, but only if the exec fails.

6. Mash does not accept any command line arguments. Running mash simply starts the shell

which requests 3 commands and a file name.

7. In an effort to execute the mash of commands as fast as possible, mash should not wait for each
command to complete before executing the next one. Consequently the order of execution of

1 Image labeled for non-commercial reuse

Page 2 of 5

commands can vary. (e.g. it’s non-deterministic…) The only expectation is that every command
should run, and output should be shown.

To test mash, a number of commands may be used. Here are some possible commands to test your
mash shell:

 “wc” Reports the line count, word count, and character count
“md5sum” Generates a unique 128-bit md5 (checksum) hash message digest
“grep –c the” Counts the number of occurrences of a given word, here “the”
“grep –ci the” Counts the number of occurrences of a given word ignoring case, here “the”
“tail –n 10” outputs 10 lines from the end of a file
“head –n 10 ” outputs 10 lines from the start of a file
“ls –l” provides a long directory listing

By forking to run these commands at the same time (in parallel) on multi-core machines the tasks can
collectively finish in less time achieving a performance speedup versus performing the tasks separately.
Using fork to run multiple processes in parallel helps to exercise multiple available CPU cores for
unrelated tasks (embarrassingly parallel). Using “top” it is possible to watch mash run when working on
large files.

Input
There are no command line arguments for mash. The mash shell should be invoked as follows:

$./mash

Output
Here are a number of possible sample input output sequences.
Key status output provided by MASH is shown in BOLD.

$./mash
mash-1>grep -ci the
mash-2>grep -c the
mash-3>wc -l
file>/var/log/syslog
57
1540 /var/log/syslog
46
Done waiting on children: 14618 14620 14619.

$./mash
mash-1>grep -ci the
mash-2>grep -c the
mash-3>wc -l
file>/var/log/nofile
grep: /var/log/nofile: No such file or directory
wc: /var/log/nofile: No such file or directory
grep: /var/log/nofile: No such file or directory
Done waiting on children: 14631 14633 14632.

$./mash
mash-1>grep -ashfdsahfkjshfasjfkashfdkj the
mash-2>grep -asjfhksahfskjfhdskjfashfksaj the
mash-3>wc -lsahfakdsjhfaksjhfsakjfdhas

Page 3 of 5

file>/var/log/syslog
grep: dsahfkjshfasjfkashfdkjgrep: invalid option -- 'j'
: No such file or directoryUsage: grep [OPTION]... PATTERN [FILE]...

Try 'grep --help' for more information.
wc: invalid option -- 's'
Try 'wc --help' for more information.
Done waiting on children: 14635 14636 14637.

$./mash
mash-1>grep -ci -e the
mash-2>grep -c -e the
mash-3>wc -l -e
file>/var/log/syslog
[SHELL 1] STATUS CODE=-1
[SHELL 2] STATUS CODE=-1
wc: invalid option -- 'e'
Try 'wc --help' for more information.
Done waiting on children: 14641 14642 14643.

When mash exits, it echoes back the PIDs used to execute the individual commands. Mash simply
executes other programs and relies on other programs to handle input errors. If mash can’t run an
external command, then a message indicating failure of one of the mash shell attempts will be
displayed:

[SHELL 1] STATUS CODE=-1
[SHELL 2] STATUS CODE=-1

The message identifies which mash command failed (1, 2, or 3), with a status code.
Often commands will fail if too many arguments are provided.
Try “grep –c –e the” as an example. The “-e” is an extra argument which causes the exec() to fail.

To implement this assignment successfully, you will need to:

1. Write code that captures a user provided strings from the console to collect 3 individual
commands and a filename.

2. Chop individual words from the user provided commands to extract the command arguments so
they can be provided to exec(). For example, a user may provide “grep –ci the”. This string will
be chopped into three strings: “grep”, “-ci”, and “the”. These strings can be hard coded in an
execlp call as follows:

execlp(“grep”,”-ci”,”the”,(char *) NULL);

You will need to parameterize execlp() with variables not hard code its use. An recommended
alternative to execlp() is execvp() which accepts a pointer to a NULL terminated array of char
pointers (char **). Each char pointer points to a null terminated word.

3. Implement fork() and wait() successfully with 3 levels of nesting. Without nesting, only one
fork() would execute at any given time causing all three commands to run sequentially. This
would result in a slower “mash”.

p1 = fork();
if (p1 == 0) // child

Page 4 of 5

if (p1 > 0) // parent
 p2 = fork();

 if (p2 == 0) // child
 If (p2 > 0)
 p3 = fork();

 if (p3 == 0) // child
 if (p3 > 0)
 wait(..)

4. Wait for children to finish to allow the parent to gracefully exit.

It is recommended to tackle key design challenges individually (one at a time) to simplify the
testing/debugging of the implementation.

Grading Rubric
This assignment will be scored out of 100* points. (100/100)=100%

Toal: 90 points
5 points Run 1 command with no arguments against the file - (no mash)
5 points Run 2 commands with no arguments against the file – (mash 2)
10 points Run 3 command with no arguments against the file – (mash 3)
10 points Run 1 command with at least 1 argument against the file - (arg no mash)
10 points Run 1 command with at least up to 5 arguments against the file - (arg chop no mash)
5 points Run 2 commands with at least up to 5 arguments against the file - (arg chop mash 2)
5 points Run 3 commands with at least up to 5 arguments against the file - (arg chop mash 3)
10 points Run 3 commands with nested forks (in parallel)
10 points End gracefully. Parent process prints last line reporting IDs of finished children. The
 program returns cleanly to the calling shell.
5 points An error message is shown for a failed command.
5 points Even if one command fails, others can work.

Miscellaneous: 20 points
5 points Program compiles, and does not crash upon testing
5 points Coding style, formatting, and comments
5 points Makefile with valid “all” and “clean” targets
5 points Output format matches the provided example (even if a portion doesn’t work!)

WARNING!
10 points Automatic deduction if program is not named “mash”

What to Submit
For this assignment, submit a tar gzip archive as a single file upload to Canvas.

Package up all of the files into the single tar gzip archive.
This should include a makefile with “all” and “clean” targets.

Tar archive files can be created by going back one directory from the project source directory with “cd
..”, then issue the command “tar czf <lastname_firstname>_A1.tar.gz my_dir”.
Name the tar gzip file with your last name underscore firstname underscore A1 for assignment 1.

Page 5 of 5

“my_dir” would be the directory that contains the source code and makefile. No other files should be
submitted.

Pair Programming (optional)
Optionally, this programming assignment can be completed with two person teams.

If choosing to work in pairs, only one person should submit the team’s tar gzip archive to Canvas.

Additionally, EACH member of a pair programming team must provide an effort report of team
members to quantify team contributions for the overall project. Effort reports must be submitted
INDEPENDENTLY and in confidence (i.e. not shared) by each team member to capture each person’s
overall view of the teamwork and outcome of the programming assignment. Effort reports are not used
to directly numerically weight assignment grades.

Effort reports should be submitted in confidence to Canvas as a PDF file named: “effort_report.pdf”.
Google Docs and recent versions of MS Word provide the ability to save or export a document in PDF
format.

Distribute 100 points for category to reflect each teammate’s contribution for: research, design, coding,
testing. Effort scores should add up to 100 for each category. Even effort 50%-50% is reported as 50
and 50. Please do not submit 50-50 scores for all categories. Ratings should reflect an honest
confidential assessment of team member contributions. 50-50 ratings and non-confidential scorings
run the risk of an honor code violation.

Here is an effort report for a pair programming team (written from the point of view of Jane Smith):

1. John Doe
Research 24
Design 33
Coding 71
Testing 29

2. Jane Smith
Research 76
Design 67
Coding 29
Testing 71

Team members may not share their effort reports, but should submit them independently in Canvas as
a PDF file. Failure of one or both members to submit the effort report will result in both members
receiving NO GRADE on the assignment… (considered late until both are submitted)

Disclaimer regarding pair programming:
The purpose of TCSS 422 is for everyone to gain experience programming in C while working with operating
system and parallel coding. Pair programming is provided as an opportunity to harness teamwork to tackle
programming challenges. But this does not mean that teams consist of one champion programmer, and a
second observer simply watching the champion! The tasks and challenges should be shared as equally as
possible.

