TCSS 422 A - Fall 2018
School of Engineering and Technology,

TCSS 422: OPERATING SYSTEMS
| |

Proportional Share Schedulers,
Linux Completely Fair Scheduler,
Introduction to Concurrency, Locks API, pN
Introduction to Locks

Wes J. Lloyd
School of Engineering and Technology,
University of Washington - Tacoma

TCSS422: Operating Systems [Fall 2018]

(i 2 School of Engineering and Technology, University of Washington [fl Tacoma

10/16/2018

FEEDBACK FROM 10/15

= Multi-level Feedback Queue with I/0
= Wikipedia explanation: nttps://en. org/wiki queue

= Each priority queue processes jobs in FIFO manner
= Jobs always inserted at tail of FIFO queues
= Scheduler selects first job in the highest priority queue to run
= Only things that can happen to a job:
ANY JOB: if finished executing is removed from queue

1/0 JOB: Job goes from RUNNING->BLOCKED and is removed from
the scheduler until it is READY and will be reinserted

BATCH JOB: Uses full quantum, is added to tail of next lower queue
= No job is run from a lower queue if higher queue is not empty
= KEY POINT (Implicit In the textbook):

Starvation occurs because high priority queue is never empt

TCS5422: Operating Systems [Fall 2018]
(i) 2T e T T U ey i = e

FEEDBACK - 2

= High priority queue must be empty “for a little while” for
the scheduler to look at the lower queue for a job to run

= A single 1/0 job must go from)
RUNNING-BLOCKED and not use [[11RI11]
the full quantum Qzl 111 |

" At least two 1/0 jobs are required A R R
to cause starvation of lower jobs o1 2 2 £ &

FEEDBACK - 3

= Scheduling graph for MLFQ Scheduler

= Using letters for jobs instead of blocks, where a letter is one
timer unit (e.g. seconds or milliseconds) can be easier to debug

= How does the conversion from tickets to priority work with
the Stride Scheduler?
= Stride scheduler and lottery scheduler:
= Jobs with highest number of tickets receive highest priority

= Stride scheduler calculates a stride value that is inverse to the
total number of tickets

= Calculating stride requires knowing total # of system tickets

October 17, 2018 TBSMZ; Operating Systems [Fall 2018]

4
School o Technology, University of Washington - Tacoma | Y |

N I I
= V1.0 of textbook corrects figure: &
= *A is on the left after the boost* | N |
= Priority boost: 0 50 0 150 200
Prevents starvation Priority Boost A;I B: CE
October 17, 2018 Tcsz:fg;"’“."”"?5“‘“"}:!;:'33;;] . ngton - Tacoma | 3 ‘
OBJECTIVES

= C Tutorial (Sunday 10/21)
= Program 1 - MASH Shell (Friday 10/26)

= CPU Scheduling cont’d:
= Chapter 9 - Proportional Share Schedulers
® Linux - Completely Fair Scheduler (CFS)

= Multi-threaded Programming

= Chapter 26 - Concurrency Introduction
= Chapter 27 - Linux Thread API

= Chapter 28 - Introduction to Locks

October 17, 2018 Tcsz:lzg; Operating Systems [Fall 2018] | 75 ‘

Technology, University ington - Tacoma

Slides by Wes J. Lloyd

CHAPTER 9 -

PROPORTIONAL SHARE
SCHEDULER

TCSS422: Operating Systems [Fall 2018]

(SRR T 2 School of Engineering and Technology, University of Washington -

L7.1

TCSS 422 A — Fall 2018
School of Engineering and Technology,

When used to make only a small number of job

W scheduling decisions which scheduling metric
does the lottery scheduler perform poorly on?

Average Response Time
Average Turnaround Time
Fairness

Average Execution Time

Average Job Start Time

[October 17, 2018 TCSS422: Operating Systems [Fall 2018]
] B 1 (™

10/16/2018

PROPORTIONAL SHARE SCHEDULERS

= How does the Lottery scheduler determine which job to
run next?

= What problem does the job selection method cause for
the Lottery scheduler?

= What is fundamentally different about how the stride
scheduler performs job selection?

= Why does the different design of the stride scheduler
solve the job selection problem of the lottery scheduler?

October 17, 2018 TCSS422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma | L8 |

STRIDE SCHEDULER - 2

= Jobs have a “stride” value

= A stride value describes the counter pace when the job should
give up the CPU

= Stride value is inverse in proportion to the job’s number of
tickets (more tickets = smaller stride)

= Total system tickets = 10,000
= Job A has 100 tickets > Ao = 10000/100 = 100 stride
= Job B has 50 tickets 2> By, = 10000/50 = 200 stride
= Job C has 250 tickets > Cg,;qe = 10000/250 = 40 stride

= Stride scheduler tracks “pass” values for each job (A, B, C)

TCS5422: Operating Systems [Fall 2018]

(i 23 e oolol Enpinearins ardlTechiolo syl e ity Ve hinetonETecoms

EN

STRIDE SCHEDULER - 3

= Basic algorithm:
1. Stride scheduler picks job with the lowest pass value

2. Scheduler increments job’s pass value by its stride and
starts running

3. Stride scheduler increments a counter

4. When counter exceeds pass value of current job, pick a
new job (go to 1)

= KEY: When the counter reaches a job’s “PASS” value,
the scheduler passes on to the next job...

October 17, 2018 TCSS422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma L7.10

STRIDE SCHEDULER - EXAMPLE

= Stride values
=Tickets = priority to select job
=Stride is inverse to tickets
=Lower stride = more chances to run (higher priority)

Priority
C stride = 40
A stride = 100
B stride = 200

TCSS422: Operating Systems [Fall 2018]

(S 3 Seoo[of Enginearing andiechiiolosylU nversity Ve hington S Tecoms

| 7.11

STRIDE SCHEDULER EXAMPLE - 2

= Three-way tie: randomly pick job A (all pass values=0)
= Set A’s pass value to A’s stride = 100

" Tickets
0 Jickets
Increment counter until > 100 C =250
= Pick a new job: two-way tie A =100
Pass(A) Pass(2) Pass(C) Who Runs? B = 50
(stride=100) (stride=200) (stride=40)
o o o - 4 Initial job selection
100 0 0 is random. All @ 0
100 200 0 G
100 200 40 C « C has the most tickets
100 200 80 C and receives a lot of
100 200 120 A opportunities to run...
200 200 120 C
200 200 160 G
200 200 200
October 17, 2018 TCSS422: Operating Systems [Fall 2018] 712

School of Engineering and Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

L7.2

TCSS 422 A — Fall 2018
School of Engineering and Technology,

LINUX: COMPLETELY FAIR SCHEDULER

= Linux > 2.6.23: Completely Fair Scheduler (CFS)
® Linux < 2.6.23: 0(1) scheduler

= Every thread/process has a scheduling class (policy):
= Normal classes: SCHED_OTHER (TS), SCHED_IDLE,
SCHED_BATCH
= TS = Time Sharing
= Real-time classes: SCHED_FIFO (FF), SCHED_RR (RR)

= Show scheduling class and priority:
"ps -elfc
"ps ax -o pid,ni,cls,pri,cmd

(CFS)

TCS5422: Operating Systems [Fall 2018]

(i 23S e o T B o e s oy Tty A T = TRy

| 1713

10/16/2018

COMPLETELY FAIR SCHEDULER - 2

= Loosely based on the stride scheduler

= CFS models system as a Perfect Multi-Tasking System

= In perfect system every process of the same priority (class)
receive exactly 1/nt" of the CPU time

= Scheduling classes each have a runqueue
= Groups process of same priority
= Process priority groups use different sets of runqueues for
priorities
= Scheduler picks task with lowest accumulative runtime to run
= Time quantum varies based on how many jobs in shared
runqueue
Time quantum is proportional to system CPU load in the runqueue
No fixed time quantum (e.g. 10 ms)

TCSS422: Operating Systems [Fall 2018]

(i) 2T o o L e e e o e T Tec e

7.4

COMPLETELY FAIR SCHEDULER -

® Runqueues are stored using a linux red-black tree

= Leftmost node has lowest
vruntime (approxexecution time

= Walking tree to find left
most node is ~O(log N)
for N nodes

Nodes represent
sched_entity(s)
indexed by their
virlual runtime

= Completed processes
removed

virtual runtime

3

= Self balancing binary tree - nodes indexed by vruntime

Most need of CPU

Least need of CPU

TCSS422: Operating Systems [Fall 2018]

OctobeRl 772018 School of Engineering and Technology, University of Washington - Tacoma

1715

COMPLETELY FAIR SCHEDULER - 4

= CFS tracks virtual run time in vruntime variable

= The task on a given runqueue with the lowest vruntime is
scheduled next

" struct sched entity contains vruntime parameter
= Describes process execution time in nanoseconds
=Value is not pure runtime, but weighted based on priority

= Perfect scheduler >
achieve equal vruntime for all processes of same priority

= Key takeaway
identifying the next job to schedule is really fast!

TCS5422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

October 17, 2018 17.16

CFS: JOB PRIORITY

= Time slice: Linux “Nlce value”
= Nice value predates the CFS scheduler
=Top shows nice values

= Process command (nice & priority):
ps ax -o pid,ni,cmd, %cpu, pri

= Nice Values: from -20 to 19
= Lower is higher priority, default is O
=Vruntime is a weighted time measurement

= Priority weights the calculation of vruntime within
runqueue to give high priority jobs a boost.
Influences job’s position in rb-tree

a

TCSS422: Operating Systems [Fall 2018]

(S 3 Seoo[of Enginearing andiechiiolosylU nversity Ve hington S Tecoms

| 717

CFS: TIME QUANTUM

= Scheduling quantum is calculated at runtime based
on targeted latency and total number of running
processes

= Will vary between:

" cat /proc/sys/kernel/sched_min_granularity ns
(3 ms - minimum quantum)

" cat /proc/sys/kernel/sched latency_ns
(24 ms - target quantum)

= Target quantum (latency):
= Interval during which task should run at least once
= Automatically increases as number of jobs increase

TCSS422: Operating Systems [Fall 2018]

CEEE=A b eI School of Engineering and Technology, University of Washington - Tacoma

17.18

Slides by Wes J. Lloyd

L7.3

TCSS 422 A - Fall 2018
School of Engineering and Technology,

CFS: TIME QUANTUM - 2

= How do we map a nice value to an actual CPU time
quantum (timeslice) (ms)? What is the best mapping?

= 0(1) scheduler (< 2.6.23)
=tried to map nice value to timeslice (fixed allotment)

= Linux completely fair scheduler
= Nice value suggests priority to assign runqueue for job
=Time proportion varies based on # of jobs in runqueue
= With fewer jobs in runqueue, time proportion is larger

10/16/2018

October 17, 2018 Tcsz:lz‘f; Operating Systems [Fall 2018]

Technology, University i Tacoma

| 17.19

COMPLETELY FAIR SCHEDULER - 5

= More information:

= Man page: “man sched” : Describes Linux scheduling API

= http://manpages.ubuntu.com/manpages/bionic/man7/sched.
Z.html

= https://www.kernel.org/doc/Documentation/scheduler/sched-

design-CFS.txt
= https://en.wikipedia.org/wiki/Completely Fair_Scheduler

= See paper: The Linux Scheduler - a Decade of Wasted Cores
= http://www.ece.ubc.ca/~sasha/papers/eurosys16-final29.pdf

CHAPTER 26 -
CONCURRENCY:
AN INTRODUCTION

TCSS422: Operating Systems [Fall 2018]
(g 1 2005 School of Engineering and Technology, University of Washington -

Nl [.
OBJECTIVES

® Introduction to threads

= Race condition

= Critical section

THREADS

Process Multithreaded Process
Process State: PC,
registers, SP, et

Singl = i
ingle At Multiple

Threaded Threaded
Process Process

oo ol ®
——)

®Alfred Park, http:/randu.org/tutorials/threads

TCSS422: Operating Systems [Fall 2018]
et

School o chnology, University i Tacoma L7.23

| October 17, 2018 |

= Thread API
October 17, 2018 TCSS422: Operating Systems [Fall 2018] .22
’ School of Engir i Technology, University of i Tacoma B

= Enables a single process (program) to have multiple “workers”

= Supports independent path(s) of execution within a program
with shared memory ...

= Each thread has its own Thread Control Block (TCB)
= PC, registers, SP, and stack

= Code segment, memory, and heap are shared

1724

October 17, 2018 TCSS422: Dpe.ri(in.g Systems [Fall 2018] -)
School of Technology, University of Tacoma

Slides by Wes J. Lloyd

L7.4

TCSS 422 A — Fall 2018
School of Engineering and Tech

nology,

PROCESS AND T

HREAD METADATA

= Thread Control Block vs. Process Control Block

10/16/2018

Thread identification Process identification
Thread state Process status
CPU information: Process state:
Program counter Focasizid word
Register contents egister contents
y Main memory
Thread priority Resources
Pointer to process that created this thread Process priority
Pointers to all other threads created by this thread Accounting
October 17, 2018 TCSS422: Operating Systems [Fall 2018] | 17.25 ‘

School of Engineering and Technology, University of Washington - Tacoma

SHARED ADDRESS SPACE

= Every thread has it’s own stack / PC

OKB The code segment: OKB
Program Code where instructions live Program Code
1KB A x 1KB
e heap segment:
biesp contains mallocd data S Heap
2kB dynamic data structures
(it grows downward)
(free)
(free)
Stack (2)
(it grows upward)
The stack segment: (free)
15k8 contains local variables 15kB
stack (1) arguments to routines, Stack (1)
16K8 return values, etc 16KB

A single-Threaded
Address Space

Two threaded
Address Space

TCSS422: Operating Systems [Fall 2018]

(i) 2T o o L e e e o e T Tec e

17.26

PROCESSES VS. THREADS

= What's the difference between forks (processes) and threads?
= Forks: duplicate a process
= Think of CLONING - There will be two identical processes at the end
= Threads: no duplicate of code/heap, lightweight execution threads

coca o8t | e | cote || aaa [
mTr;l [atack | ragisters

Process Process

regters [rogeters|

I stocte [st |

<

+—— thread

VAV

single-theeaded procoss mustithraadon prozoss

| October 17, 2018

TCSS422: Operating Systems [Fall 2018]
hool of Engineering and Technology, University i Tacoma

THREAD CREATION EXAMPLE

#include <stdio.h>
#include <assert.h>
#include <pthread.h»

ythread(void sarg) {
rintf ("$s\n", (char +) arg);
return NULL;

argc, char rargvl]) {

ad_t pl, p2;

int ro;

printf("main: begin\n");

pthread_create(spl, NULL, mythread, "A"); assert(rc == 0);
read_create (5p2, NULL, mythread, "B"); assert (rc == 0);
aits for the threads to finish

read_join(pl, NULL); assert(rc == 0);

read_join (p2, NULL); assert(rc == 0);
printf("main: end\n");
return 0;

TCSS422: Operating Systems [Fall 2018]

@ty i) Ak School of Engineering and Technology, University of Washington - Tacoma

17.28

POSSIBLE ORDERINGS OF EVENTS

Starts running
' Prints ‘main: begin’
Creates Thread 1

Creates Thread 2

Waits for T1
Runs
. Prints ‘A"
Returns
»Waits'olTZ
Runs
Prints ‘B
Returns
» Prints ‘main: end’
| ousbermams | IS orete e o etyotshigin- Tcoms Bl

Slides by Wes J. Lloyd

POSSIBLE ORDERINGS OF EVENTS - 2

Starts running
Prints ‘main: begin’

[Creates Thread 1 7
Runs
Prints ‘A
Returns
Creates Thread 2 L
Runs
Prints ‘B’
Returns
| Waits for T2 Returns immediately B
Waits for T2 Returns immediately

Prints ‘main: end”

TCSS422: Operating Systems [Fall 2018]

@iy i) 2 School of Engineering and Technology, University of Washington - Tacoma

1730

L7.5

TCSS 422 A - Fall 2018
School of Engineering and Technology,

Starts running

Prints ‘main: begin’
Creates Thread 1

Creates Thread 2

What if execution order of

POSSIBLE ORDERINGS OF EVENTS - 3

piee events in the program matters?
Runs
Prints ‘A"
L Returns
Waits for T2 Immediately returns
Prints ‘main: end’
Ocobersrams | [CSRZ Opentmgsens fabaons [oa]

10/16/2018

COUNTER EXAMPLE

= Pthread create example (pthread_create.c)
= A + B:ordering

= Counter example (pthread.c)
= Counter: incrementing global variable by two threads

October 17, 2018 17.32

TCS5422: Operating Systems [Fall 2018]
School of Engineeri Technology, Universi i Tacoma

RACE CONDITION

= What is happening with our counter?

= When counter=50, consider code: counter = counter + 1

= If synchronized, counter will = 52
(after instruction)
os Thread1 Thread2 eax counter
before critical section 100 o 50
mov 0x8049alc, teax 105 50 50
add $0x1, %eax 108 51 50
save T1’s state
restore T2's state 100 0 50
mov 0x8049alc, %eax 105 50 50
add $0x1, teax 108 51 50
mov %eax, 0x804%alc 113 51 51
save T2's state
restore Tl's state 108 51 50
mov %eax, 0x8049alc 113 51

e

| T | Tcsz:lz‘z,; Operating systems [Fall201]

Technology, University i Tacoma

| 1733

CRITICAL SECTION

= Code that accesses a shared variable must not be
concurrently executed by more than one thread

= Multiple active threads inside a critical section produce a
race condition.

= Atomlc executlon (all code executed as a unit) must be
ensured in critical sections
= These sections must be mutually excluslve

October 17, 2018

TCS5422: Operating Systems [Fall 2018] 3
School of Engineeri Technology, i Tacoma i

LOCKS

1 lock_t mutex;

2 ehisea &

3 lock (smutex) :

4 lbalance = balance + 1;] Critical secti
5

unlock (smutex) i

= Counter example revisited (pthread_lock.c)

= To demonstrate how critical section(s) can be executed
“atomically-as a unit” Chapter 27 & beyond introduce locks

on

October 17, 2018 Tcsz:lz‘f; Operating Systems [Fall 2018]

Technology, University i Tacoma

| 1735

Slides by Wes J. Lloyd

CHAPTER 27 -

LINUX
THREAD API

TCSS422: Operating Systems [Fall 2018]

(SRR T 20 School of Engineering and Technology, University of Washington -

L7.6

TCSS 422 A - Fall 2018
School of Engineering and Technology,

THREAD CREATION

= pthread_create

#include <pthread.h>

int
pthread_create(pthread_t* thread,
const pthread_attr_t* attr,
void#* (*start_routine) (void*),
void* arg) ;

= thread: thread struct

= attr: stack size, scheduling priority... (optional)

= start_routine: function pointer to thread routine

= arg: argument to pass to thread routine (optional)

10/16/2018

TCS5422: Operating Systems [Fall 2018] .
0ol of Engineeri i

October 17, 2018 T U i Tacoma

PTHREAD_CREATE - PASS ANY DATA

#include <pthread.h>

typedef st __myarg t {

} myarg_t
void *mythread(void *arg) {
myarg_t *m = (myarg_t *) arg;
» printf(“%d %d\n”, m->a, m->b);
NULL;
)
int main(int argc, char *argv([]) {
pthread t p;
int re;
myarg_t args;
» args.a = 10;
args.b = 20;
rc = pthread create(sp, NULL, mythread, &args);:

}

TCS5422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

‘ October 17, 2018 17.38

PASSING A SINGLE VALUE

Using this approach on your Ubuntu VM,
How large (in bvtes) can the primitive data type be?

How large (in bytes) can the primitive data type
be on a 32-bit operating system?

int rc, m;

pthread_create (sp, NULL, mythread, (void 2> 100);

pthread_join(p, (void **) &m);

12 printf (“returned ¥d\n”, m);
13 0;
14}

October 17, 2018 1739

TCSS422: Operating Systems [Fall 2018]
School of Engineeri Technology, University i Tacoma

WAITING FOR THREADS TO FINISH

int pthread join(pthread_t thread, void **value_ptr);

= thread: which thread?

= value_ptr: pointer to return value
type is dynamic / agnostic

= Returned values *must* be on the heap

= Thread stacks destroyed upon thread termination (join)

= Pointers to thread stack memory addresses are invalid
= May appear as gibberish or lead to crash (seg fault)

= Not all threads join - What would be Examples ??

October 17, 2018 L7.40

TCS5422: Operating Systems [Fall 2018]
School of Engineeri Technology, Uni

ity of i Tacoma

struct myarg { . .
Int & hat will this code do?

void *worker(void *arg)

struct myarg *input = (struct myarg *) arg;

printf("a=%d b=%d\n",input->a, input->b);

(S)EESEE":yirg;O“tp“t’ Data on thread stack

output.b = 2;

return (void *) &output; $./pthread_struct
} a=10 b=20

Segmentation fault (core dumped)

int main (int argc, char * argv[])

pthread_t pl;

struct myarg args;
struct myarg *ret_args;
args.a = 10;

args.b = 20:

pthread_: . .
s#s How can this code be fixed?
return 0.

TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma L4

October 17, 2018

Slides by Wes J. Lloyd

struct myarg {)
HAS ow about this code?
b

void *worker(void *arg)

struct myarg *input = (struct myarg *) arg;
printf("a=%d b=%d\n",input->a, input->b);
input->a = 1;
input->b = 2;

return (void *) &input;

} $.Ipthread_struct

a=10 b=20
returned 1 2

int main (int argc, char * argv[])
{

pthread_t pl;

struct myarg args;

struct myarg *ret_args;

args.a = 10;

args.b = 20;

pthread_create(&pl, NULL, worker, &args);
pthread_join(pl, (void *)&ret_args);
printf("returned %d %d\n", ret_args->a, ret_args->b);
return 0;

TCS8422: Operating Systems [Fall 2018]

Ceicegizi20ts School of Engineering and Technology, University of Washington - Tacoma L7.42

L7.7

TCSS 422 A — Fall 2018
School of Engineering and Technology,

ADDING CASTS

= Casting

= Suppresses compiler warnings when passing “typed” data
where (void) or (void *) is called for

= Example: uncasted capture in pthread_join

pthread_int.c: In function ‘main’:

pthread_int.c:34:20: warning: passing argument 2 of ‘pthread_join’

from incompatible pointer type [-Wincompatible-pointer-types]
pthread_join(pl, &plval);

= Example: uncasted return

In file included from pthread_int.c:3:0:
/usr/include/pthread.h:250:12: note: expected ‘void **' but argument
is of type ‘int **’

extern int pthread_join (pthread_t __th, void **__thread_return);

October 17, 2018 TCS5422: Operating Systems [Fall 2018]

7.
School of Engineering and Technology, University of Washington - Tacoma | 1743 ‘

10/16/2018

ADDING CASTS - 2

= pthread_join
int * plval;
int * p2val;
pthread_join(pl, (void *)&plval);
pthread_join(p2, (void *)&p2val);

= return from thread function
int * counterval = malloc(sizeof(int));
*counterval = counter;
return (void *) counterval;

TCSS422: Operating Systems [Fall 2018]
(i) 2T o o L e e e o e T Tec e

var |

LOCKS

= pthread_mutex_t data type
= /usr/include/bits/pthread_types.h
// Global Address Space
static volatile int counter = 0;
void *worker(void *arg)
{
int i;
for (i=0;17<10000000;i++) {
assert(rc==0);

counter = counter + 1;

}
return NULL;

October 17, 2018 TCS5422: Operating Systems [Fall 2018]

7.
School of Engineering and Technology, University of Washington - Tacoma | 1745 ‘

LOCKS - 2

= Ensure critical sections are executed atomically-as a unit
= Provides implementation of “Mutual Exclusion”

= API

int pthread mutex_lock (pthread mutex t *mutex);
int pthread mutex_unlock (pthread mutex t *mutex);

= Example w/o initialization & error checking

pthread mutex_t lock;

pthread_mutex_lock (&lock) ;
o b i Tl y
pthread mutex_unlock (&lock) ;

r your critical se

= Blocks forever until lock can be obtained
= Enters critical section once lock is obtained
= Releases lock

TCSS422: Operating Systems [Fall 2018]
(i) 2Tk ISehool of Erpineering andTect nolosyjUnversity ofWashinaton S Tacoma

v |

LOCK INITIALIZATION

= Assigning the constant

[pthread mutex_t lock = PTHREAD_MUTEX INITIALIZER; ‘

= API call:

int rc = pthread mutex init(&lock, NULL);
assert (rc == 0); a !

check succ

= |nitializes mutex with attributes specified by 2" argument
= |f NULL, then default attributes are used

= Upon initialization, the mutex is initialized and unlocked

October 17, 2018 TCSS422: Operating Systems [Fall 2018]

7.
School of Engineering and Technology, University of Washington - Tacoma | L4z ‘

= Error checking wrapper

void Pthread mutex lock (pthread mutex t *mutex) {
int rc = pthread mutex_lock (mutex) ;
assert (rc == 0);

= What if lock can’t be obtained?

int pthread mutex trylock(pthread mutex_t *mutex);
int pthread mutex_timelock (pthread mutex t *mutex,
struct timespec *abs_timeout);

= trylock - returns immediately (fails) if lock is unavailable
= timelock - tries to obtain a lock for a specified duration

TCSS422: Operating Systems [Fall 2018]
(i) T ISehool of Ergineering andTect nolosy|Unversity o Washinaton S Tacoma

ve |

Slides by Wes J. Lloyd

L7.8

TCSS 422 A — Fall 2018
School of Engineering and Technology,

10/16/2018

CONDITIONS AND SIGNALS

= Condition variables support “signaling” ¥ ity
between threads §

int pthread_cond_wait (pthread _cond_t *cond,
pthread mutex_t *mutex);
int pthread_cond_signal (pthread_cond_t *cond);

= pthread_cont_t datatype

= pthread_cond_wait()
= Puts thread to “sleep” (waits) (THREAD is BLOCKED)
= Threads added to FIFO queue, lock is released

= When signal occurs, interrupt fires, wakes up first thread,
(THREAD is RUNNING), lock is provided to thread

= Waits (lIstens) for a “signal” (NON-BUSY WAITING, no polling)

TCS5422: Operating Systems [Fall 2018]

(i 23S AT o T B o e s oy Tt A T T

[oo]

CONDITIONS AND SIGNALS - 2

int pthread_cond_signal(pthread_cond_t * cond);

int pthread_cond_broadcast(pthread_cond_t * cond);

= pthread_cond_signal ()
= Called to send a “signal” to wake-up first thread in FIFO “wait” queue
= The goal is to unblock a thread to respond to the signal

= pthread_cond_broadcast()
= Unblocks all threads in FIFO “wait” queue, currently blocked on the
specified condition variable
= Broadcast is used when all threads should wake-up for the signal

® Which thread is unblocked first?
= Determined by OS scheduler (based on priority)
= Thread(s) awoken based on placement order in FIFO wait queue
= When awoken threads acquire lock as in pthread_mutex_lock()

TCSS422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma 1750

October 17, 2018

CONDITIONS AND SIGNALS - 3

= Wait example:

pthread mutex_t lock = PTHREAD MUTEX INITIALIZER;
pthread cond_t cond = PTHREAD COND_INITIALIZER;

pthread_mutex_lock (slock) ;
while (initialized == 0)
pthread cond wait(&cond, &lock);
// Perform work that requires lock
a=a+b;
pthread_mutex_unlock (&lock) ;

= wait puts thread to sleep, releases lock

= when awoken, lock reacquired (but then released bv this code)

pthread mutex lock (slock) ;

SO n Stat iabl t,
= When initialized, another thread signals Enab?ez\étar?eartr?r::d(s)

to proceed above.

initialized = 1; <€
pthread_cond_signal (&init);
pthread_mutex_unlock (&lock) ;

TCS5422: Operating Systems [Fall 2018]

(i 23 e oolol Enpinearins ardlTechiolo syl e ity Ve hinetonETecoms

[os]

CONDITION AND SIGNALS - 4

pthread mutex_t lock = PTHREAD_ MUTEX_INITIALIZER;
pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

pthread mutex lock(&lock) ;
hile (initialized == 0)

thread cond wait(&cond, &lock) ;
// Perform work that requires lock
a=a+b;
pthread_mutex_unlock (&lock) ;

= Why do we wait inside a while loop?

= The while ensures upon awakening the condition is rechecked
= A signal is raised, but the pre-conditions required to proceed may
have not been met. **MUST CHECK STATE VARIABLE**
= Without checking the state variable the thread may proceed to
execute when it should not. (e.g. too early)

TCSS422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma 1752

October 17, 2018

PTHREADS LIBRARY

= Compilation
= gcc -pthread pthread.c -o pthread
= Requires explicitly linking the library with compiler flag
= Use makefile to provide compiler arguments

= List of pthread manpages
= man -k pthread

TCSS422: Operating Systems [Fall 2018]

(S 3 Seoo[of Enginearing andiechiiolosylU nversity Ve hington S Tecoms

| 1753

SAMPLE MAKEFILE

cc=gcc
CFLAGS=-pthread -I. -wall

binaries=pthread pthread_int pthread_lock_cond pthread_struct
all: $(binaries)

pthread_mult: pthread.c pthread_int.c
$(cC) $(CFLAGS) $A -0 $@

Tean:
$(RM) -f $(binaries) *.o

= Example builds multiple single file programs
= All target
= pthread_mult
= Example if multiple source files should produce a single executable

= clean target

TCSS422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma 1754

October 17, 2018

Slides by Wes J. Lloyd

L7.9

TCSS 422 A - Fall 2018
School of Engineering and Technology,

TCSS422: Operating Systems [Fall 2018]
(e 1 2005 School of Engineering and Technology, University of Washington -

10/16/2018

= Ensure critical section(s) are executed atomically-as a unit

= Only one thread is allowed to execute a critical section at any given
time

= Ensures the code snippets are “mutually exclusive”

= Protect a global counter:

[balance = balance + 1;

= A “critical section”:

1 lock t mutex; // some globally-allocated lock ‘mutex’
2
= } lock (&mutex) ;
4 balance = balance + 1;
5 unlock (smutex) ;
i [e

= Lock variables are called “MUTEX”
=Short for mutual exclusion (that’s what they guarantee)

= Lock variables store the state of the lock
= States
=Locked (acquired or held)

= Unlocked (available or free)

= Only 1 thread can hold a lock

October 17, 2018 TCSS422: Dpe.raling Systems [Fall 2018] -)
0ol of Technology, y Tacoma

ER

"pthread mutex_lock (&lock)
=Try to acquire lock
= If lock is free, calling thread will acquire the lock

= Thread with lock enters critical section
= Thread “owns” the lock

= No other thread can acquire the lock before the owner
releases it.

October 17, 2018 TCSS422: Dpe.ri(in.g Systems [Fall 2018] -)
School of Technology, Tacoma

1758

= Program can have many mutex (lock) variables to
“serialize” many critical sections

= Locks are also used to protect data structures

simultaneously

hour glass

=Similar to relational database transactions

row, field

= Programmer can make sections of code “granular”
= Fine grained - means just one grain of sand at a time through an

= Prevent multiple threads from changing the same data

= DB transactions prevent multiple users from modifying a table,

October 17, 2018 TCSS422: Ope‘raling Systems [Fall 2018] -)
0ol of Technology, y Tacoma

EX

Slides by Wes J. Lloyd

FINE GRAINED?

= |s this code a good example of “fine grained parallelism”?

pthread_mutex_lock(&lock);

a = b++;

b=a*c;

*d = a + b +c;

FILE * fp = fopen ("file.txt", “r");
fscanf(fp, "%s %s %s %d", strl, str2, str3, &e);
ListNode _snode = my1j ead:

node->subheading = str2;
node->desc = str3;
node->end = *e;
node = node->next;
T4+

} .
e=e-i;
pthread_mutex_unlock(&lock) ;

October 17, 2018 Tcssnlzz; Operating Systems [Fall 2018]

School of Technology, University i Tacoma

17.60

L7.10

TCSS 422 A — Fall 2018
School of Engineering and Technology,

FINE GRAINED PARALLELISM

10/16/2018

pthread_mutex_lock (&lock_a) ;
pthread_mutex_lock (&lock_b) ;

a = b++;
pthread_mutex_unlock(&lock_b);
pthread_mutex_unlock(&lock_a);

pthread mutex Tock (&lock_b) ;
b =
pthread mutex unlock(&Tock_b);

pthread_mutex_ 'Iock(&'lock d);
*d =a + +C
pthread_mutex_ un'lock(&'lock d);

FILE * fp = fopen ("file.txt", “r");
pthread_mutex_lock (&lock_e);

fscanf(fp, "%s %s %s %d", strl, str2, str3, &e);
pthread_mutex_unlock(&lock_e);

ListNode *node = mylist->head;
int i=0 . .

EVALUATING LOCK IMPLEMENTATIONS

= Correctness
=Does the lock work?

= Are critical sections mutually exclusive?
(atomic-as a unit?)

= Fairness
= Are threads competing for a lock have a fair chance of

acquiring it?

= Overhead

TCS5422: Operating Systems [Fall 2018]

(i 23S AT o T B o e s oy Tt A T T

761

TCSS422: Operating Systems [Fall 2018]

(i) 2T o o L e e e o e T Tec e

1762

BUILDING LOCKS

= Locks require hardware support

implementation

= Atomic-as a unit exchange instruction
XCHG

= Compare and exchange instruction

= To minimize overhead, ensure fairness and correctness

= Special “atomic-as a unit” instructions to support lock

CMPXCHG
CMPXCHGS8B
CMPXCHG16B
October 17, 2018 TCSS4|22' Dpemllng Svslems [Fall 2018] e . | 17.63 ‘
Technology, y Tacoma

HISTORICAL IMPLEMENTATION

= To implement mutual exclusion
= Disable interrupts upon entering critical sections

void lock() {
DisableInterrupts () :

}

void unlock() {
EnableInterrupts () ;

B

¥

= Any thread could disable system-wide interrupt
= What if lock is never released?

= On a multiprocessor processor each CPU has its own interrupts
= Do we disable interrupts for all cores simultaneously?

= While interrupts are disabled, they could be lost
= If not queued...

TCSS422: Operating Systems [Fall 2018]

@ty i) Ak School of Engineering and Technology, University of Washington - Tacoma

L1764

SPIN LOCK IMPLEMENTATION

= Operate without atomic-as a unit assembly instructions
= “Do-it-yourself” Locks

struct _lock t { int flags } lock_t;

i
2
3 void init(lock_t *mutex) {

4 - lock is available, = held
5 mutex->flag = 0;

6

7

8

d lock(lock_t *mutex) {

= |s this lock implementation: Correct? Fair? Performant?

9 (mutex->£1
10 ;
11 mutex->flag =
123 11
13
14 d unlock(lock t *mutex) {
15 mutex->flag =
16)
October 17, 2018 Tcssm Operallng Systems [Fall 2018])) s ‘
and Technology, y Tacoma

DIY: CORRECT?

= Correctness requires luck... (e.g. DIY lock is incorrect)

Threadl Thread2

call 1ock ()

while (flag == 1)

interrupt: switch to Thread 2
call 1ock ()
while (flag == 1)
flag =
interrupt: switch to Thread 1

flag = // set flag to 1 (too!)

= Here both threads have “acquired” the lock simultaneously

TCSS422: Operating Systems [Fall 2018]

@iy i) 2 School of Engineering and Technology, University of Washington - Tacoma

1766

Slides by Wes J. Lloyd

L7.11

TCSS 422 A — Fall 2018
School of Engineering and Technology,

DIY: PERFORMANT?

10/16/2018

void lock(lock_t *mutex)

// while lock is unavailable, wait..
mutex->flag = 1;

= What is wrong with while(<cond>); ?

= Spin-waiting wastes time actively waiting for another thread
= while (1); will “peg” a CPU core at 100%

= Continuously loops, and evaluates mutex->flag value...

= Generates heat...

TCS5422: Operating Systems [Fall 2018]

(i 23S AT o T B o e s oy Tt A T T

ER

TEST-AND-SET INS

= C implementation: not atomic
= Adds a simple check to basic spin lock
= One a single core CPU system with preemptive scheduler:
= Try this...

int TestAndSet (int *ptr,
int old = *ptr;
*ptr = new;
old;

o wn e

}

= lock() method checks that TestAndSet doesn’t return 1
= Comparison is in the caller

= Single core systems are becoming scarce

= Try on a one-core VM

October 17, 2018 TCSS422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma 1768

DIY: TEST-AND-SET - 2

= Requires a preemptive scheduler on single CPU core system
® Lock is never released without a context switch

= 1-core VM: occasionally will deadlock, doesn’t miscount
_lock t {

int flag
) lock t;

init(lock_t *lock) {
3 an ¥ i

X

2

3

4

2 void
6

7 / 1 tha

8 lock->flag

o

11 void lock(lock_t *lock) {

12 (Testandset (slock->flag, 1) == 1)
13 i // spin-wait
14)
15
16 void unlock(lock_t *lock) (
17 lock->flag = 0;
8)
TCS5422: Operating Systems [Fall 2018]
October 17, 2018 et e Technology, University . - | 1769 ‘

SPIN LOCK EVALUATION

= Correctness:

= Spin locks guarantee: critical sections won’t be executed
simultaneously by (2) threads

= Fairness:

= No fairness guarantee. Once a thread has a lock, nothing forces it to
relinquish it...

= Performance:
= Spin locks perform “busy waiting”
= Spin locks are best for short periods of waiting
= Performance is slow when multiple threads share a CPU
Especially for long periods

October 17, 2018 TCSS422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma L7.70

COMPARE AND SWAP

= Checks that the lock variable has the expected value FIRST,
before changing its value
= If so, make assignment
= Return value at location

= Adds a comparison to TestAndSet

= Useful for wait-free synchronization

= Supports implementation of shared data structures which can be
updated atomically (as a unit) using the HW support
CompareAndSwap instruction

= Shared data structure updates become “wait-free”

= Upcoming in Chapter 32

October 17, 2018 Tcsz:lzcz‘; Operating Systems [Fall 2018]

Technology, University i Tacoma

[on]

COMPARE AND SWAP

= Compare and Swap

1 int CompareAndswap(int *ptr, int expected, int new) {
2 int actual = *ptr;

3 (actual == expected)

4 *ptr = new;

5 actuals

= Spin loc . 1-core VM:
Count is correct, no deadlock

3
4 b

= X86 provides “cmpxchgl” compare-and-exchange instruction
= cmpxchg8b
= cmpxchgléb

October 17, 2018 TCSS422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma 1772

Slides by Wes J. Lloyd

L7.12

TCSS 422 A - Fall 2018
School of Engineering and Technology,

TWO MORE “LOCK BUILDING”

CPU INSTRUCTIONS

= Cooperative instructions used together to support
synchronization on RISC systems

= No support on x86 processors
= Supported by RISC: Alpha, PowerPC, ARM

= Load-linked (LL)
= Loads value into register
= Same as typical load
= Used as a mechanism to track competition

= Store-conditional (SC)
= Performs “mutually exclusive” store
= Allows only one thread to store value

10/16/2018

October 17, 2018 Tcsz:lz‘f; Operating Systems [Fall 2018]

[o

1 int LoadlLinked(int *ptr) {

2 *ptr;

3 }

4

5 int StoreConditional (int *ptr, int value) {
6 (no one has updated *ptr since the LoadLinked to this address) {
7 *ptr = value;

8 17 success!

9 } {

10 0; o update
11 }

12}

= LL instruction loads pointer value (ptr)
= SC only stores if the load link pointer has not changed
= Requires HW support

= C code is psuedo code

October 17, 2018 T(SSMZ; Operating Systems [Fall 2018]

School o Technology, Universi i Tacoma

1774

Technology, University i Tacoma
1 void lock(lock_t *lock) {
2 1 {
3 (LoadLinked (slock->flag) == 1)
4 7 // spin until i °
5 (Storeconditional (
6 Wi t s 1 done
7
8)
91 i
10
11 void unlock(lock t *lock) {
12 lock->flag = 0;
13 o

= Two instruction lock

October 17, 2018 Tcsz:lz‘f; Operating Systems [Fall 2018]

Technology, University i Tacoma

[o

Slides by Wes J. Lloyd

QUESTIONS

L7.13

