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TCSS 422: OPERATING SYSTEMS

 ASIDE: Real-time operating systems: F r o m :  R e a l  t i m e  c o m p u t i n g  W i k i p e d i a :

OS for real-time applications that process data as it 
comes in, typically without buffer delays.

 Assume fixed # of processes; control delay; avoid latency

 Use Case: real-time audio recording/editing

 Types:
 Hard: Missing a deadline results in total system failure

 Firm: Can tolerate infrequent deadline misses, degrades QoS

 Soft: Usefulness of results degrades after deadlines, 
results in Quality of Service (QoS) degradation

 Linux: “Soft” support via low latency kernel patch

 RTLinux: hard realtime OS microkernel, runs Linux kernel 
as a fully preemptive processOctober 15, 2018 TCSS422: Operating Systems [Fall 2018]
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FEEDBACK FROM 10/15

 Real-time job priority in Linux:

 Linux Completely Fair Scheduler: 

 Jobs scheduled with a Real-time policy:

 SCHED_FIFO (FF), SCHED_RR (RR)

 Not scheduled as a typical task
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FEEDBACK - 2

 What is a (CPU) core?

 How many do most computers have?

 What can you do with them related to threads?
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FEEDBACK - 3

 Without priority boost: 

 Rule 1: If Priority(A) > Priority(B), A runs (B doesn’t).

 Rule 2: If Priority(A) = Priority(B), A & B run in RR.

 KEY:  If time quantum of a higher queue is filled,
then we don’t run any jobs in lower priority queues!!!
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MLFQ REVIEW

 Consider 3 queues:

 Q2 – HIGH PRIORITY – Time Quantum 10ms

 Q1 – MEDIUM PRIORITY – Time Quantum 20 ms

 Q0 – LOW PRIORITY – Time Quantum 40 ms

 Job A: 200ms no I/O

 Job B: 5ms then I/O

 Job C: 5ms then I/O

 Q2 fills,
starves Q1 & Q0

 A makes no progress
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STARVATION EXAMPLE

Starvation
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 Question:
 Given a system with a quantum length of 10 ms in its highest 

queue, how often would you have to boost jobs back to the 
highest priority level to guarantee that a single long-running 
(and potentially starving) job gets at least 5% of the CPU?

 Some combination of n short jobs runs for a total of 10 ms per 
cycle without relinquishing the CPU
 E.g. 2 jobs = 5 ms ea; 3 jobs = 3.33 ms ea, 10 jobs = 1 ms ea
 n jobs always uses full time quantum (10 ms)
 Batch jobs starts, runs for full quantum of 10ms
 All other jobs run and context switch totaling the quantum per cycle
 If 10ms is 5% of the CPU, when must the priority boost be ???
 Priority boost occurs at every 200ms

October 15, 2018 TCSS422: Operating Systems [Fall 2018]
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EXAMPLE

 C Tutorial  (Sunday 10/21)

 Program 1 – MASH Shell (Friday 10/26)

 CPU Scheduling cont’d:

 Chapter 8 – Multi-level Feedback Queue

 Chapter 9 – Proportional Share Scheduler

 Linux - Completely Fair Scheduler (CFS)

 Multi-threaded Programming

 Chapter 26 – Concurrency Introduction

 Chapter 27 – Linux Thread API 

 Chapter 28 – Introduction to Locks
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OBJECTIVES

CHAPTER 8 –
MULTI-LEVEL FEEDBACK 

QUEUE (MLFQ) SCHEDULER
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 Improved time accounting:
 Track total job execution time in the queue

 Each job receives a fixed time allotment

 When allotment is exhausted, job priority is lowered
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PREVENTING GAMING

 Consider the tradeoffs:
 How many queues?

 What is a good time slice?

 How often should we “Boost” priority of jobs?

 What about different time slices to different queues?
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MLFQ: TUNING

 The refined set of MLFQ rules:

 Rule 1: If Priority(A) > Priority(B), A runs (B doesn’t).

 Rule 2: If Priority(A) = Priority(B), A & B run in RR.

 Rule 3: When a job enters the system, it is placed at the 
highest priority.

 Rule 4: Once a job uses up its time allotment at a given 
level (regardless of how many times it has given up the 
CPU), its priority is reduced(i.e., it moves down on queue).

 Rule 5: After some time period S, move all the jobs in the 
system to the topmost queue.

October 15, 2018 TCSS422: Operating Systems [Fall 2018]
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MLFQ RULE SUMMARY
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CHAPTER 9 -
PROPORTIONAL SHARE 

SCHEDULER

October 15, 2018 TCSS422: Operating Systems [Fall 2018]
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 Also called fair-share scheduler
or lottery scheduler

 Guarantees each job receives some percentage of CPU 
time based on share of “tickets”

 Each job receives an allotment of tickets

% of tickets corresponds to potential share of a resource

 Can conceptually schedule any resource this way
 CPU, disk I/O, memory

October 15, 2018 TCSS422: Operating Systems [Fall 2018]
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PROPORTIONAL SHARE SCHEDULER

 Simple implementation

 Just need a random number generator
 Picks the winning ticket

Maintain a data structure of jobs and tickets (list)

 Traverse list to find the owner of the ticket

 Consider sorting the list for speed
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LOTTERY SCHEDULER
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LOTTERY SCHEDULER IMPLEMENTATION

1 // counter: used to track if we’ve found the winner yet
2 int counter = 0;
3
4 // winner: use some call to a random number generator to
5 // get a value, between 0 and the total # of tickets
6 int winner = getrandom(0, totaltickets);
7
8 // current: use this to walk through the list of jobs
9 node_t *current = head;
10
11 // loop until the sum of ticket values is > the winner
12 while (current) {
13 counter = counter + current->tickets;
14 if (counter > winner)
15 break; // found the winner
16 current = current->next;
17 }
18 // ’current’ is the winner: schedule it...

 Ticket currency / exchange

 User allocates tickets in any desired way

 OS converts user currency into global currency

 Example:

 There are 200 global tickets assigned by the OS

October 15, 2018 TCSS422: Operating Systems [Fall 2018]
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TICKET MECHANISMS
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 Ticket transfer

 Temporarily hand off tickets to another process

 Ticket inflation

 Process can temporarily raise or lower the number of 
tickets it owns

 If a process needs more CPU time, it can boost tickets.
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TICKET MECHANISMS - 2

 Scheduler picks a winning ticket

 Load the job with the winning ticket and run it

 Example:

 Given 100 tickets in the pool
 Job A has 75 tickets: 0 - 74

 Job B has 25 tickets: 75 – 99

 But what do we know about probability of a coin flip?

October 15, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L6.20

LOTTERY SCHEDULING

Scheduled job:

 Equality of distribution (fairness) requires a lot of flips!

October 15, 2018 TCSS422: Operating Systems [Fall 2018]
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COIN FLIPPING

Similarly,
Lottery scheduling requires lots of “rounds” to achieve fairness.
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LOTTERY FAIRNESS

 With two jobs 
 Each with the same number of tickets (t=100)

When the job length is not very long,
average unfairness can be quite severe.

 What is the best approach to assign tickets to jobs?

 Typical approach is to assume users know best

 Users are provided with tickets, which they allocate as 
desired

 How should the OS automatically distribute tickets upon 
job arrival?

What do we know about incoming jobs a priori ?

 Ticket assignment is really an open problem…

October 15, 2018 TCSS422: Operating Systems [Fall 2018]
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LOTTERY SCHEDULING CHALLENGES

Addresses statistical probability issues with 
lottery scheduling

 Instead of guessing a random number to select a 
job, simply count…

October 15, 2018 TCSS422: Operating Systems [Fall 2018]
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STRIDE SCHEDULER
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 Jobs have a “stride” value
 A stride value describes the counter pace when the job should 

give up the CPU

 Stride value is inverse in proportion to the job’s number of 
tickets  (more tickets = smaller stride)

 Total system tickets = 10,000
 Job A has 100 tickets  Astride = 10000/100 = 100 stride

 Job B has 50 tickets  Bstride = 10000/50 = 200 stride

 Job C has 250 tickets  Cstride = 10000/250 = 40 stride

 Stride scheduler tracks “pass” values for each job (A, B, C)

October 15, 2018 TCSS422: Operating Systems [Fall 2018]
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STRIDE SCHEDULER - 2

 Basic algorithm:

1. Stride scheduler picks job with the lowest pass value

2. Scheduler increments job’s pass value by its stride and 
starts running

3. Stride scheduler increments a counter

4. When counter exceeds pass value of current job, pick a 
new job (go to 1)

 KEY: When the counter reaches a job’s “PASS” value, 
the scheduler passes on to the next job…

October 15, 2018 TCSS422: Operating Systems [Fall 2018]
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STRIDE SCHEDULER - 3

Stride values

Tickets = priority to select job

Stride is inverse to tickets

Lower stride = more chances to run (higher priority)

Priority

C stride = 40

A stride = 100

B stride = 200

October 15, 2018 TCSS422: Operating Systems [Fall 2018]
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STRIDE SCHEDULER - EXAMPLE

 Three-way tie: randomly pick job A (all pass values=0)

 Set A’s pass value to A’s stride = 100

 Increment counter until > 100

 Pick a new job: two-way tie

October 15, 2018 TCSS422: Operating Systems [Fall 2018]
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STRIDE SCHEDULER EXAMPLE - 2

Tickets
C  = 250
A  = 100
B  =   50

C has the most tickets
and receives a lot of
opportunities to run…

Initial job selection 
is random. All @ 0

 We set A’s counter (pass value) to A’s stride = 100

 Next scheduling decision between B (pass=0) and C (pass=0)

 Randomly choose B

 C has the lowest counter for next 3 rounds

October 15, 2018 TCSS422: Operating Systems [Fall 2018]
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STRIDE SCHEDULER EXAMPLE - 3

Tickets
C  = 250
A  = 100
B  =   50

C has the most tickets
and is selected to run
more often …

 Job counters support determining which job to run next 

 Over time jobs are scheduled to run based on their
priority represented as their share of t ickets…

 Tickets are analogous to job priority

October 15, 2018 TCSS422: Operating Systems [Fall 2018]
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STRIDE SCHEDULER EXAMPLE - 4

Tickets
C  = 250
A  = 100
B  =   50
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 Linux ≥ 2.6.23: Completely Fair Scheduler (CFS)

 Linux < 2.6.23: O(1) scheduler

 Every thread/process has a scheduling policy:

 Normal policies: SCHED_OTHER (TS), SCHED_IDLE,
SCHED_BATCH
 TS = Time Sharing

 Real-t ime policies: SCHED_FIFO (FF), SCHED_RR (RR)

 Show scheduling policy and priority:

 ps –elfc

 ps ax -o pid,ni,cls,pri,cmd

October 15, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington  - Tacoma
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LINUX: COMPLETELY FAIR SCHEDULER (CFS)

 Loosely based on the stride scheduler

 CFS models system as a Perfect Multi-Tasking System
 In perfect system every process of the same priority receives exactly 

1/n th of the CPU time

 Scheduling classes (runqueues)
 Groups process of same priority across set of runqueues
 Process priority groups use different sets of runqueues for priorities
 Default (SCHED_OTHER) gets a set  (PRI 1-99)
 Real-time (FF,RR) separate sets (PRI 1-139)

 Scheduler picks task with lowest accumulative runtime to run
 Time quantum based on proportion of CPU time (%), not fixed time 

allotments
 Quantum varies based on how many jobs in shared runqueue

October 15, 2018 TCSS422: Operating Systems [Fall 2018]
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COMPLETELY FAIR SCHEDULER - 2

 CFS uses weighted fair queueing
 1st implementation of fair queueing process scheduler in a major OS

 Runqueues are stored using a linux red-black tree
 Self balancing binary search tree- nodes indexed by vruntime
 Leftmost node has lowest vruntime (total execution time) 
 Walking tree to find left most node is only O(log N) for N nodes
 Completed processes removed
 Processes using up quantum, or interrupted reinserted

They are in READY state…
 This way, processes that sleep a lot (i.e. event handlers) have 

low vruntime, get a “priority boost” when they need to run

 Key takeaway
identifying the next job to schedule is really fast!
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COMPLETELY FAIR SCHEDULER - 3

 Time slice: Linux “Nice value”
 Nice value predates the CFS scheduler
 Top shows nice values
 Process command (nice & priority):  
ps ax -o pid,ni,cmd,%cpu, pri

 Nice Values: from -20 to 19
 Lower is higher priority, default is 0
 Scheduling quantum is calculated using nice value
 Default: cat /proc/sys/kernel/sched_rr_timeslice_ms
 Target latency: 
 Interval during which task should run at least once
 Automatically increases as number of jobs increases

October 15, 2018 TCSS422: Operating Systems [Fall 2018]
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COMPLETELY FAIR SCHEDULER - 4

 Challenge:
 How do we map a nice value to an actual CPU timeslice

(ms)?
What is the best mapping?
 O(1) scheduler (< 2.6.23) 

- tried to map nice value to timeslice (fixed allotment)

 Linux completely fair scheduler
- Nice value suggests priority used to assign runqueue
for job
 Time proportion varies based on # of jobs in runqueue

- with fewer jobs in runqueue, time proportion is larger

October 15, 2018 TCSS422: Operating Systems [Fall 2018]
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COMPLETELY FAIR SCHEDULER - 5

 Nice values become relative for determining time slices

 Proportion of CPU time to allocate is relative to other 
queued tasks

 Scheduler tracks vir tual run time in vruntime variable

 The task on a given runqueue (nice value) with the lowest 
vruntime is scheduled next

 struct sched_entity contains vruntime parameter

 Describes process execution time in nanoseconds

 Perfect scheduler 
achieve equal vruntime for all processes of same priority

October 15, 2018 TCSS422: Operating Systems [Fall 2018]
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COMPLETELY FAIR SCHEDULER - 6
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 More information:

 Man page: “man sched” : Describes Linux scheduling API

 http://manpages.ubuntu.com/manpages/bionic/man7/sched.
7.html

 https://www.kernel.org/doc/Documentation/scheduler/sched-
design-CFS.txt

 https://en.wikipedia.org/wiki/Completely_Fair_Scheduler

 See paper: The Linux Scheduler – a Decade of Wasted Cores

 http://www.ece.ubc.ca/~sasha/papers/eurosys16-final29.pdf

October 15, 2018 TCSS422: Operating Systems [Fall 2018]
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COMPLETELY FAIR SCHEDULER - 7

CHAPTER 26 -
CONCURRENCY:

AN INTRODUCTION

October 15, 2018 TCSS422: Operating Systems [Fall 2018]
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 Introduction to threads

 Race condition

 Critical section

 Thread API
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OBJECTIVES
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THREADS

©Alfred Park, http://randu.org/tutorials/threads

Single
Threaded
Process

Multiple
Threaded
Process

SHARED

 Enables a single process (program) to have multiple “workers”

 Supports independent path(s) of execution within a program
with shared memory …

 Each thread has its own Thread Control Block (TCB)
 PC, registers, SP, and stack

 Code segment, memory, and heap are shared

October 15, 2018 TCSS422: Operating Systems [Fall 2018]
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THREADS - 2

 Thread Control Block vs. Process Control Block

October 15, 2018 TCSS422: Operating Systems [Fall 2018]
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PROCESS AND THREAD METADATA
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SHARED ADDRESS SPACE

 Every thread has it’s own stack / PC
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THREAD CREATION EXAMPLE

int main() Thread 1 Thread 2
Starts running

Prints ‘main: begin’

Creates Thread 1

Creates Thread 2

Waits for T1

Runs

Prints ‘A’

Returns

Waits for T2

Runs

Prints ‘B’

Returns

Prints ‘main: end’

October 15, 2018 TCSS422: Operating Systems [Fall 2018]
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POSSIBLE ORDERINGS OF EVENTS

int main() Thread 1 Thread 2
Starts running

Prints ‘main: begin’

Creates Thread 1

Runs

Prints ‘A’

Returns

Creates Thread 2

Runs

Prints ‘B’

Returns

Waits for T1 Returns immediately

Waits for T2 Returns immediately

Prints ‘main: end’
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POSSIBLE ORDERINGS OF EVENTS - 2

int main() Thread 1 Thread 2
Starts running

Prints ‘main: begin’

Creates Thread 1

Creates Thread 2

Runs

Prints ‘B’

Returns

Waits for T1

Runs

Prints ‘A’

Returns

Waits for T2 Immediately returns

Prints ‘main: end’
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POSSIBLE ORDERINGS OF EVENTS - 3

What if execution order of
events in the program matters?

 Counter example

 A + B : ordering

 Counter: incrementing global variable by two threads

October 15, 2018 TCSS422: Operating Systems [Fall 2018]
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COUNTER EXAMPLE
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 What’s the difference between forks and threads?
 Forks: duplicate a process

 Think of CLONING - There will be two identical processes at the end

 Threads: no duplicate of code/heap, lightweight execution threads

October 15, 2018 TCSS422: Operating Systems [Fall 2018]
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PROCESSES VS. THREADS

 What is happening with our counter? 
 When counter=50, consider code: counter = counter + 1

 If synchronized, counter will = 52

October 15, 2018 TCSS422: Operating Systems [Fall 2018]
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RACE CONDITION

 Code that accesses a shared variable must not be 
concurrently executed by more than one thread

 Multiple active threads inside a cr it ical  section produce a 
race condition .

 Atomic execution (all code executed as a unit) must be 
ensured in cr itical sections
 These sections must be mutually exclusive

October 15, 2018 TCSS422: Operating Systems [Fall 2018]
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CRITICAL SECTION

 To demonstrate how critical section(s) can be executed 
“atomically -as a unit” Chapter 27 & beyond introduce locks

 Counter example revisited

October 15, 2018 TCSS422: Operating Systems [Fall 2018]
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LOCKS

CHAPTER 27 -
LINUX

THREAD API

October 15, 2018 TCSS422: Operating Systems [Fall 2018]
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 pthread_create

 thread: thread struct

 attr: stack size, scheduling priority…  (optional)

 start_routine: function pointer to thread routine

 arg: argument to pass to thread routine (optional)

October 15, 2018 TCSS422: Operating Systems [Fall 2018]
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THREAD CREATION
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PTHREAD_CREATE – PASS ANY DATA

 Here we “cast” the pointer to pass/return a primitive data type

October 15, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma L6.56

PASSING A SINGLE VALUE

Using this approach on your Ubuntu VM,
How large (in bytes) can the primitive data type be?

How large (in bytes) can the primitive data type 
be on a 32-bit operating system?

 thread: which thread?

 value_ptr: pointer to return value
type is dynamic / agnostic

 Returned values *must* be on the heap

 Thread stacks destroyed upon thread termination (join)

 Pointers to thread stack memory addresses are invalid 

May appear as gibberish or lead to crash (seg fault)

 Not all threads join – What would be Examples ??
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WAITING FOR THREADS TO FINISH
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struct myarg {
int a;
int b;

};

void *worker(void *arg)
{
struct myarg *input = (struct myarg *) arg;
printf("a=%d b=%d\n",input->a, input->b);
struct myarg output;
output.a = 1;
output.b = 2;
return (void *) &output;

}

int main (int argc, char * argv[])
{
pthread_t p1;
struct myarg args;
struct myarg *ret_args;
args.a = 10;
args.b = 20;
pthread_create(&p1, NULL, worker, &args);
pthread_join(p1, (void *)&ret_args);
printf("returned %d %d\n", ret_args->a, ret_args->b);
return 0;

}

What will this code do?

How can this code be fixed?

$ ./pthread_struct
a=10 b=20
Segmentation fault (core dumped)

Data on thread stack

October 15, 2018 TCSS422: Operating Systems [Fall 2018]
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struct myarg {
int a;
int b;

};

void *worker(void *arg)
{
struct myarg *input = (struct myarg *) arg;
printf("a=%d b=%d\n",input->a, input->b);
input->a = 1;
input->b = 2;
return (void *) &input;

}

int main (int argc, char * argv[])
{
pthread_t p1;
struct myarg args;
struct myarg *ret_args;
args.a = 10;
args.b = 20;
pthread_create(&p1, NULL, worker, &args);
pthread_join(p1, (void *)&ret_args);
printf("returned %d %d\n", ret_args->a, ret_args->b);
return 0;

}

$ ./pthread_struct
a=10 b=20
returned 1 2

How about this code?

 Casting 

 Suppresses compiler warnings when passing “typed” data
where (void) or (void *) is called for

 Example: uncasted capture in pthread_join
pthread_int.c: In function ‘main’:

pthread_int.c:34:20: warning: passing argument 2 of ‘pthread_join’ 
from incompatible pointer type [-Wincompatible-pointer-types]

pthread_join(p1, &p1val);

 Example: uncasted return
In file included from pthread_int.c:3:0:

/usr/include/pthread.h:250:12: note: expected ‘void **’ but argument 
is of type ‘int **’

extern int pthread_join (pthread_t __th, void **__thread_return);
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ADDING CASTS
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 pthread_join
int * p1val;

int * p2val;

pthread_join(p1, (void *)&p1val);

pthread_join(p2, (void *)&p2val);

 return from thread function
int * counterval = malloc(sizeof(int));

*counterval = counter;

return (void *) counterval;
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ADDING CASTS - 2

 pthread_mutex_t data type

 /usr/include/bits/pthread_types.h
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LOCKS

// Global Address Space
static volatile int counter = 0; 
pthread_mutex_t lock;

void *worker(void *arg)
{
int i;
for (i=0;i<10000000;i++)  {

int rc = pthread_mutex_lock(&lock);
assert(rc==0);
counter = counter + 1;
pthread_mutex_unlock(&lock);

}
return NULL;

}

 Ensure critical sections are executed atomically -as a unit
 Provides implementation of “Mutual Exclusion”

 API

 Example w/o initialization & error checking

 Blocks forever until lock can be obtained

 Enters critical section once lock is obtained
 Releases lock
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LOCKS - 2

 Assigning the constant

 API call:

 Initializes mutex with attributes specified by 2nd argument

 If NULL, then default attributes are used

 Upon initialization, the mutex is initialized and unlocked
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LOCK INITIALIZATION

 Error checking wrapper

 What if lock can’t be obtained?

 trylock – returns immediately (fails) if lock is unavailable

 timelock – tries to obtain a lock for a specified duration
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LOCKS - 3

 Condition variables support “signaling”
between threads

 pthread_cont_t datatype

 pthread_cond_wait()
 Puts thread to “sleep” (waits)    (THREAD is BLOCKED)
 Threads added to FIFO queue, lock is released 
 Waits (listens) for a “signal”   (NON-BUSY WAITING, no polling)
 When signal occurs, interrupt fires, wakes up first thread,

(THREAD is RUNNING), lock is provided to thread
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CONDITIONS AND SIGNALS
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 pthread_cond_signal()

 Called to send a “signal” to wake-up first thread in FIFO “wait” queue
 The goal is to unblock a thread to respond to the signal

 pthread_cond_broadcast()

 Unblocks all threads in FIFO “wait” queue, currently blocked on the 
specified condition variable

 Broadcast is used when all threads should wake-up for the signal

 Which thread is unblocked first?
 Determined by OS scheduler (based on priority)
 Thread(s) awoken based on placement order in FIFO wait queue
 When awoken threads acquire lock as in pthread_mutex_lock()
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CONDITIONS AND SIGNALS - 2

int pthread_cond_signal(pthread_cond_t * cond);

int pthread_cond_broadcast(pthread_cond_t * cond);

 Wait example:

 wait puts thread to sleep, releases lock

 when awoken, lock reacquired (but then released by this code)

 When initialized, another thread signals

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

pthread_mutex_lock(&lock);
while (initialized == 0)

pthread_cond_wait(&cond, &lock);
// Perform work that requires lock
a = a + b;
pthread_mutex_unlock(&lock);
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CONDITIONS AND SIGNALS - 3

State variable set, 
Enables other thread(s) 

to proceed above.

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

pthread_mutex_lock(&lock);
while (initialized == 0)

pthread_cond_wait(&cond, &lock);
// Perform work that requires lock
a = a + b;
pthread_mutex_unlock(&lock);

 Why do we wait inside a while loop?

 The while ensures upon awakening the condition is rechecked
 A signal is raised, but the pre-conditions required to proceed may 

have not been met.  **MUST CHECK STATE VARIABLE**

 Without checking the state variable the thread may proceed to 
execute when it should not.  (e.g. too early)
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CONDITION AND SIGNALS - 4

 Compilation
 gcc –pthread pthread.c –o pthread

 Requires explicitly linking the library with compiler flag

 Use makefile to provide compiler arguments

 List of pthread manpages
 man –k pthread
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PTHREADS LIBRARY

 Example builds multiple single file programs
 All target

 pthread_mult
 Example if multiple source files should produce a single executable

 clean target
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SAMPLE MAKEFILE

CC=gcc
CFLAGS=-pthread -I. -Wall

binaries=pthread pthread_int pthread_lock_cond pthread_struct

all: $(binaries)

pthread_mult: pthread.c pthread_int.c
$(CC) $(CFLAGS) $^ -o $@

clean:
$(RM) -f $(binaries) *.o

CHAPTER 28 –
LOCKS
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 Ensure critical section(s) are executed atomically -as a unit
 Only one thread is allowed to execute a critical section at any given 

time

 Ensures the code snippets are “mutually exclusive”

 Protect a global counter:

 A “critical section”:
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LOCKS

 Lock variables are called “MUTEX”

 Short for mutual exclusion (that’s what they guarantee)

 Lock variables store the state of the lock

 States

 Locked  (acquired or held)

 Unlocked (available or free)

 Only 1 thread can hold a lock
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LOCKS - 2

 pthread_mutex_lock(&lock)

 Try to acquire lock

 If lock is free, calling thread will acquire the lock

 Thread with lock enters critical section
 Thread “owns” the lock

 No other thread can acquire the lock before the owner 
releases it.
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LOCKS - 3

 Program can have many mutex (lock) variables to 
“serialize” many critical sections

 Locks are also used to protect data structures

 Prevent multiple threads from changing the same data 
simultaneously

 Programmer can make sections of code “granular”
 Fine grained – means just one grain of sand at a time through an 

hour glass

 Similar to relational database transactions
 DB transactions prevent multiple users from modifying a table, 

row, field
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LOCKS - 4

 Is this code a good example of “fine grained parallelism”?
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FINE GRAINED?

pthread_mutex_lock(&lock);
a = b++;
b = a * c;
*d = a + b +c;
FILE * fp = fopen ("file.txt", “r");
fscanf(fp, "%s %s %s %d", str1, str2, str3, &e);
ListNode *node = mylist->head;
Int i=0
while (node) {
node->title = str1;
node->subheading = str2;
node->desc = str3;
node->end = *e;
node = node->next;
i++

}
e = e – i;
pthread_mutex_unlock(&lock); 
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FINE GRAINED PARALLELISM

pthread_mutex_lock(&lock_a);
pthread_mutex_lock(&lock_b);
a = b++;
pthread_mutex_unlock(&lock_b); 
pthread_mutex_unlock(&lock_a); 

pthread_mutex_lock(&lock_b);
b = a * c;
pthread_mutex_unlock(&lock_b); 

pthread_mutex_lock(&lock_d);
*d = a + b +c;
pthread_mutex_unlock(&lock_d); 

FILE * fp = fopen ("file.txt", “r");
pthread_mutex_lock(&lock_e);
fscanf(fp, "%s %s %s %d", str1, str2, str3, &e);
pthread_mutex_unlock(&lock_e); 

ListNode *node = mylist->head;
int i=0 . . .
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 Correctness

 Does the lock work?  

 Are critical sections mutually exclusive?  
(atomic-as a unit?)

 Fairness

 Are threads competing for a lock have a fair chance of 
acquiring it?

 Overhead
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EVALUATING LOCK IMPLEMENTATIONS

 Locks require hardware support

 To minimize overhead, ensure fairness and correctness

 Special “atomic-as a unit” instructions to support lock 
implementation

 Atomic-as a unit exchange instruction 
 XCHG

 Compare and exchange instruction
 CMPXCHG

 CMPXCHG8B

 CMPXCHG16B
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BUILDING LOCKS

 To implement mutual exclusion
 Disable interrupts upon entering critical sections

 Any thread could disable system-wide interrupt
 What if lock is never released?

 On a multiprocessor processor each CPU has its own interrupts
 Do we disable interrupts for all cores simultaneously?

 While interrupts are disabled, they could be lost
 If not queued…
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HISTORICAL IMPLEMENTATION
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SPIN LOCK IMPLEMENTATION

 Operate without atomic-as a unit assembly instructions

 “Do-it-yourself” Locks

 Is this lock implementation:  Correct?  Fair?  Performant?

 Correctness requires luck…  (e.g. DIY lock is incorrect)

 Here both threads have “acquired” the lock simultaneously 
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DIY: CORRECT?

 What is wrong with while(<cond>);  ?

 Spin-waiting wastes time actively waiting for another thread

 while (1); will “peg” a CPU core at 100%
 Continuously loops, and evaluates mutex->flag value…

 Generates heat…
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DIY: PERFORMANT?

void lock(lock_t *mutex)
{
while (mutex->flag == 1); // while lock is unavailable, wait…
mutex->flag = 1;

}
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 C implementation: not atomic
 Adds a simple check to basic spin lock

 One a single core CPU system with preemptive scheduler:

 Try this…

 lock() method checks that TestAndSet doesn’t return 1

 Comparison is in the caller

 Single core systems are becoming scarce

 Try on a one-core VM
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TEST-AND-SET INSTRUCTION

 Requires a preemptive scheduler on single CPU core system

 Lock is never released without a context switch

 1-core VM: occasionally will deadlock, doesn’t miscount
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DIY: TEST-AND-SET - 2

 Correctness:
 Spin locks guarantee: critical sections won’t be executed 

simultaneously by (2) threads

 Fairness:
 No fairness guarantee.  Once a thread has a lock, nothing forces it to 

relinquish it…

 Performance:
 Spin locks perform “busy waiting”

 Spin locks are best for short periods of waiting

 Performance is slow when multiple threads share a CPU
 Especially for long periods 
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SPIN LOCK EVALUATION

 Checks that the lock variable has the expected value FIRST, 
before changing its value
 If so, make assignment

 Return value at location

 Adds a comparison to TestAndSet

 Useful for wait-free synchronization
 Supports implementation of shared data structures which can be 

updated atomically (as a unit) using the HW support 
CompareAndSwap instruction

 Shared data structure updates become “wait-free” 

 Upcoming in Chapter 32
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COMPARE AND SWAP

 Compare and Swap

 Spin lock usage

 X86 provides “cmpxchgl” compare-and-exchange instruction
 cmpxchg8b

 cmpxchg16b
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COMPARE AND SWAP

1-core VM:
Count is correct, no deadlock

 Cooperative instructions used together to support 
synchronization on RISC systems

 No support on x86 processors
 Supported by RISC: Alpha, PowerPC, ARM

 Load-linked (LL)
 Loads value into register
 Same as typical load
 Used as a mechanism to track competition

 Store-conditional (SC)
 Performs “mutually exclusive” store
 Allows only one thread to store value
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TWO MORE “LOCK BUILDING”
CPU INSTRUCTIONS
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 LL instruction loads pointer value (ptr)

 SC only stores if the load link pointer has not changed

 Requires HW support

 C code is psuedo code
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LL/SC LOCK

 Two instruction lock
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LL/SC LOCK - 2

QUESTIONS


