

FEEDBACK FROM 10/8

- Why is interrupting an interrupt needed?
- What is a preemptive kernel (with respect to interrupts)?
- What is the importance of job preemption for CPU scheduling?
- Difference between turnaround time and execution time?
- Importance of all the scheduling metrics combined
 - Turnaround time, Response time, Jain's fairness index

October 10, 2018

TCSS422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma

FEEDBACK - 2

- Does the importance of a job matter when scheduling?
 - Instead of importance, operating systems track Job **PRIORITY**
 - The Linux "NICE" value provides a suggestion on which jobs should be scheduled
- Linux (NICE) value
- Provides a suggestion regarding job priority
- Does not map directly to Process PRIORITY
- Values from -20 (high priority) to 19 (low priority)

October 10, 2018

TCSS422: Operating Systems [Fall 2018] School of Engineering and Technology, University of Washington - Tacoma

L5.3

FEEDBACK - 3

- ps ax -o pid,ni,pri,cmd
- htop
- Linux Job priority value
- System maintains this value, influence by NICE value
- Not user editable
- Values: (higher is higher) RT (Real Time), 0 to 99 (usr/krn), and 100 to 139 (sys?)

October 10, 2018

TCSS422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma

FEEDBACK - 4

- What sets the OS context switch time quantum?
 - Typically ~ 10ms
- How does job priority factor into fairness?
 - Fairness is generally considered among jobs of the same priority
 - Jain's fairness index is only calculated among jobs of the same priority level
 - Higher priority Job(s) take precedence over lower priority jobs

October 10, 2018

TCSS422: Operating Systems [Fall 2018] School of Engineering and Technology, University of Washington - Tacoma

L5.5

OBJECTIVES

- C Tutorial
- Quiz 1 Active Reading
- Program 1 MASH Shell
- CPU Scheduling:
- Chapter 7 Introduction to Scheduling
- Chapter 8 Multi-level Feedback Queue
- Chapter 9 Proportional Share Scheduler
- Linux Completely Fair Scheduler (CFS)

TCSS422: Operating Systems [Fall 2018] October 10, 2018 School of Engineering and Technology, University of Washington - Tacoma

SCHEDULING METRICS

- Metrics: A standard measure to quantify to what degree a system possesses some property. Metrics provide <u>repeatable</u> techniques to quantify and compare systems.
- Measurements are the numbers derived from the application of metrics
- Scheduling Metric #1: Turnaround time
- The time at which the job completes minus the time at which the job arrived in the system

$$T_{turnaround} = T_{completion} - T_{arrival}$$

How is turnaround time different than execution time?

October 10, 2018

TCSS422: Operating Systems [Fall 2018] School of Engineering and Technology, University of Washington - Tacoma

L5.9

SCHEDULING METRICS - 2

- Scheduling Metric #2: Fairness
 - Jain's fairness index
 - Quantifies if jobs receive a fair share of system resources

$$\mathcal{J}(x_1,x_2,\ldots,x_n) = rac{(\sum_{i=1}^n x_i)^2}{n \cdot \sum_{i=1}^n x_i^2}$$

- n processes
- x_i is time share of each process
- worst case = 1/n
- best case = 1
- Consider n=3, worst case = .333, best case=1
- With n=3 and x_1 =.2, x_2 =.7, x_3 =.1, fairness=.62
- With n=3 and x_1 =.33, x_2 =.33, x_3 =.33, fairness=1

October 10, 2018

TCSS422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma

MULTI-LEVEL FEEDBACK QUEUE

- Objectives:
 - Improve turnaround time: Run shorter jobs first
 - Minimize response time: Important for interactive jobs (UI)
- Achieve without a priori knowledge of job length

October 10, 2018

TCSS422: Operating Systems [Fall 2018] School of Engineering and Technology, University of Washington - Tacoma

L5.23

MLFQ - 2 **Round-Robin** within a Queue ■ Multiple job queues [High Priority] Q8 Adjust job priority based on observed behavior Q7 ■ Interactive Jobs Q6 Frequent I/O → keep priority high Q5 Interactive jobs require fast response time (GUI/UI) Q4 -Batch Jobs Q3 Require long periods of CPU Q2 utilization Keep priority low [Low Priority] Q1 -TCSS422: Operating Systems [Fall 2018] October 10, 2018 L5.24 School of Engineering and Technology, University of Washington - Tacoma

PRACTICAL EXAMPLE

- Oracle Solaris MLFQ implementation
 - 60 Queues →
 w/ slowly increasing time slice (high to low priority)
 - Provides sys admins with set of editable table(s)
 - Supports adjusting time slices, boost intervals, priority changes, etc.
- Advice
 - Provide OS with hints about the process
 - Nice command → Linux

October 10, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L5.35

MLFQ RULE SUMMARY

- The refined set of MLFQ rules:
- Rule 1: If Priority(A) > Priority(B), A runs (B doesn't).
- Rule 2: If Priority(A) = Priority(B), A & B run in RR.
- Rule 3: When a job enters the system, it is placed at the highest priority.
- Rule 4: Once a job uses up its time allotment at a given level (regardless of how many times it has given up the CPU), its priority is reduced(i.e., it moves down on queue).
- Rule 5: After some time period S, move all the jobs in the system to the topmost queue.

October 10, 2018

TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

Jackson deploys a 3-level MLFQ scheduler. The time slice is 1 for high priority jobs, 2 for medium priority, and 4 for low priority. This MLFQ scheduler performs a Priority Boost every 6 timer units. When the priority boost fires, the current job is preempted, and the next scheduled job is run in round-robin order.

Job Arrival Time Job Length

 Job
 Arrival Time
 Job Length

 A
 T=0
 4

 B
 T=0
 16

 C
 T=0
 8

(11 points) Show a scheduling graph for the MLFQ scheduler for the jobs above. Draw vertical lines for key events and be sure to label the X-axis times as in the example. Please draw clearly. An unreadable graph will loose points.

HIGH |
| MED |
| LOW |

