
TCSS 422 A – Fall 2018
School of Engineering and Technology,

10/8/2018

L4.1Slides by Wes J. Lloyd

October 8, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

Processes, Process API,
Limited Direct Execution

Wes J. Lloyd
School of Engineering and Technology,
University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 Average – 6.419

 Min – 3

 Max/4th quartile – 8

 2nd & 3rd Quarti le– 7

 1st quarti le – 6

 Mode – 7

 Std. Dev. – 1.33

October 8, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L4.2

QUIZ 0 SCORES

TCSS 422 A – Fall 2018
School of Engineering and Technology,

10/8/2018

L4.2Slides by Wes J. Lloyd

 Real world example of “a child of a parent of a process”

 … when do processes have children?

 Check process ID of BASH shell:
 echo $$

 Check parent’s process ID:
 echo $PPID

 Exec launches a different process or program
 What is the difference between a process and a program?

 Exec does not create a new process. It transfers control:
Man page: “The exec() family of functions replaces the current
process image with a new process image.”

October 8, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L4.3

FEEDBACK FROM 10/3

 Can you create more than 1 fork?
 i.e. call fork() more than one time in a program

 If you create more than one fork(), how do you handle them?

 How would you use fork in a potential application?

 Code examples online under “Schedule” tab:

October 8, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L4.4

FEEDBACK - 2

TCSS 422 A – Fall 2018
School of Engineering and Technology,

10/8/2018

L4.3Slides by Wes J. Lloyd

 Most of the Linux calls are stil l unclear

 Is it possible to record the lectures?

October 8, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L4.5

FEEDBACK - 3

 C Tutorial

 Quiz 1 – Active Reading

 Chapter 6 – Limited Direct Execution – cont’d

 Chapter 7 – Introduction to Scheduling

 Chapter 8 – Multi-level Feedback Queue

October 8, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L4.6

OBJECTIVES

TCSS 422 A – Fall 2018
School of Engineering and Technology,

10/8/2018

L4.4Slides by Wes J. Lloyd

CH. 6:
LIMITED DIRECT

EXECUTION

October 8, 2018
TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma L4.7

 As per Chapter 6, What is DIRECT Execution?

 What is Limited Direct Execution?

 What is a context switch?

 What is a system call?

 What is an operating system “Trap”?

 What is the difference between a maskable and a non-
maskable interrupt?

October 8, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L4.8

CHAPTER 6 REVIEW

TCSS 422 A – Fall 2018
School of Engineering and Technology,

10/8/2018

L4.5Slides by Wes J. Lloyd

 With direct execution:

How does the OS stop a program from running, and switch
to another to support time sharing?

How do programs share disks and perform I/O if they are
given direct control? Do they know about each other?

With direct execution, how can dynamic memory structures
such as linked lists grow over time?

October 8, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L4.9

DIRECT EXECUTION - 2

 Too little control:
 No security

 No time sharing

 Too much control:
 Too much OS overhead

 Poor performance for compute & I/O

 Complex APIs (system calls), difficult to use

October 8, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L4.10

CONTROL TRADEOFF

TCSS 422 A – Fall 2018
School of Engineering and Technology,

10/8/2018

L4.6Slides by Wes J. Lloyd

October 8, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L4.11

CONTEXT SWITCHING OVERHEAD

 OS implements LDE to support time/resource sharing

 Limited direct execution means “only limited” processes
can execute DIRECTLY on the CPU in trusted mode

 TRUSTED means the process is trusted, and it can do
anything… (e.g. it is a system / kernel level process)

 Enabled by protected (safe) control transfer

 CPU supported context switch

 Provides data isolation

October 8, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L4.12

LIMITED DIRECT EXECUTION

TCSS 422 A – Fall 2018
School of Engineering and Technology,

10/8/2018

L4.7Slides by Wes J. Lloyd

 Implement restricted “OS” operations

 Kernel exposes key functions through an API:

 Device I/O (e.g. file I/O)

 Task swapping: context switching between processes

Memory management/allocation: malloc()

 Creating/destroying processes

October 8, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L4.13

SYSTEM CALLS

 Trap: any transfer to kernel mode

 Three kinds of traps
 System call: (planned) user  kernel
 SYSCALL for I/O, etc.

 Exception: (error) user  kernel
 Div by zero, page fault, page protection error

 Interrupt: (event) user  kernel
 Non-maskable vs. maskable
 Keyboard event, network packet arrival, timer ticks
 Memory parity error (ECC), hard drive failure

October 8, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L4.14

TRAPS:
SYSTEM CALLS, EXCEPTIONS, INTERRUPTS

TCSS 422 A – Fall 2018
School of Engineering and Technology,

10/8/2018

L4.8Slides by Wes J. Lloyd

 How/when should the OS regain control of the CPU to
switch between processes?

 Cooperative multitasking (mostly pre 32-bit)

 < Windows 95, Mac OSX

 Opportunistic: running programs must give up control
 User programs must call a special yield system call

 When performing I/O

 Illegal operations

 (POLLEV)
What problems could you for see with this approach?

October 8, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L4.15

MULTITASKING

 How/when should the OS regain control of the CPU to
switch between processes?

 Cooperative multitasking (mostly pre 32-bit)

 < Windows 95, Mac OSX

 Opportunistic: running programs must give up control
 User programs must call a special yield system call

 When performing I/O

 Illegal operations

 (POLLEV)
What problems could you for see with this approach?

October 8, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L4.16

MULTITASKING

A process gets stuck in an infinite loop.
 Reboot the machine

TCSS 422 A – Fall 2018
School of Engineering and Technology,

10/8/2018

L4.9Slides by Wes J. Lloyd

October 8, 2018
TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma L4.17

What problems exist for regaining the control of
the CPU with cooperative multitasking OSes?

October 8, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L4.18

QUESTION: MULTITASKING

TCSS 422 A – Fall 2018
School of Engineering and Technology,

10/8/2018

L4.10Slides by Wes J. Lloyd

 Preemptive multitasking (32 & 64 bit OSes)

 >= Mac OSX, Windows 95+

 Timer interrupt
 Raised at some regular interval (in ms)

 Interrupt handling
1. Current program is halted

2. Program states are saved

3. OS Interrupt handler is run (kernel mode)

 (PollEV) What is a good interval for the timer interrupt?

October 8, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L4.19

MULTITASKING - 2

 Preemptive multitasking (32 & 64 bit OSes)

 >= Mac OSX, Windows 95+

 Timer interrupt
 Raised at some regular interval (in ms)

 Interrupt handling
1. Current program is halted

2. Program states are saved

3. OS Interrupt handler is run (kernel mode)

 (PollEV) What is a good interval for the timer interrupt?

October 8, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L4.20

MULTITASKING - 2

A timer interrupt gives OS the ability to
run again on a CPU.

TCSS 422 A – Fall 2018
School of Engineering and Technology,

10/8/2018

L4.11Slides by Wes J. Lloyd

October 8, 2018
TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma L4.21

 For an OS that uses a system timer to force
arbitrary context switches to share the CPU, what
is a good value (in seconds) for the timer
interrupt?

October 8, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L4.22

QUESTION: TIME SLICE

TCSS 422 A – Fall 2018
School of Engineering and Technology,

10/8/2018

L4.12Slides by Wes J. Lloyd

 Preemptive multitasking init iates “trap”
into the OS code to determine:

 Whether to continue running the current process,
or switch to a dif ferent one.

 If the decision is made to switch, the OS performs a context
switch swapping out the current process for a new one.

October 8, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L4.23

CONTEXT SWITCH

1. Save register values of the current process to its kernel
stack

 General purpose registers

 PC: program counter (instruction pointer)

 kernel stack pointer

2. Restore soon-to-be-executing process from its kernel
stack

3. Switch to the kernel stack for the soon-to-be-executing
process

October 8, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L4.24

CONTEXT SWITCH - 2

TCSS 422 A – Fall 2018
School of Engineering and Technology,

10/8/2018

L4.13Slides by Wes J. Lloyd

October 8, 2018
TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma L4.25

October 8, 2018
TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma L4.26

Context Switch

TCSS 422 A – Fall 2018
School of Engineering and Technology,

10/8/2018

L4.14Slides by Wes J. Lloyd

 What happens if during an interrupt (trap to kernel
mode), another interrupt occurs?

 Linux

 < 2.6 kernel: non-preemptive kernel

 >= 2.6 kernel: preemptive kernel

October 8, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L4.27

INTERRUPTED INTERRUPTS

Use “locks” as markers of regions of non-
preemptibility (non-maskable interrupt)

Preemption counter (preempt_count)
 begins at zero

 increments for each lock acquired (not safe to preempt)

 decrements when locks are released

 Interrupt can be interrupted when preempt_count=0
 It is safe to preempt (maskable interrupt)

 the interrupt is more important

October 8, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L4.28

PREEMPTIVE KERNEL

TCSS 422 A – Fall 2018
School of Engineering and Technology,

10/8/2018

L4.15Slides by Wes J. Lloyd

CHAPTER 7-
SCHEDULING:

INTRODUCTION

October 8, 2018
TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma L4.29

 For simplicity, consider job scheduling with l imitations:
 Each job requires the same CPU time

 All jobs arrive at the same time

 All jobs only use the CPU (no I/O)

 The run-time of each job is known a priori

October 8, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L4.30

SCHEDULING INTRODUCTION

TCSS 422 A – Fall 2018
School of Engineering and Technology,

10/8/2018

L4.16Slides by Wes J. Lloyd

 Metrics: A standard measure to quantify to what degree a
system possesses some property. Metrics provide repeatable
techniques to quantify and compare systems.

 Measurements are the numbers derived from the application
of metrics

 Scheduling Metric #1: Turnaround time

 The time at which the job completes minus the time at which
the job arrived in the system

 How is turnaround time different than execution time?

October 8, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L4.31

SCHEDULING METRICS

𝑻𝒕𝒖𝒓𝒏𝒂𝒓𝒐𝒖𝒏𝒅 = 𝑻𝒄𝒐𝒎𝒑𝒍𝒆𝒕𝒊𝒐𝒏 − 𝑻𝒂𝒓𝒓𝒊𝒗𝒂𝒍

 Scheduling Metric #2: Fairness
 Jain’s fairness index
 Quantifies if jobs receive a fair share of system resources

 n processes
 xi is t ime share of each process
 worst case = 1/n
 best case = 1

 Consider n=3, worst case = .333, best case=1
 With n=3 and x1=.2, x2=.7, x3=.1, fairness=.62
 With n=3 and x1=.33, x2=.33, x3=.33, fairness=1

October 8, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L4.32

SCHEDULING METRICS - 2

TCSS 422 A – Fall 2018
School of Engineering and Technology,

10/8/2018

L4.17Slides by Wes J. Lloyd

 FIFO: first in, first out
 Very simple, easy to implement

 Consider
 3 x 10sec jobs, arrival: A B C

October 8, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L4.33

SCHEDULERS

𝑨𝒗𝒆𝒓𝒂𝒈𝒆 𝒕𝒖𝒓𝒏𝒂𝒓𝒐𝒖𝒏𝒅 𝒕𝒊𝒎𝒆 =
𝟏𝟎 + 𝟐𝟎 + 𝟑𝟎

𝟑
= 𝟐𝟎 𝒔𝒆𝒄

 FIFO with different jobs lengths

 Consider
 Alen=100sec, Blen=10sec, Clen=10sec

October 8, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L4.34

FIFO: CONVOY EFFECT

𝑨𝒗𝒆𝒓𝒂𝒈𝒆 𝒕𝒖𝒓𝒏𝒂𝒓𝒐𝒖𝒏𝒅 𝒕𝒊𝒎𝒆 =
𝟏𝟎𝟎 + 𝟏𝟏𝟎 + 𝟏𝟐𝟎

𝟑
= 𝟏𝟏𝟎 𝒔𝒆𝒄

TCSS 422 A – Fall 2018
School of Engineering and Technology,

10/8/2018

L4.18Slides by Wes J. Lloyd

 Given that we know execution times in advance:
 Run in order of duration, shortest to longest

 Non preemptive scheduler

 This is not realistic

 Arrival: A B C

October 8, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L4.35

SJF: SHORTEST JOB FIRST

𝑨𝒗𝒆𝒓𝒂𝒈𝒆 𝒕𝒖𝒓𝒏𝒂𝒓𝒐𝒖𝒏𝒅 𝒕𝒊𝒎𝒆 =
𝟏𝟎 + 𝟐𝟎 + 𝟏𝟐𝟎

𝟑
= 𝟓𝟎 𝒔𝒆𝒄

 If jobs arrive at any time:

 A @ t=0sec, B @ t=10sec, C @ t=10sec

October 8, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L4.36

SJF: WITH RANDOM ARRIVAL

𝑨𝒗𝒆𝒓𝒂𝒈𝒆 𝒕𝒖𝒓𝒏𝒂𝒓𝒐𝒖𝒏𝒅 𝒕𝒊𝒎𝒆 =
𝟏𝟎𝟎 + 𝟏𝟏𝟎 − 𝟏𝟎 + (𝟏𝟐𝟎 − 𝟏𝟎)

𝟑
= 𝟏𝟎𝟑. 𝟑𝟑 𝒔𝒆𝒄

TCSS 422 A – Fall 2018
School of Engineering and Technology,

10/8/2018

L4.19Slides by Wes J. Lloyd

 Add preemption to the Shortest Job First scheduler
 Also called preemptive shortest job first (PSJF)

 When a new job enters the system:
 Of all jobs, Which has the least time left?

 PREMPT job execution, and schedule the new shortest job

 More realistic, but how do we know execution time in
advance?
 Oracle: All knowing one

 Only schedule static (fixed size) batch workloads

 Can we predict execution time?

October 8, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L4.37

STCF – SHORTEST TIME TO COMPLETION FIRST

 Consider:
 Alen=100 Aarrival=0

 Blen=10, Barrival=10, Clen=10, Carrival=10

October 8, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L4.38

STCF - 2

𝑨𝒗𝒆𝒓𝒂𝒈𝒆 𝒕𝒖𝒓𝒏𝒂𝒓𝒐𝒖𝒏𝒅 𝒕𝒊𝒎𝒆 =
(𝟏𝟐𝟎 − 𝟎) + 𝟐𝟎 − 𝟏𝟎 + (𝟑𝟎 − 𝟏𝟎)

𝟑
= 𝟓𝟎 𝒔𝒆𝒄

TCSS 422 A – Fall 2018
School of Engineering and Technology,

10/8/2018

L4.20Slides by Wes J. Lloyd

 Scheduling Metric #3: Response Time

 Time from when job arrives unti l it star ts execution

 STCF, SJF, FIFO
 can perform poorly with respect to response time

October 8, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L4.39

𝑻𝒓𝒆𝒔𝒑𝒐𝒏𝒔𝒆 = 𝑻𝒇𝒊𝒓𝒔𝒕𝒓𝒖𝒏 − 𝑻𝒂𝒓𝒓𝒊𝒗𝒂𝒍

SCHEDULING METRICS - 3

What scheduling algorithm(s) can help
minimize response time?

October 8, 2018
TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma L4.40

TCSS 422 A – Fall 2018
School of Engineering and Technology,

10/8/2018

L4.21Slides by Wes J. Lloyd

 Run each job awhile, then switch to another distr ibuting the
CPU evenly (fairly)

 Scheduling Quantum
is called a t ime slice

 Time slice must be
a multiple of the
timer interrupt
period.

October 8, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L4.41

RR: ROUND ROBIN

Scheduling
Quantum = 5 seconds

RR is fair, but performs poorly on metrics
such as turnaround time

 ABC arrive at time=0, each run for 5 seconds

October 8, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L4.42

RR EXAMPLE

𝑻𝒂𝒗𝒆𝒓𝒂𝒈𝒆 𝒓𝒆𝒔𝒑𝒐𝒏𝒔𝒆 =
𝟎 + 𝟓 + 𝟏𝟎

𝟑
= 𝟓𝒔𝒆𝒄

𝑻𝒂𝒗𝒆𝒓𝒂𝒈𝒆 𝒓𝒆𝒔𝒑𝒐𝒏𝒔𝒆 =
𝟎 + 𝟏 + 𝟐

𝟑
= 𝟏𝒔𝒆𝒄

OVERHEAD not
considered

TCSS 422 A – Fall 2018
School of Engineering and Technology,

10/8/2018

L4.22Slides by Wes J. Lloyd

 Time slice impact:
Turnaround time (for earlier example):

ts(1,2,3,4,5)=14,14,13,14,10
Fairness: round robin is always fair, J=1

October 8, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L4.43

ROUND ROBIN: TRADEOFFS

Fast Response Time Slow Response Time

High overhead from
context switching

Low overhead from
context switching

Short Time Slice Long Time Slice

 STCF scheduler
 A: CPU=50ms, I/O=40ms, 10ms intervals

 B: CPU=50ms, I/O=0ms

 Consider A as 10ms subjobs (CPU, then I/O)

 Without considering I/O:

October 8, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L4.44

SCHEDULING WITH I/O

CPU utilization= 100/140=71%

TCSS 422 A – Fall 2018
School of Engineering and Technology,

10/8/2018

L4.23Slides by Wes J. Lloyd

 When a job initiates an I/O request

 A is blocked, waits for I/O to compute, frees CPU

 STCF scheduler assigns B to CPU

 When I/O completes  raise interrupt

 Unblock A, STCF goes back to executing A: (10ms sub-job)

October 8, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L4.45

SCHEDULING WITH I/O - 2

Cpu utilization = 100/100=100%

October 8, 2018
TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma L4.46

TCSS 422 A – Fall 2018
School of Engineering and Technology,

10/8/2018

L4.24Slides by Wes J. Lloyd

CHAPTER 8 –
MULTI-LEVEL FEEDBACK

QUEUE (MLFQ) SCHEDULER

October 8, 2018
TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma L4.47

Objectives:

 Improve turnaround time:
Run shorter jobs first

Minimize response time:
Important for interactive jobs (UI)

Achieve without a priori knowledge of job length

October 8, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L4.48

MULTI-LEVEL FEEDBACK QUEUE

TCSS 422 A – Fall 2018
School of Engineering and Technology,

10/8/2018

L4.25Slides by Wes J. Lloyd

 Multiple job queues

 Adjust job priority based on
observed behavior

 Interactive Jobs
 Frequent I/O  keep priority high

 Interactive jobs require fast
response time (GUI/UI)

 Batch Jobs
 Require long periods of CPU

utilization

 Keep priority low

October 8, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L4.49

MLFQ - 2 Round-Robin
within a Queue

 New arriving jobs are placed into highest priority queue

 If a job uses its entire time slice, priority is reduced (↓)

 Jobs appears CPU-bound (“batch” job), not interactive (GUI/UI)

 If a job relinquishes the CPU for I/O priority stays the same

October 8, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L4.50

MLFQ: DETERMINING JOB PRIORITY

MLFQ approximates SJF

TCSS 422 A – Fall 2018
School of Engineering and Technology,

10/8/2018

L4.26Slides by Wes J. Lloyd

 Three-queue scheduler, time slice=10ms

October 8, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L4.51

MLFQ: LONG RUNNING JOB

Priority

 Aarrival_time =0ms, Arun_time=200ms,

 Brun_time =20ms, Barrival_time =100ms

October 8, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L4.52

MLFQ: BATCH AND INTERACTIVE JOBS

Priority

Scheduling multiple jobs (ms)

TCSS 422 A – Fall 2018
School of Engineering and Technology,

10/8/2018

L4.27Slides by Wes J. Lloyd

 Continuous interactive job (B) with long running batch job (A)
 Low response time is good for B

 A continues to make progress

October 8, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L4.53

MLFQ: BATCH AND INTERACTIVE - 2

The MLFQ approach keeps interactive job(s) at the highest priority

Starvation

October 8, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L4.54

MLFQ: ISSUES

TCSS 422 A – Fall 2018
School of Engineering and Technology,

10/8/2018

L4.28Slides by Wes J. Lloyd

 Gaming the scheduler

 Issue I/O operation at 99% completion of the time slice

 Keeps job priority fixed – never lowered

 Job behavioral change

 CPU/batch process becomes an interactive process

October 8, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L4.55

MLFQ: ISSUES - 2

Priority becomes stuck

 Priority Boost

 Reset all jobs to topmost queue after some time interval S

October 8, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma L4.56

RESPONDING TO BEHAVIOR CHANGE

Starvation

TCSS 422 A – Fall 2018
School of Engineering and Technology,

10/8/2018

L4.29Slides by Wes J. Lloyd

 With priority boost

 Prevents starvation

October 8, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L4.57

RESPONDING TO BEHAVIOR CHANGE - 2

 Improved time accounting:
 Track total job execution time in the queue

 Each job receives a fixed time allotment

 When allotment is exhausted, job priority is lowered

October 8, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L4.58

PREVENTING GAMING

TCSS 422 A – Fall 2018
School of Engineering and Technology,

10/8/2018

L4.30Slides by Wes J. Lloyd

 Consider the tradeoffs:
 How many queues?

 What is a good time slice?

 How often should we “Boost” priority of jobs?

 What about different time slices to different queues?

October 8, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L4.59

MLFQ: TUNING

 Oracle Solaris MLFQ implementation

 60 Queues 
w/ slowly increasing time slice (high to low priority)

 Provides sys admins with set of editable table(s)

 Supports adjusting time slices, boost intervals, priority
changes, etc.

 Advice

 Provide OS with hints about the process

 Nice command  Linux

October 8, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L4.60

PRACTICAL EXAMPLE

TCSS 422 A – Fall 2018
School of Engineering and Technology,

10/8/2018

L4.31Slides by Wes J. Lloyd

 The refined set of MLFQ rules:

 Rule 1: If Priority(A) > Priority(B), A runs (B doesn’t).

 Rule 2: If Priority(A) = Priority(B), A & B run in RR.

 Rule 3: When a job enters the system, it is placed at the
highest priority.

 Rule 4: Once a job uses up its time allotment at a given
level (regardless of how many times it has given up the
CPU), its priority is reduced(i.e., it moves down on queue).

 Rule 5: After some time period S, move all the jobs in the
system to the topmost queue.

October 8, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L4.61

MLFQ RULE SUMMARY

October 8, 2018
TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma L6.62

TCSS 422 A – Fall 2018
School of Engineering and Technology,

10/8/2018

L4.32Slides by Wes J. Lloyd

QUESTIONS

