TCSS 422 A - Fall 2018
School of Engineering and Technology,

TCSS 422: OPERATING SYSTEMS

Processes, Process API,
Limited Direct Execution

Wes J. Lloyd
School of Engineering and Technology,
University of Washington - Tacoma

TCSS422: Operating Systems [Fall 2018]

Cctobens 2018 School of Engineering and Technology, University of Washington il Tacoma

QUIZ 0 SCORES

16

= Average - 6.419 -

= Min - 3
® Max/4th quartile - 8

10
m 2nd & 3rd Quartile- 7
m 1st quartile - 6
= Mode - 7 I
® Std. Dev. - 1.33 . .
8 . T 6 .5 4 3

12

(=T ST =2 =]

2

M # of quiz scores

TCSS422: Operating Systems [Fall 2018]

October 8, 2018 School of Engineering and Technology, University of Washington - Tacoma

L4.2

Slides by Wes J. Lloyd

10/8/2018

L4.1

TCSS 422 A — Fall 2018

School of Engineering and Technology,

Slides by Wes J.

® Real world example of “a child of a parent of a process”

FEEDBACK FROM 10/3

® .. when do processes have children?

® Check process ID of BASH shell:

= echo $%

® Check parent’s process ID:
= echo $PPID

®m Exec launches a different process or program

= What is the difference between a process and a program?

= Exec does not create a new process. It transfers control:
Man page: “The exec() family of functions replaces the current

process image with a new process image.”

October 8, 2018

TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

4.3

FEEDBACK - 2

® Can you create more than 1 fork?
= j.e. call fork() more than one time in a program

® |f you create more than one fork(), how do you handle them?

® How would you use fork in a potential application?

® Code examples online under “Schedule” tab:

Source Code Examples

Source code for examples from class are posted [HERE].

October 8, 2018

TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L4.4

Lloyd

10/8/2018

L4.2

TCSS 422 A — Fall 2018 10/8/2018
School of Engineering and Technology,

FEEDBACK - 3

® Most of the Linux calls are still unclear

® |s it possible to record the lectures?

TCSS422: Operating Systems [Fall 2018]

October 8, 2018 School of Engineering and Technology, University of Washington - Tacoma

OBJECTIVES

® C Tutorial
® Quiz 1 - Active Reading

®m Chapter 6 - Limited Direct Execution - cont’d

®m Chapter 7 - Introduction to Scheduling
® Chapter 8 - Multi-level Feedback Queue

TCSS422: Operating Systems [Fall 2018]

October 8, 2018 School of Engineering and Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd L4.3

TCSS 422 A - Fall 2018
School of Engineering and Technology,

October 8, 2018

CH. 6:
LIMITED DIRECT
EXECUTION

TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington -

CHAPTER 6 REVIEW

®m As per Chapter 6, What is DIRECT Execution?

® What is Limited Direct Execution?

® What is a context switch?

= What is a system call?

® What is an operating system “Trap”?

® What is the difference between a maskable and a non-
maskable interrupt?

October 8, 2018

TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L4.8

Slides by Wes J. Lloyd

10/8/2018

L4.4

TCSS 422 A — Fall 2018
School of Engineering and Technology,

DIRECT EXECUTION - 2

® With direct execution:

How does the OS stop a program from running, and switch
to another to support time sharing?

How do programs share disks and perform 1/0 if they are
given direct control? Do they know about each other?

With direct execution, how can dynamic memory structures

such as linked lists grow over time?

TCSS422: Operating Systems [Fall 2018]
October 8, 2018 School of Engineering and Technology, University of Washington - Tacoma

L4.9

Slides by Wes J.

CONTROL TRADEOFF

= Too little control:
= No security
= No time sharing

= Too much control:
* Too much OS overhead
= Poor performance for compute & I/0
= Complex APIs (system calls), difficult to use

TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

October 8, 2018

L4.10

Lloyd

10/8/2018

L4.5

TCSS 422 A — Fall 2018
School of Engineering and Technology,

Slides by Wes J.

CONTEXT SWITCHING OVERHEAD

Context Switching Total cost of

context switching
I

Multitasking

._I.I__I

Vs, Multltasklng with context switching

Sequential
TCSS422: Operating Systems [Fall 2018]
Cctobens 12018 School of Engineering and Technology, University of Washington - Tacoma L1

LIMITED DIRECT EXECUTION

® OS implements LDE to support time/resource sharing

® Limited direct execution means “only limited” processes

can execute DIRECTLY on the CPU in trusted mode

B TRUSTED means the process is trusted, and it can do
anything... (e.g. it is a system / kernel level process)

= Enabled by protected (safe) control transfer
® CPU supported context switch

®E Provides data isolation

TCSS422: Operating Systems [Fall 2018]

October 8, 2018 School of Engineering and Technology, University of Washington - Tacoma

L4.12

Lloyd

10/8/2018

L4.6

TCSS 422 A — Fall 2018

10/8/2018
School of Engineering and Technology,

SYSTEM CALLS

® Implement restricted “OS” operations
®m Kernel exposes key functions through an API:
= Device I/0 (e.g. file 1/0)
= Task swapping: context switching between processes
= Memory management/allocation: malloc()
= Creating/destroying processes

TCSS422: Operating Systems [Fall 2018]
Cctobens 12018 School of Engineering and Technology, University of Washington - Tacoma L4-13

TRAPS:
SYSTEM CALLS, EXCEPTIONS, INTERRUPTS
Mainline Code & Interrupt Service Routine
loon() { termupt L 18m¢) ¢
® Trap: any transfer to kernel mode instruction 1 imsution 1
Tnstruction 3 instruction 3
instruction 4 1
® Three kinds of traps | insirucion

= System call: (planned) user 2> kernel
SYSCALL for 1/0, etc.

= Exception: (error) user 2> kernel
Div by zero, page fault, page protection error

= Interrupt: (event) user > kernel
Non-maskable vs. maskable
Keyboard event, network packet arrival, timer ticks
Memory parity error (ECC), hard drive failure

TCSS422: Operating Systems [Fall 2018]
October 8, 2018 School of Engineering and Technology, University of Washington - Tacoma L4.14

Slides by Wes J. Lloyd L4.7

TCSS 422 A - Fall 2018
School of Engineering and Technology,

Slides by Wes J.

MULTITASKING

® How/when should the OS regain control of the CPU to
switch between processes?

® Cooperative multitasking (mostly pre 32-bit)
= < Windows 95, Mac 0SX
= Opportunistic: running programs must give up control
User programs must call a special yield system call

When performing 1/0
lllegal operations

= (POLLEV)
What problems could you for see with this approach?

TCSS422: Operating Systems [Fall 2018]

October 8, 2018 School of Engineering and Technology, University of Washington - Tacoma

L4.15

MULTITASKING

® How/when should the OS regain control of the CPU to
switch between processes?

B Coops

lllegal operations

= (POLLEV)
What problems could you for see with this approach?

TCSS422: Operating Systems [Fall 2018]

October 8, 2018 School of Engineering and Technology, University of Washington - Tacoma

L4.16

Lioyd

10/8/2018

L4.8

TCSS 422 A — Fall 2018 10/8/2018
School of Engineering and Technology,

What problems exist for regaining the control

W of the CPU with cooperative multitasking
OSes?

.. Start the presentation to see live content. Still no live content? Install the app or get help at PollEv.com/app ..

QUESTION: MULTITASKING

= What problems exist for regaining the control of
the CPU with cooperative multitasking OSes?

TCSS422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma L4.18

October 8, 2018

Slides by Wes J. Lloyd L4.9

TCSS 422 A - Fall 2018
School of Engineering and Technology,

Slides by Wes J.

MULTITASKING - 2

® Preemptive multitasking (32 & 64 bit OSes)
® >= Mac OSX, Windows 95+

®ETimer interrupt

= Raised at some regular interval (in ms)
= [nterrupt handling
Current program is halted
Program states are saved
OS Interrupt handler is run (kernel mode)

(PollEV) What is a good interval for the timer interrupt?

TCSS422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma L4.19

October 8, 2018

MULTITASKING - 2

® Preemptive multitasking (32 & 64 bit 0Ses)
®>= Mac 0SX, Windows 95+

gives OS the ability to

run again on a CPU.

Current program is halted
Program states are saved
OS Interrupt handler is run (kernel mode)

= (PollEV) What is a good interval for the timer interrupt?
TCSS422: O ting Syst [Fall 2018]
October 8, 2018 School of Er?gei:]aelel:'igngy:nedm'lfechanology, University of Washington - Tacoma L4.20
Lloyd

10/8/2018

L4.10

TCSS 422 A — Fall 2018 10/8/2018

School of Engineering and Technology,

For an OS that uses a system timer to force
arbitrary context switches to share the CPU,

what is a good value (in seconds) for the timer

interrupt?

TCSS422: Operating Systems [Fall 2018]
.. October 8, 2018 tart the presgpisite FE RiFEENRSIARE TEEHHOR SRR RISV ASPAHEXSAT FiBoma '-4-2-.

QUESTION: TIME SLICE

= For an OS that uses a system timer to force
arbitrary context switches to share the CPU, what
is a good value (in seconds) for the timer
interrupt?

TCSS422: Operating Systems [Fall 2018]
October 8, 2018 School of Engineering and Technology, University of Washington - Tacoma w22

Slides by Wes J. Lloyd L4.11

TCSS 422 A — Fall 2018 10/8/2018

School of Engineering and Technology,

CONTEXT SWITCH

® Preemptive multitasking initiates “trap”
into the OS code to determine:

+ Whether to continue running the current process,
or switch to a different one.

+ If the decision is made to switch, the OS performs a context
switch swapping out the current process for a new one.

TCSS422: Operating Systems [Fall 2018]
Cctobens 12018 School of Engineering and Technology, University of Washington - Tacoma L4.23

CONTEXT SWITCH - 2

1. Save register values of the current process to its kernel
stack
= General purpose registers
= PC: program counter (instruction pointer)
= kernel stack pointer

2. Restore soon-to-be-executing process from its kernel

stack
3. Switch to the kernel stack for the soon-to-be-executing
process
TCSS422: O ting Syst [Fall 2018]
October 8, 2018 School of Er?;i;ae;r:igngy:nedm‘lfechanology, University of Washington - Tacoma L4.24

Slides by Wes J. Lloyd L4.12

TCSS 422 A — Fall 2018

School of Engineering and Technology,

0S @ boot
(kernel mode)

‘ initialize trap table
‘ start interrupt timer

Hardware

remember address of ...

‘ syscall handler

timer handler

‘ start timer
interrupt CPU in X ms

0S @ run

Program
(kernel mode)

Hardware (user mode)

Process A

timer interrupt

save regs(A) to k-stack(A)
move to kernel mode
jump to trap handler

Handle the trap
Call switch() routine
‘ save regs(A) to proc-struct(A)
restore regs(B) from proc-struct(B)
switch to k-stack(B)
return-from-trap (into B)
restore regs(B) from k-stack(B)

move to user mode
- Process B

jump to B's PC

October 8, 2018 TCSS422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma L4.25
0S @ boot
Hard
(kernel mode) Agare
‘ initialize trap table
remember address of ...
syscall handler
timer handler
‘start interrupt timer
‘ start timer
interrupt CPU in X ms
g Hardware sl
Context Switch
Call switch() routine
‘ save regs(A) to proc-struct(A)
restore regs(B) from proc-struct(B)
switch to k-stack(B)
return-from-trap (into B)
restore regs(B) from k-stack(B)
move to user mede
jump to B's PC
‘ Process B
TCSS422: Operating Systems [Fall 2018]
(O e 2 2K School of Engineering and Technology, University of Washington - Tacoma L4.26

Slides by Wes J. Lloyd

10/8/2018

L4.13

TCSS 422 A — Fall 2018

School of Engineering and Technology,

INTERRUPTED INTERRUPTS

® What happens if during an interrupt (trap to kernel
mode), another interrupt occurs?

E Linux
= < 2.6 kernel: non-preemptive kernel
= >= 2.6 kernel: preemptive kernel

TCSS422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma w27

October 8, 2018

PREEMPTIVE KERNEL

m Use “locks” as markers of regions of non-
preemptibility (non-maskable interrupt)

= Preemption counter (preempt_count)
= begins at zero
= increments for each lock acquired (not safe to preempt)
= decrements when locks are released

® Interrupt can be interrupted when preempt count=0
= |t is safe to preempt (maskable interrupt)
= the interrupt is more important

TCSS422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma L4.28

October 8, 2018

Slides by Wes J. Lloyd

10/8/2018

L4.14

TCSS 422 A - Fall 2018
School of Engineering and Technology,

Slides by Wes J.

CHAPTER 7-
SCHEDULING:
INTRODUCTION

TCSS422: Operating Systems [Fall 2018]

October8 2018 School of Engineering and Technology, University of Washington -

® For simplicity, consider job scheduling with limitations:

SCHEDULING INTRODUCTION

= Each job requires the same CPU time

= All jobs arrive at the same time

= All jobs only use the CPU (no I/0)

= The run-time of each job is known a priori

TCSS422: Operating Systems [Fall 2018]

October 8, 2018 School of Engineering and Technology, University of Washington - Tacoma

L4.30

Lioyd

10/8/2018

L4.15

TCSS 422 A — Fall 2018

School of Engineering and Technology,

SCHEDULING METRICS

®m Metrics: A standard measure to quantify to what degree a
system possesses some property. Metrics provide repeatable
techniques to quantify and compare systems.

® Measurements are the numbers derived from the application
of metrics

® Scheduling Metric #1: Turnaround time

® The time at which the job completes minus the time at which
the job arrived in the system

Tturnaround = Tcompletian - Tarrival

® How is turnaround time different than execution time?

TCSS422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma L4-31

October 8, 2018

SCHEDULING METRICS - 2

Scheduling Metric #2: Fairness
= Jain’s fairness index
= Quantifies if jobs receive a fair share of system resources

n 2
J(z1,22,-..,%0) = M
® n processes n- i &
m X; is time share of each process
® worst case = 1/n
® best case =1

® Consider n=3, worst case = .333, best case=1
® With n=3 and x,=.2, x,=.7, X3=.1, fairness=.62
® With n=3 and x,=.33, x,=.33, x;=.33, fairness=1

TCSS422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma L4-32

October 8, 2018

Slides by Wes J. Lloyd

10/8/2018

L4.16

TCSS 422 A — Fall 2018
School of Engineering and Technology,

SCHEDULERS

® FIFO: first in, first out
= Very simple, easy to implement

= Consider
= 3 x 10sec jobs, arrival: AB C
A

w

]

(=]
I

8

1
60 80 100 120

o
[

Time (Second)

10 + 20 + 30

3

Average turnaround time = ———— = 20 sec

October 8, 2018 TCSS422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma

L4.33

FIFO: CONVOY EFFECT

® FIFO with different jobs lengths
® Consider
* A.,=100sec, B,,,=10sec, C,,,=10sec

A B

- r T 1 1T 71
0 20 40 60 80 100 120

Time (Second)

100 + 110 + 120
——

Average turnaround time =

October 8, 2018 TCSS422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma

L4.34

Slides by Wes J. Lloyd

10/8/2018

L4.17

TCSS 422 A — Fall 2018
School of Engineering and Technology,

Slides by Wes J.

SJF: SHORTEST JOB FIRST

® Given that we know execution times in advance:

= Run in order of duration, shortest to longest
= Non preemptive scheduler

= This is not realistic

= Arrival: AB C

- 1 1 1 1T 1

Time (Second)

. 10 +20 + 120
Average turnaround time = ——— = 50 sec

3

TCSS422: Operating Systems [Fall 2018]

October 8, 2018 School of Engineering and Technology, University of Washington - Tacoma

L4.35

SJF: WITH RANDOM ARRIVAL

® |f jobs arrive at any time:
EA@t=0sec,B@t=10sec, C @ t=10sec

[B,C arrive]

0 20 40 60 20 100 120

Time (Second)

100 + (110 — 10) + (120 — 10)

Average turnaround time = 3

TCSS422: Operating Systems [Fall 2018]

October 8, 2018 School of Engineering and Technology, University of Washington - Tacoma

L4.36

Lloyd

10/8/2018

L4.18

TCSS 422 A — Fall 2018

School of Engineering and Technology,

STCF - SHORTEST TIME TO COMPLETION FIRST

® Add preemption to the Shortest Job First scheduler
= Also called preemptive shortest job first (PSJF)

®= When a new job enters the system:
= Of all jobs, Which has the least time left?
= PREMPT job execution, and schedule the new shortest job

® More realistic, but how do we know execution time in
advance?

= Oracle: All knowing one
= Only schedule static (fixed size) batch workloads
= Can we predict execution time?

TCSS422: Operating Systems [Fall 2018]

October 8, 2018 School of Engineering and Technology, University of Washington - Tacoma

L4.37

® Consider:
" AIen=100 Aarrival=o
" Blen=10’ Barrival=10’ Clen=10’ Caarrival=10

[B,C arrive]
ALB C A

— 1 1 1 1T 1
40 60 80 100 120

Time (Second)

(120 — 0) + (20 — 10) + (30 — 10)

Average turnaround time = —— = 50 sec

3

TCSS422: Operating Systems [Fall 2018]

October 8, 2018 School of Engineering and Technology, University of Washington - Tacoma

L4.38

Slides by Wes J. Lloyd

10/8/2018

L4.19

TCSS 422 A — Fall 2018

School of Engineering and Technology,

Slides by Wes J.

SCHEDULING METRICS - 3

®m Scheduling Metric #3: Response Time

® Time from when job arrives until it starts execution

‘ Tresponse = Tfirstrun - Tarrival ’

®m STCF, SJF, FIFO
= can perform poorly with respect to response time

response time?

October 8, 2018

TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L4.39

Which scheduler metric does the Shortest Time

W

to Completion First (STCF) scheduler provide

the best improvement on vs. First In First Out
(FIFO)?

average turnaround time of

fairness of job scheduling
(Jain's fairness index)

average response time of jobs

None of the above

All of the above

jobs

i A W N =

Start the presentation to see live content. Still no live content? Install the app or get help at PollEv.com/app

Lloyd

10/8/2018

L4.20

TCSS 422 A — Fall 2018

School of Engineering and Technology,

RR: ROUND ROBIN

® Run each job awhile, then switch to another distributing the
CPU evenly (fairly)

® Scheduling Quantum
is called a time slice

RR is fair, but performs poorly on metrics

Process Burst Time
P1 12

such as turnaround time

am
time P5 5

period

Round Robin scheduling algorithm
Gantt chart

Sl [PL]P2[P3|P4[P5[P1 [P2[P4] P1|
Quantum =5 seconds 0 5 10 14 19 24 29 32 37 3%9

October 8, 2018 ggﬁiﬁfﬁf gr:);iLasier:ignzy:;edm‘lf‘egar\lzlzoogly,s]University of Washington - Tacoma L4-41

Slides by Wes J.

RR EXAMPLE

® ABC arrive at time=0, each run for 5 seconds

OVERHEAD not
A B c .
considered
N 0+5+10
0 5 10 15 20 25 30 Toverage response = —3 - 5sec
Time (Second)
SJF (Bad for Response Time]
0+1+2
I T 1 Tuveruge response — T = 1sec

Time (Second)

RR with a time-slice of 1sec (Good for Response Time)

L4.42

TCSS422: Operating Systems [Fall 2018]

October 8, 2018 School of Engineering and Technology, University of Washington - Tacoma

Lloyd

10/8/2018

L4.21

TCSS 422 A — Fall 2018
School of Engineering and Technology,

ROUND ROBIN: TRADEOFFS

Short Time Slice Long Time Slice

Fast Response Time Slow Response Time

High overhead from Low overhead from
context switching context switching

®Time slice impact:

=Turnaround time (for earlier example):
ts(1,2,3,4,5)=14,14,13,14,10

= Fairness: round robin is always fair, J=1

TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

October 8, 2018

L4.43

Slides by Wes J.

SCHEDULING WITH I/0

® STCF scheduler
= A: CPU=50ms, I/0=40ms, 10ms intervals
= B: CPU=50ms, I/0=0ms
= Consider A as 10ms subjobs (CPU, then 1/0)

® Without considering 1/0:
A B B B B B

IEEEE

. . . . [CPU utilization= 100/140=71%
Cli ZIO 4IO 5‘0 8‘0

T T 1
100 120 140
Time (msec)

Poor Use of Resources

TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

October 8, 2018

L4.44

Lloyd

10/8/2018

L4.22

TCSS 422 A — Fall 2018
School of Engineering and Technology,

Slides by Wes J.

SCHEDULING WITH I/0 - 2

® When a job initiates an I/0 request
= A is blocked, waits for I/0 to compute, frees CPU
= STCF scheduler assigns B to CPU

®" When I/0 completes = raise interrupt

= Unblock A, STCF goes back to executing A: (10ms sub-job)
A A B A B A B A B

AR

w

7

. . [Cpu utilization = 100/100=100%

T I T
0 80 100 120

Time (msec)

I T T
0 20 40

o _

Overlap Allows Better Use of Resources

TCSS422: Operating Systems [Fall 2018]

October 8, 2018 School of Engineering and Technology, University of Washington - Tacoma

L4.45

Which scheduler, thus far, best address fairness

and average response time of jobs?

:l Respond at PollEv.com/wesleylloyd641
D Text WESLEYLLOYD641 to 22333 once to join, then 1, 2, 3, 4, 5...

First In - First Out (FIFO) | 1

Shortest Job First (SJF)

Shortest Time to
Completion First (STCF)

Round Robin
None of the Above

All of the Above

o U b~ W N

.. Start the presentation to see live content. Still no live content? Install the app or get help at PollEv.com/app ..

Lloyd

10/8/2018

L4.23

TCSS 422 A - Fall 2018
School of Engineering and Technology,

Slides by Wes J.

CHAPTER 8 -
MULTI-LEVEL FEEDBACK
QUEUE (MLFQ) SCHEDULER

TCSS422: Operating Systems [Fall 2018]

October8i2018 School of Engineering and Technology, University of Washington -

MULTI-LEVEL FEEDBACK QUEUE

®Objectives:

=" Improve turnaround time:
Run shorter jobs first

= Minimize response time:
Important for interactive jobs (Ul)

m Achieve without a priori knowledge of job length

TCSS422: Operating Systems [Fall 2018]

. N . . . L4.48
School of Engineering and Technology, University of Washington - Tacoma

October 8, 2018

Lioyd

10/8/2018

L4.24

TCSS 422 A - Fall 2018
School of Engineering and Technology,

= Batch Jobs

utilization

® Adjust job priority based on
observed behavior

= Keep priority low

within a Queue

® Multiple job queues

Q7
® Interactive Jobs Q6
= Frequent I/0 > keep priority high Q5

= Interactive jobs require fast
response time (GUI/UI)

= Require long periods of CPU

Q2

[Low Priority] Q1 —— @

Round-Robin

[High Priority] Q8 —— @ —

October 8, 2018

TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L4.49

MLFQ: DETERMINING JOB PRIORITY

® New arriving jobs are placed into highest priority queue

= |f a job uses its entire time slice, priority is reduced (])
= Jobs appears CPU-bound (“batch” job), not interactive (GUI/UI)

® |f a job relinquishes the CPU for I/0 priority stays the same

MLFQ approximates SJF

October 8, 2018

TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L4.50

Slides by Wes J. Lloyd

10/8/2018

L4.25

TCSS 422 A — Fall 2018

School of Engineering and Technology,

MLFQ: LONG RUNNING JOB

® Three-queue scheduler, time slice=10ms

Q2

Priority
Q1
0 50 100 150 200
Long-running Job Over Time (msec)
TCSS422: Operating Systems [Fall 2018]
October 8, 2018 School of Engineering and Technology, University of Washington - Tacoma L4-51

MLFQ: BATCH AND INTERACTIVE JOBS

— Aarrival_time =0ms, Arun_time=200rns’
— Brun_time =20ms, Barrival_time =100ms
Priority Q2 A: I
~
B: \
Q1 N
QO
] 50 100 150 200
Scheduling multiple jobs (ms)
TCSS422: Operating Systems [Fall 2018]
October 8, 2018 School of Engineering and Technology, University of Washington - Tacoma 1452

Slides by Wes J. Lloyd

10/8/2018

L4.26

TCSS 422 A — Fall 2018
School of Engineering and Technology,

Slides by Wes J.

MLFQ: BATCH AND INTERACTIVE - 2

® Continuous interactive job (B) with long running batch job (A)
= Low response time is good for B
= A continues to make progress

The MLFQ approach keeps interactive job(s) at the highest priority

Q1 B:
o s 100 150 200

N
PIZZ77 7773
rarrrrrrsi)
IIISITIIS
YFFFIFTTTTA

77777 77]
77777777
[(FZZFZTTIZ]
PILZZF7F7A

N
N
N
N
N
N

277777 7]

N
N
N
N
K

FFFIITFTT]

ZFIZZTITT]

N
R
N
N
N
N
N

ZZFFIZIZA

q
N
N
N
N
y
N

F77FT7772

A

N

A Mixed I/O-intensive and CPU-intensive Workload (msec)

October 8, 2018

TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L4.53

= Starvation
[High Priority] Q8
Q7
Q6
Q5
Q4
Q3
Q2
[Low Priority] Q1

MLFQ: ISSUES

dOORdOR OO0

— @ - g @ CPU bound batch job(s)

October 8, 2018

TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L4.54

Lloyd

10/8/2018

L4.27

TCSS 422 A — Fall 2018
School of Engineering and Technology,

Slides by Wes J.

MLFQ: ISSUES - 2

® Gaming the scheduler

= [ssue I/0 operation at 99% completion of the time slice
= Keeps job priority fixed - never lowered

= Job behavioral change

= CPU/batch process becomes an interactive process

[High Priority] Q8 _>®_>_>©_> @_>®_>@

Q7
Q6
Qs
Q4
o]
Q@

Priority becomes stuck » [Low Priority] Q1 — (G)——> () CPU bound batch job(s)

TCSS422: Operating Systems [Fall 2018]

October 8, 2018 School of Engineering and Technology, University of Washington - Tacoma

L4.55

RESPONDING TO BEHAVIOR CHANGE

@ L

— Starvation

0 50 100 150 200

Without Priority Boost . I B: C%

= Priority Boost

= Reset all jobs to topmost queue after some time interval S

TCSS422: Operating Systems [Fall 2018]

October 8, 2013 School of Engineering and Technology, University of Washington - Tacoma

L4.56

Lloyd

10/8/2018

L4.28

TCSS 422 A — Fall 2018
School of Engineering and Technology,

Slides by Wes J.

RESPONDING TO BEHAVIOR CHANGE - 2

® With priority boost
=" Prevents starvation

QO

N
Boost
i Boost

||

Boost
Boost
Lehi
e
I Soost
%
.%

0 50 100 150 200

Without(Left) and With(Right) Priority Boost A: I B: C:%

TCSS422: Operating Systems [Fall 2018]
Cctobens 12018 School of Engineering and Technology, University of Washington - Tacoma L4.57

PREVENTING GAMING

® I[mproved time accounting:
= Track total job execution time in the queue
= Each job receives a fixed time allotment
= When allotment is exhausted, job priority is lowered

N
Q2 Q2

|
M
Q Qt N
CLLLLLLLLLLLL, - = 1l
Without(Left) and With(Right) Gaming Tolerance
TCSS422: Operating Systems [Fall 2018]
October 8, 2018 School of Engineering and Technology, University of Washington - Tacoma L4.58

Lloyd

10/8/2018

L4.29

TCSS 422 A — Fall 2018
School of Engineering and Technology,

Slides by Wes J.

MLFQ: TUNING

= Consider the tradeoffs:
= How many queues?
= What is a good time slice?
= How often should we “Boost” priority of jobs?
= What about different time slices to different queues?

\

0 50 100 150 200

Example) 10ms for the highest queue, 20ms for the middle,
40ms for the lowest

TCSS422: Operating Systems [Fall 2018]

October 8, 2018 School of Engineering and Technology, University of Washington - Tacoma

L4.59

PRACTICAL EXAMPLE

® Oracle Solaris MLFQ implementation

= 60 Queues >
w/ slowly increasing time slice (high to low priority)

= Provides sys admins with set of editable table(s)

= Supports adjusting time slices, boost intervals, priority
changes, etc.

® Advice
= Provide OS with hints about the process
= Nice command - Linux

TCSS422: Operating Systems [Fall 2018]

October 8, 2018 School of Engineering and Technology, University of Washington - Tacoma

L4.60

Lloyd

10/8/2018

L4.30

TCSS 422 A — Fall 2018
School of Engineering and Technology,

MLFQ RULE SUMMARY

® The refined set of MLFQ rules:

highest priority.

system to the topmost queue.

® Rule 1: If Priority(A) > Priority(B), A runs (B doesn’t).
® Rule 2: If Priority(A) = Priority(B), A & B run in RR.

® Rule 3: When a job enters the system, it is placed at the

= Rule 4: Once a job uses up its time allotment at a given
level (regardless of how many times it has given up the
CPU), its priority is reduced(i.e., it moves down on queue).

® Rule 5: After some time period S, move all the jobs in the

TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

October 8, 2018

L4.61

round-robin order.

Job Arrival Time Job Length
A T=0 4

B T=0 16

C T=0 8

Please draw clearly. An unreadable graph will loose points.

(11 points) Show a scheduling graph for the MLFQ scheduler for the jobs above.
Draw vertical lines for key events and be sure to label the X-axis times as in the example.

Jackson deploys a 3-level MLFQ scheduler. The time slice is 1 for high priority jobs, 2 for medium
priority, and 4 for low priority. This MLFQ scheduler performs a Priority Boost every 6 timer units.
When the priority boost fires, the current job is preempted, and the next scheduled job is run in

Slides by Wes J. Lloyd

10/8/2018

L4.31

TCSS 422 A - Fall 2018 10/8/2018
School of Engineering and Technology,

QUESTIONS

Slides by Wes J. Lloyd L4.32

