TCSS 422 A — Fall 2018
School of Engineering and Technology,

TCSS 422: OPERATING SYSTEMS
K

Processes, Process API,
Limited Direct Execution

Wes J. Lloyd
School of Engineering and Technology,
University of Washington - Tacoma

TCSS422: Operating Systems [Fall 2018]

(i 2 School of Engineering and Technology, University of Washington NN

10/8/2018

QUIZ 0 SCORES

16
= Average - 6.419 i
= Min - 3 12
h i B # of quiz scores
= Max/4'" quartile - 8 o a
= 2nd & 3rd Quartile- 7 3
= 1st quartile - 6 5
= Mode - 7 4 I
= Std. Dev. - 1.33 2
5 0N
8 7 6 5 4 3 2 1
October 8, 2018 TCSS422: Operating Systems [Fall 2018] | 4.2 |

School of Engineering and Technology, University of Washington - Tacoma

FEEDBACK FROM 10/3

= Real world example of “a child of a parent of a process”
= .. when do processes have children?

= Check process ID of BASH shell:
= echo $$

= Check parent’s process ID:
= echo $PPID

= Exec launches a different process or program
= What is the difference between a process and a program?

= Exec does not create a new process. It transfers control:
Man page: “The exec() family of functions replaces the current
process image with a new process image.”

October 8, 2018

TCS5422: Operating Systems [Fall 2018]
School of Engineeri

Technology, University ington - Tacoma | 3 ‘

FEEDBACK - 2

= Can you create more than 1 fork?
= i.e. call fork() more than one time in a program
= |f you create more than one fork(), how do you handle them?

= How would you use fork in a potential application?

= Code examples online under “Schedule” tab:
Source Code Examples

Source code for examples from class are posted [HERE].

FEEDBACK - 3

= Most of the Linux calls are still unclear

= |s it possible to record the lectures?

October 8, 2018 TcssAlzz; Operating Systems [Fall 2018]

School o Technology, University ington - Tacoma

| us ‘

TCSS422: Operating Systems [Fall 2018]
CEE School of Engineering and Technology, University of Washington - Tacoma | L4 |
® C Tutorial

= Quiz 1 - Active Reading

= Chapter 6 - Limited Direct Execution - cont’d

= Chapter 7 - Introduction to Scheduling
= Chapter 8 - Multi-level Feedback Queue

October 8, 2018 TCSS422: Operating Systems [Fall 2018] | a6 |

School of Engineering and Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

L4.1

TCSS 422 A - Fall 2018
School of Engineering and Technology,

10/8/2018

CH. 6:

LIMITED DIRECT
EXECUTION

TCSS422: Operating Systems [Fall 2018]

(S o 2 School of Engineering and Technology, University of Washington -

CHAPTER 6 REVIEW

= As per Chapter 6, What is DIRECT Execution?

= What is Limited Direct Execution?

= What is a context switch?

= What is a system call?

= What is an operating system “Trap”?

= What is the difference between a maskable and a non-
maskable interrupt?

TCS5422: Operating Systems [Fall 2018]

(i, Sehoslor e T i = e

EN

DIRECT EXECUTION - 2

= With direct executlon:

How does the OS stop a program from running, and switch
to another to support time sharing?

How do programs share disks and perform /0 if they are
given direct control? Do they know about each other?

With direct execution, how can dynamic memory structures
such as linked lists grow over time?

TCS5422: Operating Systems [Fall 2018]
e

October 8, 2018 et Technology, University i Tacoma

| 19 ‘

CONTROL TRADEOFF

= Too little control:
= No security
= No time sharing

=Too much control:
=Too much OS overhead
= Poor performance for compute & I/0
= Complex APlIs (system calls), difficult to use

TCS5422: Operating Systems [Fall 2018]

(Esin s, 2 Schoolof TechiokayUniversi f Tecoma

L4.10

CONTEXT SWITCHING OVERHEAD

Context Switching Total cost of
context switching

Multitasking —

vs. Multitasking with context switching
EEEEEEEEEDEN
Sequential
I I
L i

LIMITED DIRECT EXECUTION

= 0S implements LDE to support time/resource sharing

= Limited direct execution means “only limited” processes

can execute DIRECTLY on the CPU in trusted mode

= TRUSTED means the process is trusted, and it can do
anything... (e.g. it is a system / kernel level process)

= Enabled by protected (safe) control transfer
= CPU supported context switch

= Provides data isolation

TCS5422: Operating Systems [Fall 2018]
lEas

October 8, 2018 i Technology, University i Tacoma

| a1

TCS5422: Operating Systems [Fall 2018]

(e, 2 Schoolof FTechmiolosy) University/of Weshi Tacoma

.12

Slides by Wes J. Lloyd

L4.2

TCSS 422 A — Fall 2018
School of Engineering and Technology,

SYSTEM CALLS

= Implement restricted “OS” operations

= Kernel exposes key functions through an API:
=Device I/0 (e.g.file 1/0)
= Task swapping: context switching between processes
= Memory management/allocation: malloc()
= Creating/destroying processes

10/8/2018

TCS5422: Operating Systems [Fall 2018]

(i G 20T AT o T B o e s oy Tt A T T

| 413

TRAPS:
SYSTEM CALLS, EXCEPTIONS, INTERRUPTS

Mainline Code N\ intemupt Service Rowtine
Intermupt

loop({
= Trap: any transfer to kernel mode

mstruction 3
= Three kinds of traps

= System call: (planned) user > kernel
SYSCALL for 1/0, etc.

= Exception: (error) user > kernel

Div by zero, page fault, page protection error

= Interrupt: (event) user > kernel
Non-maskable vs. maskable
Keyboard event, network packet arrival, timer ticks
Memory parity error (ECC), hard drive failure

TCSS422: Operating Systems [Fall 2018]

(i, o o L e e e o e T Tec e

La.14

MULTITASKING

= How/when should the OS regain control of the CPU to
switch between processes?

= Cooperative multitasking (mostly pre 32-bit)
= < Windows 95, Mac 0SX
= Opportunistic: running programs must give up control
User programs must call a special yleld system call
When performing 1/0
Illegal operations

= (POLLEV)
What problems could you for see with this approach?

October 8, 2018 TCS3422: Operating Systems [Fall 2018]
School of

Technology, University i Tacoma | L5

MULTITASKING

= How/when should the OS regain control of the CPU to
switch between processes?

lllegal operations

= (POLLEV)
What problems could you for see with this approach?

TCSS422: Operating Systems [Fall 2018]

(Esin s, 2 ISehool of Erpineering andTect nolosyjUnversity ofWashinaton S Tacoma

14.16

What problems exist for regaining the control

W of the CPU with cooperative multitasking
OSes?

Slides by Wes J. Lloyd

QUESTION: MULTITASKING

= What problems exist for regaining the control of
the CPU with cooperative multitasking 0Ses?

TCSS422: Operating Systems [Fall 2018]

(e, 2 ISehool of Ergineering andTect nolosy|Unversity o Washinaton S Tacoma

La.18

L4.3

TCSS 422 A — Fall 2018
School of Engineering and Technology,

10/8/2018

MULTITASKING - 2

= Preemptive multitasking (32 & 64 bit OSes)
= >= Mac 0SX, Windows 95+

=Timer interrupt
= Raised at some regular interval (in ms)
= Interrupt handling
Current program is halted
Program states are saved
OS Interrupt handler is run (kernel mode)

= (PollEV) What is a good interval for the timer interrupt?

October 8, 2018

TCS5422: Operating Systems [Fall 2018] s
School of Engineering and Technology, University of Washington - Tacoma i

MULTITASKING - 2

= Preemptive multitasking (32 & 64 bit OSes)
= >= Mac 0SX, Windows 95+

gives OS the ability to

run again on a CPU.

Current program is halted
Program states are saved
0OS Interrupt handler is run (kernel mode)

= (PollEV) What is a good interval for the timer interrupt?

TCS5422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

October 8, 2018 14.20

For an OS that uses a system timer to force
arbitrary context switches to share the CPU,

what is a good value (in seconds) for the timer

interrupt?

] Octaber 2018 TCSS422: Operating Systems [Fall 2018]
u : B1s?

L4, 2-.

QUESTION: TIME SLICE

" For an OS that uses a system timer to force
arbitrary context switches to share the CPU, what
is a good value (in seconds) for the timer
interrupt?

TCSS422: Operating Systems [Fall 2018]

.
School of Engineering and Technology, University of Washington - Tacoma .22

October 8, 2018

CONTEXT SWITCH

= Preemptive multitasking initiates “trap”
into the OS code to determine:

+ Whether to continue running the current process,
or switch to a different one.

+ If the decision is made to switch, the OS performs a context
switch swapping out the current process for a new one.

TCS5422: Operating Systems [Fall 2018] w3
School of Engineering and Technology, University of Washington - Tacoma -

October 8, 2018

CONTEXT SWITCH - 2

1. Save register values of the current process to its kernel
stack

= General purpose registers
= PC: program counter (instruction pointer)
= kernel stack pointer

2. Restore soon-to-be-executing process from its kernel
stack

3. Switch to the kernel stack for the soon-to-be-executing
process

TCSS422: Operating Systems [Fall 2018]

.
School of Engineering and Technology, University of Washington - Tacoma .24

October 8, 2018

Slides by Wes J. Lloyd

L4.4

TCSS 422 A — Fall 2018 10/8/2018

School of Engineering and Technology,

05 @ boot
(kernel mode)

- initialize trap table
remember address of ...

syscall handler
timer handler
- start interrupt timer
- start timer
interrupt CPU in X ms

05 @ run Program
(kernel mode) Hardware (user mode)

B rocess A
timer interrupt

save regs(A) to k-stack(A)
move to kernel mode
jump to trap handler

Hardware

Handle the trap
Call switch() routine
‘ save regs(A) to proc-struct(A)
restore regs(8) from proc-struct(8)
switch to k-stack(B)
return-from-trap (into B)
restore regs(B) from k-stack(®)

move to user mode
q Process 8

jump to B's PC

TCSS422: Operating Systems [Fall 2018]

Ccboens 2018 School of Engineering and Technology, University of Washington - Tacoma L4.25

05 @ boot
(kernel mode)

‘ initialize trap table
remember address of ...

q syscall handler
timer handler
‘ start interrupt timer
‘ start timer
interrupt CPU in X ms

Hardware

Program

Hardware

Context Switch

Call switch() routine
- save regs(A) to proc-struct(A)
restore regs(B) from proc-struct(3)
switch to k-stack(B)
return-from-trap (into B)
restore regs(B) from k-stack(8)

move to user mode
- Process B

jump to B's PC

TCSS422: Operating Systems [Fall 2018]

EEREE R School of Engineering and Technology, University of Washington - Tacoma L4.26

INTERRUPTED INTERRUPTS

= What happens if during an interrupt (trap to kernel
mode), another interrupt occurs?

= Linux
= < 2.6 kernel: non-preemptive kernel
= >= 2.6 kernel: preemptive kernel

| 27 ‘

October 8, 2018 TcssAlzz; Operating Systems [Fall 2018]

School o Technology, University i Tacoma

PREEMPTIVE KERNEL

mUse “locks” as markers of regions of non-
preemptibility (non-maskable interrupt)

= Preemption counter (preempt_count)
= begins at zero
= increments for each lock acquired (not safe to preempt)
= decrements when locks are released

= |nterrupt can be interrupted when preempt_count=0
= It is safe to preempt (maskable interrupt)
=the interrupt is more important

TCS5422: Operating Systems [Fall 2018]

.
School of Technology, University i Tacoma .28

October 8, 2018

CHAPTER 7-

SCHEDULING
INTRODUCTION

TCSS422: Operating Systems [Fall 2018]

CeeiE 2UE School of Engineering and Technology, University of Washington -

SCHEDULING INTRODUCTION

= For simplicity, consider job scheduling with limitations:
= Each job requires the same CPU time
= All jobs arrive at the same time
= All jobs only use the CPU (no 1/0)
= The run-time of each job is known a priori

TCS5422: Operating Systems [Fall 2018]

4,
School of Technology, University i Tacoma .30

October 8, 2018

Slides by Wes J. Lloyd

L4.5

TCSS 422 A — Fall 2018
School of Engineering and Technology,

SCHEDULING METRICS

= Metrlcs: A standard measure to quantify to what degree a
system possesses some property. Metrics provide repeatable
techniques to quantify and compare systems.

= Measurements are the numbers derived from the application
of metrics

= Scheduling Metric #1: Turnaround time

= The time at which the job completes minus the time at which
the job arrived in the system

‘ T vurnaround = T completion — Tarrival
)

= How is turnaround time different than execution time?

October 8, 2018 | TCS5422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma | L3t ‘

10/8/2018

SCHEDULING METRICS - 2

= Scheduling Metric #2: Falrness
= Jain’s fairness index
= Quantifies if jobs receive a fair share of system resources

(T =)
n Yl ad

Jlxismsisngn) =
n processes

X; is time share of each process
worst case = 1/n
best case = 1

= Consider n=3, worst case = .333, best case=1
= With n=3 and x;=.2, x,=.7, x3=.1, fairness=.62
= With n=3 and x,=.33, x,=.33, x3=.33, fairness=1

TCSS422: Operating Systems [Fall 2018]

(i, o o L e e e o e T Tec e

432 |

SCHEDULERS

= FIFO: first in, first out
= Very simple, easy to implement

= Consider
= 3 x 10sec jobs, arrival: AB C
8

T T T T 1
0 20 40 60 80 100 120

Time (Second)

10 +20 + 30

Average turnaround time

TCS5422: Operating Systems [Fall 2018]
School of Engineeri Technology, University i Tacoma

October 8, 2018 | | 1433 ‘

FIFO: CONVOY EFFECT

= FIFO with different jobs lengths
= Consider
= A,,=100sec, B,,,=10sec, C,,,=10sec

A B

0 20 40 60 80 100 120

Time (Second)

Average turnaround time sec

TCSS422: Operating Systems [Fall 2018]

(Esin s, 2 ISehool of Erpineering andTect nolosyjUnversity ofWashinaton S Tacoma

434 |

SJF: SHORTEST JOB FIRST

= Given that we know execution times in advance:
= Run in order of duration, shortest to longest
= Non preemptive scheduler
= This is not realistic
= Arrival: AB C

0 20 40 60 80 100 120
Time (Second)
. 10 + 20 + 120
Average turnaround tim. ——————=150sec
TCSS422: Operating Systems [Fall 2018]
October &, 2018 | School of Engineering and Technology, University ington - Tacoma 1439

SJF: WITH RANDOM ARRIVAL

= |f jobs arrive at any time:
= A @ t=0sec, B @ t=10sec, C @ t=10sec

[B,C arrive]
A 8 C
— gl gbe ds gtz phe - mik
0 20 40 60 80 100 120

Time (Second)

. 100 + (110 — 10) + (120
Average turnaround time = T T— =

sec

TCSS422: Operating Systems [Fall 2018]

(e, 2 ISehool of Ergineering andTect nolosy|Unversity o Washinaton S Tacoma

1436 |

Slides by Wes J. Lloyd

L4.6

TCSS 422 A — Fall 2018 10/8/2018
School of Engineering and Technology,

STCF - SHORTEST TIME TO COMPLETION FIRST STCF - 2
= Add preemption to the Shortest Job First scheduler = Consider:
= Also called preemptive shortest job first (PSJF) = Ae,=100 A, /i\a=0
®* Bien=10, B, /jya=10, C\s,=10, C,\jya=10
= When a new job enters the system: B Caniial
= Of all jobs, Which has the least time left? Als ¢ A

= PREMPT job execution, and schedule the new shortest job

= More realistic, but how do we know execution time in) 20 40 60 80 100 120
advance? Time (Second)

= Oracle: All knowing one
= Only schedule static (fixed size) batch workloads

q B q Average turnaround time =
= Can we predict execution time? 9

TCSS422: Operating Systems [Fall 2018]

4.
School of Engineering and Technology, University of Washington - Tacoma .38

TC55422: Operating Systems [Fall2018]
AT o T B o e s oy Tt A T T 137 (i,

October 8, 2018

Which scheduler metric does the Shortest Time
to Completion First (STCF) scheduler provide
the best improvement on vs. First In First Out

SCHEDULING METRICS - 3

W

® Scheduling Metric #3: Response Time

= Time from when job arrives until it starts execution (FIFO)?
‘ Tresmmse = Tﬁrsmm — T grrival average turnaround time of
jobs 1
fairness of job scheduling
(Jain's fairness index) 2
= STCF, SJF, FIFO
= can perform poorly with respect to response time average response time of jobs 3
A All of the above | 4
response time?
None of the above | §

TCS5422: Operating Systems [Fall 2018]
School of Engineeri Technology, University i Tacoma

| October 8, 2018 | | 1439 ‘ | | []

RR: ROUND ROBIN e RR EXAMPLE

= Run each job awhile, then switch to another distributing the = ABC arrive at time=0, each run for 5 seconds
CPU evenly (fairly) OVERHEAD not
= Scheduling Quantum I Process I Burst Time consldered

is called a time slice 12
= Time RR is fair, but performs poorly on metrics _0+5+10

am such aps turnaroﬁnd t¥me 0 5 10 - (155 N 20 25 Taverage response = 3 = 5sec

tlm.e d SJF (Bad for Response Time

perio

Round Robin scheduling algorithm
Gantt chart
0+1+2
T, =————=1sec

Scheduling [Pi]P2]P3|Pa]ps[P1|pP2[Pa] P1] S S A ST average response 5
Quantum =5 seconds 0 5 10 14 19 24 29 32 37 39 Time (Second)

[} RR with a time-slice of 1sec (Good for Response Time)

TCSS422: Operating Systems [Fall 2018]

44
School of Engineering and Technology, University of Washington - Tacoma L2

| 1441 ‘ October 8, 2018

October 8, 2018 | TCS5422; Operating Systems [Fall 2018]

school of Technology, University i Tacoma

Slides by Wes J. Lloyd L4.7

TCSS 422 A - Fall 2018
School of Engineering and Technology,

10/8/2018

ROUND ROBIN: TRADEOFFS

Short Time Slice
Fast Response Time

High overhead from
context switching

=Time slice impact:
=Turnaround time (for earlier example):
ts(1,2,3,4,5)=14,14,13,14,10
=Fairness: round robin is always fair, J=1

Long Time Slice

Slow Response Time

Low overhead from
context switching

October 8, 2018 TCS5422: Operating Systems [Fall 2018]
School of

Technology, University i Tacoma

.43

SCHEDULING WITH 1I/0

= STCF scheduler
= A: CPU=50ms, I/0=40ms, 10ms intervals
= B: CPU=50ms, |/0=0ms
= Consider A as 10ms subjobs (CPU, then 1/0)

= Without considering 1/0:
A B B B B

@

4

| CPU utilization=100/140=71%

i.i.i.i. e

T T T T T 1
0 20 40 60 80 100 120 140

Time (msec)

Poor Use of Resources

TCS5422: Operating Systems [Fall 2018]
School of Engineeri Technology, University i Tacoma

La.44

October 8, 2018

SCHEDULING WITH I/0 - 2

= When a job initiates an I/0 request
= A is blocked, waits for I/0 to compute, frees CPU
= STCF scheduler assigns B to CPU

= When I/0 completes - raise interrupt

A B AB A B AB A B

N

=Unblock A, STCF goes back to executing A: (10ms sub-job)

i

[Cpu utilization = 100/100=100%

T T T T T T
0 20 40 60 80 100 120

Time (msec)

Overlap Allows Better Use of Resources

October 8, 2018

TCS5422: Operating Systems [Fall 2018]
School of Engineeri Technology, University i Tacoma

.45

Which scheduler, thus far, best address fairness

and average response time of jobs?

|;| Respond at PollEv.com/wesleylloyd641
D Text WESLEYLLOYD641 to 22333 once to join, then 1, 2, 3, 4, 5...

First In - First Out (FIFO) | 1

Shortest Job First (SJF)

Shortest Time to
Completion First (STCF)

Round Robin

None of the Above

o U~ W N

All of the Above

CHAPTER 8 -

MULTI-LEVEL FEEDBACK
QUEUE (MLFQ) SCHEDULER

TCSS422: Operating Systems [Fall 2018]

(e o 2 School of Engineering and Technology, University of Washington -

MULTI-LEVEL FEEDBACK QUEUE

= QObjectives:

=*Improve turnaround time:
Run shorter jobs first

=Minimize response time:
Important for interactive jobs (Ul)

= Achieve without a priori knowledge of job length

La.48

October 8, 2018 TBSMZ; Operating Systems [Fall 2018]

School of Technology, University of Washi Tacoma

Slides by Wes J. Lloyd

L4.8

TCSS 422 A — Fall 2018
School of Engineering and Technology,

= Multiple job queues

[High Priority] Q8 —— @ —5

= Adjust job priority based on
observed behavior

Q7
= [nteractive Jobs Q6
= Frequent 1/0 > keep priority high Qs

= Interactive jobs require fast
response time (GUI/UI)

Q4—>©

= Batch Jobs Q3
= Require long periods of CPU Q2
utilization

= Keep priority low

[Low Priority] Ql —— @

TCS5422: Operating Systems [Fall 2018]

(i G 20T AT o T B o e s oy Tt A T T

| .49

10/8/2018

MLFQ: DETERMINING JOB PRIORITY

= New arriving jobs are placed into highest priority queue

= If a job uses its entire time slice, priority is reduced (|)
= Jobs appears CPU-bound (“batch” job), not interactive (GUI/UI)

= |f a job relinquishes the CPU for I/0O priority stays the same

MLFQ approximates SJF

TCSS422: Operating Systems [Fall 2018]

(i, o o L e e e o e T Tec e

1450

MLFQ: LONG RUNNING JOB

= Three-queue scheduler, time slice=10ms

Priority g

Q1

Qo

o so 100 150 200

Long-running Job Over Time (msec)

TCS5422: Operating Systems [Fall 2018]

(i G 20T e oolol Enpinearins ardlTechiolo syl e ity Ve hinetonETecoms

| 151

MLFQ: BATCH AND INTERACTIVE JOBS

" Aarrival_time =0MS, Ay 4ime=200ms,

® B un_time =20mS, B, jya1_time =100ms
Priority A I
N
N
N

150
Scheduling multiple jobs (ms)
TCSS422: Operating Systems [Fall 2018]
(Esin s, 2 ISehool of Erpineering andTect nolosyjUnversity ofWashinaton S Tacoma L2

MLFQ: BATCH AND INTERACTIVE - 2

= Continuous interactive job (B) with long running batch job (A)
= Low response time is good for B
= A continues to make progress

The MLFQ approach keeps interactive job(s) at the highest priority

H A1

N
Q@ R\
o s 100 150 200

A Mixed I/O-intensive and CPU-intensive Workload (msec)

Q2

pzzzzzz772)
zzzz77772)
pzzzz77771
bzzzzzzzz
722777772)
pzzzz77271
pzzzz7227)
rzzzz72273
rzzzzz7772)
bzzzz22223
rzzzzz7772)
rzzzzz7772)

TCSS422: Operating Systems [Fall 2018]

(i G 20T | Seoo[of Enginearing andiechiiolosylU nversity Ve hington S Tecoms

| 1453

MLFQ: ISSUES

= Starvation
[High Priority] Q8 —> @ _, _,@_, @_, ®_,®
Q7
Q6
Qs
o2
@3
Q

[Low Priority] Q1 — > ®_> @ CPU bound batch job(s)

TCSS422: Operating Systems [Fall 2018]

(e, 2 ISehool of Ergineering andTect nolosy|Unversity o Washinaton S Tacoma

Las4

Slides by Wes J. Lloyd

L4.9

TCSS 422 A — Fall 2018
School of Engineering and Technology,

MLFQ: ISSUES - 2

® Gaming the scheduler
= |ssue I/0 operation at 99% completion of the time slice
= Keeps job priority fixed - never lowered

= Job behavioral change
= CPU/batch process becomes an interactive process

thigh Pioiv] @8 —>(3) — () —(O—©)—©O—®
Q7
o
o
Q4
@
@
Priority becomes stuck W) toverieinl 1 —(Q)—s (5} crummassenions

TCS5422: Operating Systems [Fall 2018]

(i G 20T AT o T B o e s oy Tt A T T

55

10/8/2018

RESPONDING TO BEHAVIOR CHANGE

@, i i

Starvation
0 50 100 150 200

Without Priority Boost A:l B: c:g

= Priority Boost
= Reset all jobs to topmost queue after some time interval S

TCSS422: Operating Systems [Fall 2018]

Octobers2018) School of Engineering and Technology, University of Washington - Tacoma

| 1456

RESPONDING TO BEHAVIOR CHANGE - 2

= With priority boost
= Prevents starvation

Boost
Bogst

100 150 200

Without(Left) and With(Right) Priority Boost A] B:Y B

TCS5422: Operating Systems [Fall 2018]

(i G 20T e oolol Enpinearins ardlTechiolo syl e ity Ve hinetonETecoms

| 57

PREVENTING GAMING

= Improved time accounting:
= Track total job execution time in the queue
= Each job receives a fixed time allotment
= When allotment is exhausted, job priority is lowered

\

vz

Q0 Qo 5
(ARRNNRRRNRRRRUNT T] | |
0 50 100 150 200 [

Without(Left) and With(Right) Gaming Tolerance

TCSS422: Operating Systems [Fall 2018]

‘ Relobeps 2n e School of Engineering and Technology, University of Washington - Tacoma

L4.58 |

MLFQ: TUNING

= Consider the tradeoffs:
= How many queues?
= What is a good time slice?
= How often should we “Boost” priority of jobs?
= What about different time slices to different queues?

od

QL

o 50 00150 200

Example) 10ms for the highest queue, 20ms for the middle,
40ms for the lowest

TCSS422: Operating Systems [Fall 2018]

(i G 20T Seoo[of Enginearing andiechiiolosylU nversity Ve hington S Tecoms

| 1459 ‘

PRACTICAL EXAMPLE

= Oracle Solaris MLFQ implementation
=60 Queues >
w/ slowly increasing time slice (high to low priority)
= Provides sys admins with set of editable table(s)

= Supports adjusting time slices, boost intervals, priority
changes, etc.

= Advice
= Provide OS with hints about the process
= Nice command - Linux

TCSS422: Operating Systems [Fall 2018]

(e, 2 ISehool of Ergineering andTect nolosy|Unversity o Washinaton S Tacoma

1460

Slides by Wes J. Lloyd

L4.10

TCSS 422 A - Fall 2018 10/8/2018
School of Engineering and Technology,

Jackson deploys a 3-level MLFQ scheduler. The time slice is 1 for high priority jobs, 2 for medium
priority, and 4 for low priority. This MLFQ scheduler performs a Priority Boost every 6 timer units.
When the priority boost fires, the current job is preempted, and the next scheduled job is run in

ML FQ RULE SUMMARY round-robin order.
Job Arrival Time Job Length
A T=0 4
A . B T=0 16
= The refined set of MLFQ rules: c Too 3

= Rule 1: If Priority(A) > Priority(B), A runs (B doesn’t). (11 points) Show a scheduling graph for the MLFQ scheduler for the jobs above.

. - _ Ampof ; Draw vertical lines for key events and be sure to label the X-axis times as in the example.
® Rule 2: If Priority(A) = Priority(B), A & B run in RR. Please draw clearly. An unreadable graph will loose points.

= Rule 3: When a job enters the system, it is placed at the
highest priority.

= Rule 4: Once a job uses up its time allotment at a given
level (regardless of how many times it has given up the

HIGH
CPU), its priority is reduced(i.e., it moves down on queue). I
= Rule 5: After some time period S, move all the jobs in the MED I
system to the topmost queue. I
LOW |
Ocobers, s | [T O S (0] o T [o o

QUESTIONS

Slides by Wes J. Lloyd L4.11

