TCSS 422 A - Fall 2018
School of Engineering and Technology,

Processes, Process API,
Limited Direct Execution

Wes J. Lloyd
School of Engineering and Technology,
University of Washington - Tacoma

2 a s 3
October 3, 2018 TCS5422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington [l Tacoma

TCSS 422: OPERATING SYSTEMS
| |
=

10/3/2018

FEEDBACK FROM 10/1

= How do processes start threads?
=Done in code or by compiler?

= VM Survey - results submitted

= Assignment O questions

= C Tutorial - to be posted

October 3, 2018 T(SSMZ; Operating Systems [Fall 2018]

School o Technology, Universi ington - Tacoma

132 |

OBJECTIVES

= Chapter 4 - Processes
= Chapter 5 - Process API
= Chapter 6 - Limited Direct Execution

= Chapter 7 - Introduction to Scheduling
= Chapter 8 - Multi-level Feedback Queue

October 3, 2018 TcssAlzz; Operating Systems [Fall 2018]

School o Technology, University ington - Tacoma

| 33 ‘

Process State
Gy sonies e @)

T scheduler aispatch ||
vo o

or
ovent completon @»

§ /proc

vent wait

CHAPTER 4:
PROCESSES

TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington -

October 3, 2018

CPU VIRTUALIZING

= How should the CPU be shared?

= Time Sharing:
Run one process, pause it, run another

= How do we SWAP processes in and out of the CPU
efficiently?
= Goal is to minimize overhead of the swap

October 3, 2018

TCS5422: Operating Systems [Fall 2018]
School of Engineeri Technology, University i Tacoma

| 35 ‘

Slides by Wes J. Lloyd

PROCESS

running program

= Process comprises of:
= Memory
= Instructions (“the code”)
= Data (heap)

= Registers
= PC: Program counter
= Stack pointer

October 3, 2018 136

TCS5422: Operating Systems [Fall 2018]
School of Engineeri Technology, University of Washi Tacoma

L3.1

TCSS 422 A — Fall 2018
School of Engineering and Technology,

10/3/2018

PROCESS API

= Modern OSes provide a Process API for process support

= Create
= Create a new process

= Destroy

= Terminate a process (ctrl-c)
" Wait

= Wait for a process to complete/stop
= Miscellaneous Control

= Suspend process (ctrl-z)

= Resume process (fg, bg)

= Status
= Obtain process statistics: (top)

TCS5422: Operating Systems [Fall 2018]

7
School of Engineering and Technology, University of Washington - Tacoma | s ‘

October 3, 2018

PROCESS API: CREATE

1. Load program code (and static data) into memory
= Program executable code (binary): loaded from disk
= Static data: also loaded/created in address space

= Eager loadIng: Load entire program before running
= Lazy loading: Only load what is immediately needed
Modern OSes: Supports paging & swapping

2. Run-time stack creation
= Stack: local variables, function params, return address(es)

TCS$422: Operating Systems [Fall 2018] | 158 |

(B o o L e e e o e T Tec e

PROCESS API: CREATE

3. Create program’s heap memory
= For dynamically allocated data

4. Other initialization
= 1/0 Setup
Each process has three open file descriptors:
Standard Input, Standard Output, Standard Error

5. Start program running at the entry point: main ()
= OS transfers CPU control to the new process

TCS5422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma | 139 ‘

October 3, 2018 |

CPU Memory

code
static data
heap

Loading:
Reads program from
‘ disk into the address
space of process

Ny Program

TCSS422: Operating Systems [Fall 2018]

]
RS R School of Engineering and Technology, University of Washington - Tacoma L3.10

PROCESS STATES

= RUNNING
= Currently executing instructions

= READY
= Process is ready to run, but has been preempted
= CPU is presently allocated for other tasks

= BLOCKED
= Process is not ready to run. It is waiting for another event
to complete:
Process has already been initialized and run for awhile
Is now waiting on 1/0 from disk(s) or other devices

TCSS422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma | 1311 ‘

October 3, 2018

PROCESS STATE TRANSITIONS

\ Descheduled \

Runni [—— Ready |

\ /" scheduled . /
/ /

1/0: initiate //O: done

7N

\
Y

/
Blocked

\
AN

-~

TCSS422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma .12

October 3, 2018

Slides by Wes J. Lloyd

L3.2

TCSS 422 A — Fall 2018
School of Engineering and Technology,

10/3/2018

PROCESS DATA STRUCTURES

= 0S provides data structures to track process information

* Process list
Process Data
State of process: Ready, Blocked, Running

= Register context

= PCB (Process Control Block)
= A C-structure that contains information about each
process

October 3, 2018 TCS5422: Operating Systems [Fall 2018] | 513 ‘

School of Engineering and Technology, University of Washington - Tacoma

XV6 KERNEL DATA STRUCTURES

= Process data structure - textbook: xv6
Pedagogical implementation of Linux

information xv6 tracks about each proces

r *mem; Ste P CE memor
nt sz; Size proc memor
“har *kstack; of kerne

enum proc_state state;
int pid;

*parent; Parer

struct file *ofile[NOFILE]; 1
struct inode *cwd; “urrent directc
t context context; itch here to
trapframe *tf; Trap frame for th

TCSS422: Operating Systems [Fall 2018]

(B o o L e e e o e T Tec e

1314

XV6 KERNEL DATA STRUCTURES - 2

= CPU register context data structure - textbook: xv6

struct context {
eip; Index pointer register
esp; tack pointer reg
nt ebx; 1

ecx; Ce e 1 r r

edx;

esi; :
Nt edi; > tion in jister
ebp; tack base pointer register

e b b e e b e
+

b

r sta a proc
enum proc_state { UNUSED, EMBRYO, SLEEPING,
RUNNABLE, RUNNING, ZOMBIE };

TCS5422: Operating Systems [Fall 2018] | 1315 ‘

(i e 20T e oolol Enpinearins ardlTechiolo syl e ity Ve hinetonETecoms

LINUX: STRUCTURES

= struct task struct, equivalent to struct proc
= Provides process description
= Large: 10,000+ bytes
= /usr/src/linux-headers-{kernel version}/include/linux/sched.h
Starts at 1391

= struct thread info, provides “context”
= thread_info.h is at:

/usr/src/linux-headers-{kernel version}/arch/x86/include/asm/

TCSS422: Operating Systems [Fall 2018]

(i E ISehool of Erpineering andTect nolosyjUnversity ofWashinaton S Tacoma

13.16

LINUX: THREAD_INFO

® Linux thread data structure thread_info

struct thread_info {

struct task_struct *task; /* main task structure */
struct exec_domain *exec_domain; /* execution domain */

__u32 flags; /* low level flags */

“u32 status; /* thread synchronous flags */
__u32 cpu; /* current CPU */

int preempt_count; /* 0 => preemptable,

<0 => BUG */
mm_segment_t addr_limit;
struct restart block restart_block;
void __user *sysenter_return;
#ifdef CONFIG_X86_32
unsigned long previous_esp; /* ESP of the previous stack in
case of nested (IRQ) stacks

School of Engineering and Technology, University of Washington - Tacoma

*/
u8 supervisor_stack[0];
#endif
int uaccess_err;
}i
October 3, 2018 TCS5422: Operating Systems [Fall 2018] | 517 ‘

LINUX STRUCTURES - 2

= List of Linux data structures:
http://www.tldp.org/LDP/tlk/ds/ds.html

= Description of process data structures:
http://www.makelinux.net/books/lkd2/ch0O3leviseci

2nd edition is online (dated from 2005):

Linux Kernel Development, 29 editlon
Robert Love
Sams Publishing

TCS5422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

October 3, 2018

13.18

Slides by Wes J. Lloyd

L3.3

TCSS 422 A - Fall 2018
School of Engineering and Technology,

When a process is in this state, it is
-w- advantageous for the Operating System to

work

perform a CONTEXT SWITCH to perform other

W Ociober3 2018 TCSS422: Operating Systems [Fall 2018]

fo8: 1

RUNNING READY BLOCKED Allofthe None of
above theabove

L3, 1!.

10/3/2018

QUESTION: WHEN TO CONTEXT SWITCH

= When a process is in this state, it is advantageous for the

Operating System to perform a CONTEXT SWITCH to
perform other work:

= (a) RUNNING

= (b) READY

= (c) BLOCKED

= (d) All of the above

= (e) None of the above

October 3, 2018 T(SSMZ; Operating Systems [Fall 2018]

School of Technology, University i Tacoma 13.20

CHAPTER 5:
C PROCESS API

TCSS422: Operating Systems [Fall 2018]

(et h 2 School of Engineering and Technology, University of Washington -

fork()

= Creates a new process - think of “a fork in the road”
= “Parent” process is the original
= Creates “child” process of the program from the current
executlon polint
= Book says “pretty odd”
= Creates a dupllcate program instance (these are processes!)
= Copy of
= Address space (memory)
= Register
= Program Counter (PC)
= Fork returns
= child PID to parent
= 0 to child

October 3, 2018 TBSMZ; Operating Systems [Fall 2018]

School of Technology, University of Washi Tacoma

B2

FORK EXAMPLE

= pl.c

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int main(int arge, char *argv[]){
printf("hello world (pid:%d)\n", (int) getpid());

- int rc = fork();

fo(re < 0) {

fprintf (stderr, "fork failed\n
exit (1);

} £ (rc == 0) { n (new process)
printf("hello, I am child (pid:3d)\n", (int) getpid());

} pare: e r
printf("hello, I am parent of %d (pid:%d)\n",
re, (int) getpid());

i

07

October 3, 2018 TcssAlzz; Operating Systems [Fall 2018]

School o Technology, Uni

ity i Tacoma

| 1323

FORK EXAMPLE - 2

= Non deterministic ordering of execution

prompt> . /pl

hello world (pid:29146)

hello, I am parent of 29147 (pid:29146)
hello, I am child (pid:29147)

prompt>

or

prompt> ./pl

hello world (pid:29146)

hello, I am child (pid:29147)

hello, I am parent of 29147 (pid:29146)
prompt>

= CPU scheduler determines which to run first

Slides by Wes J. Lloyd

October 3, 2018 TBSMZ; Operating Systems [Fall 2018]

School of Technology, University of Washi Tacoma

1324

L3.4

TCSS 422 A — Fall 2018 10/3/2018
School of Engineering and Technology,

wait()

= wait(), waitpid()

= Called by parent process

= Waits for a child process to finish executing

= Not a sleep() function

= Provides some ordering to multi-process execution

P SN e S

TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

TCSS422: Operating Systems [Fall 2018]

October 3, 2018 School of Engineering and Technology, University of Washington - Tacoma

13.26

| 13.25 ‘ October 3, 2018

FORK WITH WAIT FORK WITH WAIT - 2

= Deterministic ordering of execution

#include <stdio.h>

#include <stdlib.h>
#include <unistd.h> prompt> . /p2
#include <sys/wait.h> hello world (pid:29266)
hello, I am child (pid:29267)
nt main(int arge, char *argv(])({ hello, I am parent of 29267 (wc:29267) (pid:29266)
printf("hello world (pid:%d)\n", (int) getpid()); prompt>
int rc = fork();
(xe < 0) (
fprintf (stderr, "fork failed\n");
exit (1);

} (re == 0) { (
printf("hello, I am child (pid:%d)\n", (int) getpid());

{
- Nt we = wait (NULL) ;
printf("hello, I am parent of %d (wc:d) (pid:3d)\n",
re, we, (int) getpid());

07

TCS5422: Operating Systems [Fall 2018]

TCS5422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

October 3, 2018 | 27 ‘ ReloberS 20 8 School of Engineering and Technology, University of Washington - Tacoma 1328

FORK EXAMPLE exec()

® Linux example = Supports running an external program
= 6 types: execl(), execlp(), execle(), execv(), execvp(), execvpe()

= execl(), execlp(), execle(): const char *arg

Command arguments provided as LIST of pointers
to strings provided as arguments... (arg0, argd, .. argn)
(terminated by a null pointer)

= execv(), execvp(), execvpe()
Command arguments provided as an ARRAY of pointers to
strings as arguments

Strings are null-terminated
First argument is name of file being executed

TCSS422: Operating Systems [Fall 2018]

TCS5422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

October 3, 2018 | 1329 ‘ RetoberS 208 School of Engineering and Technology, University of Washington - Tacoma 1330

Slides by Wes J. Lloyd L3.5

TCSS 422 A

— Fall 2018

School of Engineering and Technology,

EXEC() - 2

Common use case:

Write a new program which wraps a legacy one

Provide a new interface to an old system: Web services
Legacy program thought of as a “black box”

May not want to know what is inside the black box... @

FORTRAN ?2?

internatbehovior of the code is unknorn

Ouput
ot —— [T

TCS5422: Operating Systems [Fall 2018]

(i e 20T AT o T B o e s oy Tt A T T

| 1331 ‘

10/3/2018

EXEC EXAMPLE

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
finclude <string.h>
finclude <sys/wait.h>

int main(int arge, char *argv(]){
printf("hello world (pid:%d)\n", (int) getpid());
nt rc = fork();
(rc < 0) { i;
fprintf (stderr, "fork failed\n");
exit (1) ;
} - 0) (
printf("hello, I am child (pid:d)\n", (int) getpid());
- char *myargs[3];
myargs[0] = strdup("we"); s et
myargs[1] = strdup("p3.c"): :
myargs(2] = NULL;
iR TCSS422: Operating Systems [Fall 2018] 532

School of Engineering and Technology, University of Washington - Tacoma

EXEC EXAMPLE - 2

‘ execvp (myargs[0], myargs);

printf("this shouldn’t print out");
i {
nt we = wait (NULL);
printf("hello, I am parent of %d (wc:%d) (pid:%d)\n",
rc, we, (int) getpid());

07

prompt> ./p3

world (pid:29383)

, T am child (pid:29384)

7 1030 p3.c

, T am parent of 29384 (wc:29384) (pid:29383)
prompt>

TCS5422: Operating Systems [Fall 2018]

(i e 20T e oolol Enpinearins ardlTechiolo syl e ity Ve hinetonETecoms

| 1333 ‘

EXEC WITH FILE REDIRECTION (OUTPUT)

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
finclude <string.h>
finclude <fentl.h>
finclude <sys/wait.h>

int
main (int arge, char *argv([]){

int re = fork();
(rc < 0) Y
fprintf (stderr, "fork failed\n");

exit (1);
} (rc == 0)
close (STDOUT_FILENO) ;
q open ("./pd.output”, O_CREAT|O_WRONLY|O_TRUNC, S_IRWXU);

iR ‘ TCSS422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma

1334

FILE MODE BITS

- S_IRWXU

read, write, execute/search by owner
S_IRUSR

read permission, owner

S_IWUSR

write permission, owner

S_IXUSR

execute/search permission, owner
S_IRWXG

read, write, execute/search by group
S_IRGRP

read permission, group

S_IWGRP

write permission, group

S_IXGRP

execute/search permission, group
S_IRWXO

read, write, execute/search by others
S_IROTH

read permission, others

S_IWOTH

write permission, others

TCSS422: Operating Systems [Fall 2018]

(e 20T Seoo[of Enginearing andiechiiolosylU nversity Ve hington S Tecoms

| 335 ‘

EXEC W/ FILE REDIRECTION (OUTPUT) - 2

char *myargs(3];

myargs[0] = strdup ("wc");
myargs(1] = strdup("p4.c");
myargs([2] = NULL;

execvp (myargs (0], myargs);

int we = wait (NULL);

prompt> ./pd

prompt> cat pd.output
32 109 846 pd.c
prompt>

TCSS422: Operating Systems [Fall 2018]

(Bl s 2 ISehool of Ergineering andTect nolosy|Unversity o Washinaton S Tacoma

1336

Slides by Wes J. Lloyd

L3.6

TCSS 422 A - Fall 2018
School of Engineering and Technology,

Which Process API call is used to launch a

different program from the current program?

Fork() Exec() Wait()

above

None of All of
the the
above

10/3/2018

QUESTION: PROCESS API

= Which Process API call is used to launch a different
program from the current program?

= (a) Fork()

= (b) Exec()

= (c) Wait()

= (d) None of the above
= (e) All of the above

October 3, 2018 T(SSMZ; Operating Systems [Fall 2018]

School o Technology, Universi i Tacoma

1338

CH. 6:
LIMITED DIRECT
EXECUTION

TCSS422: Operating Systems [Fall 2018]

(et h 2 School of Engineering and Technology, University of Washington -

VIRTUALIZING THE CPU

= How does the CPU support running so many jobs
simultaneously?

= Time Sharing

= Tradeoffs:

= Performance

= Excessive overhead
= Control

= Fairness

= Security

= Both HW and OS support
is used

October 3, 2018 T(SSMZ; Operating Systems [Fall 2018]

School o Technology, Universi i Tacoma

13.40

COMPUTER BOOT SEQUENCE:

0OS WITH DIRECT EXECUTION

= What if programs could directly control the CPU / system?

0s Program

1. Create entry for process list
2. Allocate memory for
program

3. Load program into memory
4. Set up stack with arge /
argv

5. Clear registers

6. Execute call main ()

7. Run main ()

9. Free memory of process
10. Remove from process list

8. Execute return from main ()

October 3, 2018 TcssAlzz; Operating Systems [Fall 2018]

School o Technology, University i Tacoma

| 341

Slides by Wes J. Lloyd

COMPUTER BOOT SEQUENCE:
OS WITH DIRECT EXECUTION

= What if programs could directly control the CPU / system?

0os Program

1. Create entry for process list
2. Allocate memory for

Without /imits on running programs,
the OS wouldn’t be in control of anything
and would

7. Run main ()
8. Execute return from main ()

5. Clear registers
6. Execute call main ()

9. Free memory of process
10. Remove from process list

October 3, 2018 T(SSMZ; Operating Systems [Fall 2018]

School of Technology, University of Washi Tacoma

1342

L3.7

TCSS 422 A — Fall 2018
School of Engineering and Technology,

10/3/2018

DIRECT EXECUTION - 2

= With direct executlon:

How does the OS stop a program from running, and switch
to another to support time sharing?

How do programs share disks and perform /0 if they are
given direct control? Do they know about each other?

With direct execution, how can dynamic memory structures
such as linked lists grow over time?

CONTROL TRADEOFF

= Too little control:
= No security
= No time sharing

=Too much control:
=Too much OS overhead
= Poor performance for compute & I/0
= Complex APlIs (system calls), difficult to use

October 3, 2018 TCS5422: Operating Systems [Fall 2018] | 1343

School of Engineering and Technology, University of Washington - Tacoma

TCSS422: Operating Systems [Fall 2018]

4
School of Engineering and Technology, University of Washington - Tacoma 1344

October 3, 2018

CONTEXT SWITCHING OVERHEAD

Context Switching Total cost of

context switching

Multitasking

vs. Multitasking with context switching

sequential

LIMITED DIRECT EXECUTION

= 0S implements LDE to support time/resource sharing

= Limited direct execution means “only limited” processes
can execute DIRECTLY on the CPU in trusted mode

= TRUSTED means the process is trusted, and it can do
anything... (e.g. it is a system / kernel level process)

= Enabled by protected (safe) control transfer
= CPU supported context switch

= Provides data isolation

October 3, 2018 TCS5422: Operating Systems [Fall 2018] | 1345

School of Engineering and Technology, University of Washington - Tacoma

TCSS422: Operating Systems [Fall 2018]

”
School of Engineering and Technology, University of Washington - Tacoma 1346

October 3, 2018

CPU MODES

= Utilize CPU Privilege Rings (Intel x86)
= rings O (kernel), 1 (VM kernel), 2 (unused), 3 (user)
access €—————— no access

= User mode:
Application is running, but w/o direct I/0 access

= Kernel mode:
0S kernel is running performing restricted operations

CPU MODES

= User mode: ring 3 - untrusted
=Some instructions and registers are disabled by the CPU

= Exception registers
= HALT instruction

= MMU instructions

= 0S memory access
=1/0 device access

= Kernel mode: ring O - trusted
= All instructions and registers enabled

October 3, 2018

TCS5422: Operating Systems [Fall 2018] a7
School of Engineering and Technology, University of Washington - Tacoma i

TCS5422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

October 3, 2018 13.48

Slides by Wes J. Lloyd

L3.8

TCSS 422 A - Fall 2018
School of Engineering and Technology,

SYSTEM CALLS

= Implement restricted “OS” operations
= Kernel exposes key functions through an API:
=Device I/0 (e.g.file 1/0)

= Memory management/allocation: malloc()
= Creating/destroying processes

= Task swapping: context switching between processes

October 3, 2018 TcssAlzz; Operating Systems [Fall 2018]

School o Technology, University i Tacoma

| 1349 ‘

10/3/2018

TRAPS:
SYSTEM CALLS, EXCEPTIONS, INTERRUPTS

Mainline Code Intermupt Service Routine

loop({
= Trap: any transfer to kernel mode

instruction &
instruction 4
instruction

= Three kinds of traps

= System call: (planned) user > kernel
SYSCALL for 1/0, etc.

= Exception: (error) user > kernel

Div by zero, page fault, page protection error

= Interrupt: (event) user > kernel
Non-maskable vs. maskable
Keyboard event, network packet arrival, timer ticks
Memory parity error (ECC), hard drive failure

EXCEPTION TYPES

(kernel mode)

=) i
remember address of

ialize trap table
syscall handler

Hardware Program

(kernel mode) (user mode)

Create entry for process list
Allocate memory for program
Load program into memory

Computer BOOT Sequence:

move to kernel mode
jump to trap handler

Handle trap
‘ Do work of syscall

return-from-traj
B restore regs from kernel stack
B rrove o user moce

jump to PC after trap
) return from main
trap (via exit ()

Free memory of process
Remove from process list

TCSS422: Operating Systems [Fall 2018]

R D School of Engineering and Technology, University of Washington - Tacoma

OS with Limited Direct Execution

prm— coerced Nonmaskable setween Resume
Symotvonous s recuest Nonmaskable Between Resume
Symotvonous r— Usar maskatle Betvsen Resume
Synctvonous s recuest Usar maskatle Between Resume
G o e winin Resumo
Symctvonous Coerced Usar maskatle witin Resume
Gz = e winin Resumo
Synctvonous Coerced Usar maskatle witin Resume
Symotvonous Coerced Nonmaskable witin Resume
G o (o wiin Terminats
e o [wiin Terminate
Aspnotvonous coerced Nonmaskable witin Torminate
TCSS422: Operating Systems [Fall 2018]
October 3, 2018 peratig Systems]| [: Bs1
School of Technology, y Tacoma
0S @ boot Hardware

13,53

Slides by Wes J. Lloyd

TCSS422: Operating Systems [Fall 2018]
(B o o L e e e o e T Tec e 1350
0S @ boot Hardware
(kernel mode)
- ize trap table
remember address of
q syscall handler
Hardware Program
(kernel mode) (user mode)
Create entry for process list
- Allocate memory for program
Load program into memory
Setup user stack with argv
Fill kernel stack with reg/PC
return-from -trap
restore regs from kernel stack
- move to user mode
jump to main
Run main()
' Call system
trap into OS
save regs to kernel stack
move to kernel mode
jump to trap handler
Handle trap
- Do work of syseall
fetuth flom:-fiap restore regs from kernel stack
move to user mode
jump to PC after trap
‘ return from main
trap (via exit ()
Free memory of process
Remove from process list
TCSS422: Operating Systems [Fall 2018]
RS R School of Engineering and Technology, University of Washington - Tacoma L3.52
= How/when should the OS regain control of the CPU to
switch between processes?
= Cooperative multitasking (mostly pre 32-bit)
= < Windows 95, Mac 0SX
= Opportunistic: running programs must give up control
User programs must call a special yleld system call
When performing 1/0
lllegal operations
= (POLLEV)
What problems could you for see with this approach?
October 3, 2018 TCSS422: Operating Systems [Fall 2018] 13.54
’ School of i i Technology, University of i Tacoma -

L3.9

TCSS 422 A - Fall 2018 10/3/2018
School of Engineering and Technology,

QUESTIONS

Slides by Wes J. Lloyd L3.10

