
TCSS 422 A – Fall 2018
School of Engineering and Technology,

10/3/2018

L3.1Slides by Wes J. Lloyd

October 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

Processes, Process API,
Limited Direct Execution

Wes J. Lloyd
School of Engineering and Technology,
University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 How do processes start threads?

 Done in code or by compiler?

 VM Survey – results submitted

 Assignment 0 questions

 C Tutorial – to be posted

October 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L3.2

FEEDBACK FROM 10/1

 Chapter 4 – Processes

 Chapter 5 – Process API

 Chapter 6 – Limited Direct Execution

 Chapter 7 – Introduction to Scheduling

 Chapter 8 – Multi-level Feedback Queue

October 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L3.3

OBJECTIVES

CHAPTER 4:
PROCESSES

October 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma L3.4

 How should the CPU be shared?

 Time Sharing:
Run one process, pause it, run another

 How do we SWAP processes in and out of the CPU
efficiently?

 Goal is to minimize overhead of the swap

October 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L3.5

CPU VIRTUALIZING

 Process comprises of:

Memory
 Instructions (“the code”)

 Data (heap)

 Registers
 PC: Program counter

 Stack pointer

October 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L3.6

PROCESS

A process is a running program.

TCSS 422 A – Fall 2018
School of Engineering and Technology,

10/3/2018

L3.2Slides by Wes J. Lloyd

 Modern OSes provide a Process API for process support

 Create
 Create a new process

 Destroy
 Terminate a process (ctrl-c)

 Wait
 Wait for a process to complete/stop

 Miscellaneous Control
 Suspend process (ctrl-z)
 Resume process (fg, bg)

 Status
 Obtain process statistics: (top)

October 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L3.7

PROCESS API

1. Load program code (and static data) into memory

 Program executable code (binary): loaded from disk

 Static data: also loaded/created in address space

 Eager loading: Load entire program before running

 Lazy loading: Only load what is immediately needed
 Modern OSes: Supports paging & swapping

2. Run-time stack creation

 Stack: local variables, function params, return address(es)

October 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L3.8

PROCESS API: CREATE

3. Create program’s heap memory
 For dynamically allocated data

4. Other initialization
 I/O Setup
 Each process has three open file descriptors:

Standard Input, Standard Output, Standard Error

5. Start program running at the entry point: main()
 OS transfers CPU control to the new process

October 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L3.9

PROCESS API: CREATE

October 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma L3.10

code
static data

heap

stack

Process

Memory

code
static data

heap

Program

Loading:
Reads program from
disk into the address

space of process

CPU

 RUNNING

 Currently executing instructions

 READY

 Process is ready to run, but has been preempted

 CPU is presently allocated for other tasks

 BLOCKED

 Process is not ready to run. It is waiting for another event
to complete:
 Process has already been initialized and run for awhile

 Is now waiting on I/O from disk(s) or other devices

October 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L3.11

PROCESS STATES

October 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L3.12

PROCESS STATE TRANSITIONS

Running Ready

Blocked

Descheduled

Scheduled

I/O: doneI/O: initiate

TCSS 422 A – Fall 2018
School of Engineering and Technology,

10/3/2018

L3.3Slides by Wes J. Lloyd

 OS provides data structures to track process information

 Process list
 Process Data

 State of process: Ready, Blocked, Running

 Register context

 PCB (Process Control Block)

 A C-structure that contains information about each
process

October 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L3.13

PROCESS DATA STRUCTURES

 Process data structure - textbook: xv6
Pedagogical implementation of Linux

October 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L3.14

XV6 KERNEL DATA STRUCTURES

// the information xv6 tracks about each process
// including its register context and state
struct proc {

char *mem; // Start of process memory
uint sz; // Size of process memory
char *kstack; // Bottom of kernel stack

// for this process
enum proc_state state; // Process state
int pid; // Process ID
struct proc *parent; // Parent process
void *chan; // If non-zero, sleeping on chan
int killed; // If non-zero, have been killed
struct file *ofile[NOFILE]; // Open files
struct inode *cwd; // Current directory
struct context context; // Switch here to run process
struct trapframe *tf; // Trap frame for the

// current interrupt
};

 CPU register context data structure - textbook: xv6

October 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L3.15

XV6 KERNEL DATA STRUCTURES - 2

// the registers xv6 will save and restore
// to stop and subsequently restart a process
struct context {

int eip; // Index pointer register
int esp; // Stack pointer register
int ebx; // Called the base register
int ecx; // Called the counter register
int edx; // Called the data register
int esi; // Source index register
int edi; // Destination index register
int ebp; // Stack base pointer register

};

// the different states a process can be in
enum proc_state { UNUSED, EMBRYO, SLEEPING,

RUNNABLE, RUNNING, ZOMBIE };

 struct task_struct, equivalent to struct proc
 Provides process description

 Large: 10,000+ bytes

 /usr/src/linux-headers-{kernel version}/include/linux/sched.h
 Starts at 1391

 struct thread_info, provides “context”
 thread_info.h is at:

/usr/src/linux-headers-{kernel version}/arch/x86/include/asm/

October 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L3.16

LINUX: STRUCTURES

 Linux thread data structure thread_info

October 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L3.17

LINUX: THREAD_INFO

struct thread_info {
struct task_struct *task; /* main task structure */
struct exec_domain *exec_domain; /* execution domain */
__u32 flags; /* low level flags */
__u32 status; /* thread synchronous flags */
__u32 cpu; /* current CPU */
int preempt_count; /* 0 => preemptable,

<0 => BUG */
mm_segment_t addr_limit;
struct restart_block restart_block;
void __user *sysenter_return;

#ifdef CONFIG_X86_32
unsigned long previous_esp; /* ESP of the previous stack in

case of nested (IRQ) stacks
*/

__u8 supervisor_stack[0];
#endif

int uaccess_err;
};

 List of Linux data structures:
http://www.tldp.org/LDP/tlk/ds/ds.html

 Description of process data structures:
http://www.makelinux.net/books/lkd2/ch03lev1sec1
2nd edition is online (dated from 2005):

Linux Kernel Development, 2nd edition
Robert Love
Sams Publishing

October 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L3.18

LINUX STRUCTURES - 2

TCSS 422 A – Fall 2018
School of Engineering and Technology,

10/3/2018

L3.4Slides by Wes J. Lloyd

October 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma L3.19

 When a process is in this state, it is advantageous for the
Operating System to perform a CONTEXT SWITCH to
perform other work:

 (a) RUNNING

 (b) READY

 (c) BLOCKED

 (d) All of the above

 (e) None of the above

October 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L3.20

QUESTION: WHEN TO CONTEXT SWITCH

CHAPTER 5:
C PROCESS API

October 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma L3.21

 Creates a new process - think of “a fork in the road”
 “Parent” process is the original
 Creates “child” process of the program from the current

execution point
 Book says “pretty odd”
 Creates a duplicate program instance (these are processes!)
 Copy of
 Address space (memory)
 Register
 Program Counter (PC)

 Fork returns
 child PID to parent
 0 to child

October 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L3.22

fork()

 p1.c

October 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L3.23

FORK EXAMPLE

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int main(int argc, char *argv[]){
printf("hello world (pid:%d)\n", (int) getpid());
int rc = fork();
if (rc < 0) { // fork failed; exit

fprintf(stderr, "fork failed\n");
exit(1);

} else if (rc == 0) { // child (new process)
printf("hello, I am child (pid:%d)\n", (int) getpid());

} else { // parent goes down this path (main)
printf("hello, I am parent of %d (pid:%d)\n",
rc, (int) getpid());

}
return 0;

}

 Non deterministic ordering of execution

or

 CPU scheduler determines which to run first

October 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L3.24

FORK EXAMPLE - 2

prompt> ./p1
hello world (pid:29146)
hello, I am parent of 29147 (pid:29146)
hello, I am child (pid:29147)
prompt>

prompt> ./p1
hello world (pid:29146)
hello, I am child (pid:29147)
hello, I am parent of 29147 (pid:29146)
prompt>

TCSS 422 A – Fall 2018
School of Engineering and Technology,

10/3/2018

L3.5Slides by Wes J. Lloyd

October 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma L3.25

:(){ :|: & };:

 wait(), waitpid()

 Called by parent process

 Waits for a child process to finish executing

 Not a sleep() function

 Provides some ordering to multi-process execution

October 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L3.26

wait()

October 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L3.27

FORK WITH WAIT

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/wait.h>

int main(int argc, char *argv[]){
printf("hello world (pid:%d)\n", (int) getpid());
int rc = fork();
if (rc < 0) { // fork failed; exit

fprintf(stderr, "fork failed\n");
exit(1);

} else if (rc == 0) { // child (new process)
printf("hello, I am child (pid:%d)\n", (int) getpid());

} else { // parent goes down this path (main)
int wc = wait(NULL);
printf("hello, I am parent of %d (wc:%d) (pid:%d)\n",
rc, wc, (int) getpid());

}
return 0;

}

 Deterministic ordering of execution

October 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L3.28

FORK WITH WAIT - 2

prompt> ./p2
hello world (pid:29266)
hello, I am child (pid:29267)
hello, I am parent of 29267 (wc:29267) (pid:29266)
prompt>

 Linux example

October 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L3.29

FORK EXAMPLE

 Supports running an external program

 6 types: execl(), execlp(), execle(), execv(), execvp(), execvpe()

 execl(), execlp(), execle(): const char *arg

Command arguments provided as LIST of pointers
to strings provided as arguments… (arg0, arg1, .. argn)
(terminated by a null pointer)

 execv(), execvp(), execvpe()
Command arguments provided as an ARRAY of pointers to
strings as arguments

Strings are null-terminated
First argument is name of file being executed

October 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L3.30

exec()

TCSS 422 A – Fall 2018
School of Engineering and Technology,

10/3/2018

L3.6Slides by Wes J. Lloyd

 Common use case:

 Write a new program which wraps a legacy one

 Provide a new interface to an old system: Web services

 Legacy program thought of as a “black box”

 May not want to know what is inside the black box…

 FORTRAN ???

October 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L3.31

EXEC() - 2

October 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L3.32

EXEC EXAMPLE

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <sys/wait.h>

int main(int argc, char *argv[]){
printf("hello world (pid:%d)\n", (int) getpid());
int rc = fork();
if (rc < 0) { // fork failed; exit

fprintf(stderr, "fork failed\n");
exit(1);

} else if (rc == 0) { // child (new process)
printf("hello, I am child (pid:%d)\n", (int) getpid());
char *myargs[3];
myargs[0] = strdup("wc"); // program: "wc" (word count)
myargs[1] = strdup("p3.c"); // argument: file to count
myargs[2] = NULL; // marks end of array
…

October 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L3.33

EXEC EXAMPLE - 2

…
execvp(myargs[0], myargs); // runs word count
printf("this shouldn’t print out");

} else { // parent goes down this path (main)
int wc = wait(NULL);
printf("hello, I am parent of %d (wc:%d) (pid:%d)\n",

rc, wc, (int) getpid());
}
return 0;

}

prompt> ./p3
hello world (pid:29383)
hello, I am child (pid:29384)
29 107 1030 p3.c
hello, I am parent of 29384 (wc:29384) (pid:29383)
prompt>

October 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L3.34

EXEC WITH FILE REDIRECTION (OUTPUT)

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <fcntl.h>
#include <sys/wait.h>

int
main(int argc, char *argv[]){

int rc = fork();
if (rc < 0) { // fork failed; exit

fprintf(stderr, "fork failed\n");
exit(1);

} else if (rc == 0) { // child: redirect standard output to a file
close(STDOUT_FILENO);
open("./p4.output", O_CREAT|O_WRONLY|O_TRUNC, S_IRWXU);
…

October 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L3.35

FILE MODE BITS

S_IRWXU
read, write, execute/search by owner
S_IRUSR
read permission, owner
S_IWUSR
write permission, owner
S_IXUSR
execute/search permission, owner
S_IRWXG
read, write, execute/search by group
S_IRGRP
read permission, group
S_IWGRP
write permission, group
S_IXGRP
execute/search permission, group
S_IRWXO
read, write, execute/search by others
S_IROTH
read permission, others
S_IWOTH
write permission, others

October 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L3.36

EXEC W/ FILE REDIRECTION (OUTPUT) - 2

…
// now exec "wc"...
char *myargs[3];
myargs[0] = strdup("wc"); // program: "wc" (word count)
myargs[1] = strdup("p4.c"); // argument: file to count
myargs[2] = NULL; // marks end of array
execvp(myargs[0], myargs); // runs word count

} else { // parent goes down this path (main)
int wc = wait(NULL);

}
return 0;

}

prompt> ./p4
prompt> cat p4.output
32 109 846 p4.c
prompt>

TCSS 422 A – Fall 2018
School of Engineering and Technology,

10/3/2018

L3.7Slides by Wes J. Lloyd

October 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma L3.37

 Which Process API call is used to launch a different
program from the current program?

 (a) Fork()

 (b) Exec()

 (c) Wait()

 (d) None of the above

 (e) All of the above

October 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L3.38

QUESTION: PROCESS API

CH. 6:
LIMITED DIRECT

EXECUTION

October 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma L3.39

 How does the CPU support running so many jobs
simultaneously?

 Time Sharing

 Tradeoffs:

 Performance
 Excessive overhead

 Control
 Fairness

 Security

 Both HW and OS support
is used

October 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L3.40

VIRTUALIZING THE CPU

 What if programs could directly control the CPU / system?

October 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L3.41

COMPUTER BOOT SEQUENCE:
OS WITH DIRECT EXECUTION

OS Program
1. Create entry for process list
2. Allocate memory for
program
3. Load program into memory
4. Set up stack with argc /
argv
5. Clear registers
6. Execute call main()

9. Free memory of process
10. Remove from process list

7. Run main()
8. Execute return from main()

 What if programs could directly control the CPU / system?

October 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L3.42

COMPUTER BOOT SEQUENCE:
OS WITH DIRECT EXECUTION

OS Program
1. Create entry for process list
2. Allocate memory for
program
3. Load program into memory
4. Set up stack with argc /
argv
5. Clear registers
6. Execute call main()

9. Free memory of process
10. Remove from process list

7. Run main()
8. Execute return from main()

Without limits on running programs,
the OS wouldn’t be in control of anything

and would “just be a library”

TCSS 422 A – Fall 2018
School of Engineering and Technology,

10/3/2018

L3.8Slides by Wes J. Lloyd

 With direct execution:

How does the OS stop a program from running, and switch
to another to support time sharing?

How do programs share disks and perform I/O if they are
given direct control? Do they know about each other?

With direct execution, how can dynamic memory structures
such as linked lists grow over time?

October 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L3.43

DIRECT EXECUTION - 2

 Too little control:
 No security

 No time sharing

 Too much control:
 Too much OS overhead

 Poor performance for compute & I/O

 Complex APIs (system calls), difficult to use

October 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L3.44

CONTROL TRADEOFF

October 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L3.45

CONTEXT SWITCHING OVERHEAD

 OS implements LDE to support time/resource sharing

 Limited direct execution means “only limited” processes
can execute DIRECTLY on the CPU in trusted mode

 TRUSTED means the process is trusted, and it can do
anything… (e.g. it is a system / kernel level process)

 Enabled by protected (safe) control transfer

 CPU supported context switch

 Provides data isolation

October 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L3.46

LIMITED DIRECT EXECUTION

 Utilize CPU Privilege Rings (Intel x86)
 rings 0 (kernel), 1 (VM kernel), 2 (unused), 3 (user)

 User mode:
Application is running, but w/o direct I/O access

 Kernel mode:
OS kernel is running performing restricted operations

October 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L3.47

CPU MODES

access no access

 User mode: r ing 3 - untrusted

 Some instructions and registers are disabled by the CPU

 Exception registers

 HALT instruction

MMU instructions

 OS memory access

 I/O device access

 Kernel mode: r ing 0 – trusted

 All instructions and registers enabled

October 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L3.48

CPU MODES

TCSS 422 A – Fall 2018
School of Engineering and Technology,

10/3/2018

L3.9Slides by Wes J. Lloyd

 Implement restricted “OS” operations

 Kernel exposes key functions through an API:

 Device I/O (e.g. file I/O)

 Task swapping: context switching between processes

Memory management/allocation: malloc()

 Creating/destroying processes

October 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L3.49

SYSTEM CALLS

 Trap: any transfer to kernel mode

 Three kinds of traps
 System call: (planned) user  kernel
 SYSCALL for I/O, etc.

 Exception: (error) user  kernel
 Div by zero, page fault, page protection error

 Interrupt: (event) user  kernel
 Non-maskable vs. maskable
 Keyboard event, network packet arrival, timer ticks
 Memory parity error (ECC), hard drive failure

October 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L3.50

TRAPS:
SYSTEM CALLS, EXCEPTIONS, INTERRUPTS

Exception type
Synchronous vs.

asynchronous
User request vs.

coerced
User maskable vs.

nonmaskable
Within vs. between

instructions
Resume vs. terminate

I/O device request Asynchronous Coerced Nonmaskable Between Resume

Invoke operating system Synchronous User request Nonmaskable Between Resume

Tracing instruction execution Synchronous User request User maskable Between Resume

Breakpoint Synchronous User request User maskable Between Resume

Integer arithmetic overflow Synchronous Coerced User maskable Within Resume

Floating-point arithmetic overflow
or underflow

Synchronous Coerced User maskable Within Resume

Page fault Synchronous Coerced Nonmaskable Within Resume

Misaligned memory accesses Synchronous Coerced User maskable Within Resume

Memory protection violation Synchronous Coerced Nonmaskable Within Resume

Using undefined instruction Synchronous Coerced Nonmaskable Within Terminate

Hardware malfunction Asynchronous Coerced Nonmaskable Within Terminate

Power failure Asynchronous Coerced Nonmaskable Within Terminate

October 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L3.51

EXCEPTION TYPES

October 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma L3.52

October 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma L3.53

Computer BOOT Sequence:
OS with Limited Direct Execution

 How/when should the OS regain control of the CPU to
switch between processes?

 Cooperative multitasking (mostly pre 32-bit)

 < Windows 95, Mac OSX

 Opportunistic: running programs must give up control
 User programs must call a special yield system call

 When performing I/O

 Illegal operations

 (POLLEV)
What problems could you for see with this approach?

October 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L3.54

MULTITASKING

TCSS 422 A – Fall 2018
School of Engineering and Technology,

10/3/2018

L3.10Slides by Wes J. Lloyd

QUESTIONS

