TCSS 422 A - Fall 2018
School of Engineering and Technology,

Slides by Wes J.

TCSS 422: OPERATING SYSTEMS

INTRODUCTION

Wes J. Lloyd
School of Engineering and Technology,
University of Washington - Tacoma

TCSS422: Operating Systems [Fall 2018]

CCtobERlI2012 School of Engineering and Technology, University of Washington il Tacoma

FEEDBACK FROM 9/26

® Mostly Review to Me: 1 - 2 respondents
2 - 2 respondents
4 - 3 respondents

= Mostly New to Me >=5 - rest of class
10 - 7 respondents

TCSS422: Operating Systems [Fall 2018]

October 1, 2018 School of Engineering and Technology, University of Washington - Tacoma

L2.2

Lioyd

9/30/2018

L2.1

TCSS 422 A — Fall 2018

School of Engineering and Technology,

FEEDBACK - 2

® Abstraction
® Virtualization
® Physical memory vs Virtual memory

® The OS is a resource manager, and acts almost like a

brain

® Processes vs Threads: What are threads inside a process?

® “Task” not defined as process or thread
= “Task” is seen on Linux top

® Command line

®E Linux commands

October 1, 2018 TCSS422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma

OBJECTIVES

= Chapter 2 - Introduction to operating systems

= THREE EASY PIECES:
Virtualizing the CPU (review)
Virtualizing Memory
Virtualizing 1/0

= Operating system design goals
® Chapter 4 - Processes

® Chapter 5 - Process API
® Chapter 6 - Limited Direct Execution

October 1, 2018 TCSS422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

9/30/2018

L2.2

TCSS 422 A — Fall 2018

School of Engineering and Technology,

Slides by Wes J.

October 1, 2018

INTRODUCTION TO
OPERATING SYSTEMS

TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington -

OPERATING SYSTEMS

®m Responsible for:
= Making it easy to run programs
=Allowing programs to share memory
=Enabling programs to interact with devices

correctly efficiently

October 1, 2018

TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.6

Lioyd

9/30/2018

L2.3

TCSS 422 A — Fall 2018

School of Engineering and Technology,

RESOURCE MANAGEMENT

®"The OS is a resource manager
= Manages CPU, disk, network I/0
= Enables many programs to
=Share the CPU
=Share the underlying physical memory (RAM)

=Share physical devices
Disks
Network Devices

TCSS422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma L27

October 1, 2018

VIRTUALIZATION

® Operating systems present physical resources
as virtual representations to the programs sharing
them

Physical resources: CPU, disk, memory, ...
*The virtual form is “abstract”

*The OS presents an illusion that each user program
runs in isolation on its own hardware

= This virtual form is general, powerful, and easy-to-use

TCSS422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma L28

October 1, 2018

Slides by Wes J. Lloyd

9/30/2018

L2.4

TCSS 422 A — Fall 2018

School of Engineering and Technology,

ABSTRACTIONS

= What form of abstraction does the OS provide?

“CPU

Process and/or thread
*Memory

Address space

- large array of bytes

All programs see the same “size” of RAM
=*Disk

Files

TCSS422: Operating Systems [Fall 2018]

October 1,2018 School of Engineering and Technology, University of Washington - Tacoma

L2.9

WHY ABSTRACTION?

= Allow applications to reuse common facilities
= Make different devices look the same

= Easier to write common code to use devices
Linux/Unix Block Devices

= Provide higher level abstractions
= More useful functionality

TCSS422: Operating Systems [Fall 2018]

October 1, 2018 School of Engineering and Technology, University of Washington - Tacoma

L2.10

Slides by Wes J. Lloyd

9/30/2018

L2.5

TCSS 422 A — Fall 2018

School of Engineering and Technology,

ABSTRACTION CHALLENGES

® What level of abstraction?

*How much of the underlying hardware should be
exposed?

What if too much?
What if too little?
= What are the correct abstractions?
=Security concerns

TCSS422: Operating Systems [Fall 2018]

October 1,2018 School of Engineering and Technology, University of Washington - Tacoma

L2.11

VIRTUALIZING THE CPU

®m Each running program gets its own “virtual” representation of
the CPU

® Many programs seem to run at once

] . ” [Tacks: 654 total, 1 running, 653 sieeping, 0 stopped, 0 zo%bic
inux: “top” command shows [z s wrse i, 5o ot

a3asek free, s
Swap: 21635772k total, 72252k used, 21763520k free, 55283536k cached

process list

pr 200
P20 0
pt 20 0
Pt 20 0 6o
o 20 0
Pt
Pt o
Pt o
Pt o

H

852

B8

2073
a062:

= Windows: task manager i

2 0 60w
2
2

2
110t ypt 2 b
15153 eucalypt 20 O G00m 16a 1
17718 eucalypt 20 O G00m 20m 16m
30829 cucalypt 20 O GO0m 15m 1
31711 eucalypr 20 Rt
78 oot 20 0 ¥
1069 cucalypt 20 0 G0Om 20m 16m S 0.
2 0 G0 1084205 0.
2 0 G 2m 2ms 0.
2 0 G0 2a 2ms 0.
2 0 G 2n 2ms 0.
2 0 G 2n 2ms 0.
2 0 Gm 2a 2ms 0.
2 0 6w 2m 2ms 0.
t 20 0 G0 27 2mS 0.
20

0 o 20
0 0 19356 1208 948 5

20 00 0

R0 o0 o0 0

20 0 0 0

R0 o0 o0 0

R0 0 0 0

R0 0 0 0

R0 0 0 0

onomn 20 0 0 0

oo 0 0 0

R0 0 0 0

2rot RT O 0 0 0

TCSS422: Operating Systems [Fall 2018]

October 1, 2018 School of Engineering and Technology, University of Washington - Tacoma

L2.12

Slides by Wes J. Lloyd

9/30/2018

L2.6

TCSS 422 A — Fall 2018

School of Engineering and Technology,

VIRTUALIZING THE CPU - 2

® Simple Looping C Program

int
main
9 {

W Joy U WwWN

20 }

#include <stdio.h>
#include <stdlib.h>
#include <sys/time.h>
#include <assert.h>
#include "common.h"

(int argc, char *argvl[])

it (argc !'= 2) {
fprintf (stderr, "usage: cpu <string>\n");
exit (1) ;

}

char *str = argv[1l];

while (1) {
Spin(1l); // Repeat
returns once it ha
printf ("$s\n", str);

}

return 0;

October 1, 2018

TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.13

VIRTUALIZING THE CPU - 3

prompt> gcc -o cpu cpu.c -Wall
prompt> ./cpu "A"

A

A

A

e

prompt>

® Runs forever, must Ctrl-C to halt...

October 1, 2018

TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.14

Slides by Wes J. Lloyd

9/30/2018

L2.7

TCSS 422 A — Fall 2018

School of Engineering and Technology,

VIRTUALIZATION THE CPU - 4

prompt> ./cpu A & ; ./cpu B & ; ./cpu C & ; ./cpu D &
[1] 7353

cOwaQrFr QU QU

]
[3] 7355
]

7354

one processor
at the same time

October 1, 2018

TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.15

VIRTUALIZING MEMORY

= Computer memory is treated as a large array of bytes
® Programs store all data in this large array

= Read memory (load)
= Specify an address to read data from

= Write memory (store)
= Specify data to write to an address

October 1, 2018

TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.16

Slides by Wes J. Lloyd

9/30/2018

L2.8

TCSS 422 A — Fall 2018
School of Engineering and Technology,

VIRTUALIZING MEMORY - 2

® Program to read/write memory:

1 #include
2 #include
3 #include
4 #include
5

6 int

7 main (int
8 {

9

10

11

12

13

14

15

16

17

18

19

20 }

<unistd.h>
<stdio.h>

<stdlib.h>
"common.h"

argc, char *argvl[])

// al: a

int *p = malloc(sizeof (int));

memory

assert (p != NULL);

printf (" (%d) address of p: %08x\n",
getpid (), (unsigned) p);

*p = 0;, // a3: ut zer
hile (1) {
Spin(1);
*p = *p + 1;
printf (" (%d) p: %d\n", getpid(), *p); // a4
}
return 0;

October 1, 2018

TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.17

VIRTUALIZING MEMORY - 3

® Qutput of mem.c

prompt> ./mem

(2134) memory address of p: 00200000
(2134) p: 1

(2134) p: 2

(2134) p: 3

(2134) p: 4

(2134) p: 5

e

® int value stored at 00200000
® program increments int value

October 1, 2018

TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.18

Slides by Wes J. Lloyd

9/30/2018

L2.9

TCSS 422 A — Fall 2018
School of Engineering and Technology,

VIRTUALIZING MEMORY - 4

® Multiple instances of mem.c

24113
24113
24114

prompt> ./mem &; ./mem &
[1] 24113

[2] 24114

(24113) memory address of p: 00200000
(24114)
(24113)
(24114)
(24114)
()
()
()

memory address of p: 00200000
1

'0 ' '0 'C ' T
wwNN

® (int*)p receives the same memory location 00200000

® Why does modifying (int*)p in program #1 (PID=24113), not
interfere with (int*)p in program #2 (PID=24114) ?
= The OS has “virtualized” memory, and provides a “virtual” address

October 1, 2018

TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.19

» Isolation

VIRTUAL MEMORY

= Key take-aways:

= The OS maps virtual address spaces onto
physical memory

® Each process (program) has its own virtual address space

B A memory reference from one process can not affect the
address space of others.

® Physical memory, a shared resource, is managed by the 0S

October 1, 2018

TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.20

Slides by Wes J. Lloyd

9/30/2018

L2.10

TCSS 422 A — Fall 2018 9/30/2018
School of Engineering and Technology,

[Task:| B Windows Task Manager = ECh == |
2ot File Options View Help
530 || | appications | Processes |Services | Performance. | Networking | Users .
< I
(13276 | ImageName User Name CPU Memary (...
e M =
13062+ splwowtd.exe wiloyd) 1,432K Pn
449(taskmgr.exe whoyd 00 2,084K W
628¢ OSPPSVC.EXE NETWO, 00 2,048K
ey Searchindexe.. SYSTEM 00 3,372K
li082d POWERPNT.E... wloyd 00 3,364K
Hon sSSchedier.... wlord 00 884K
1515 explorer. v wiloyd 00 15284K W
177 Printisolaton... SYSTEM 00 1,190K Prntisda...
i?gi VBoxTray.exe wloyd 00 L7E4K VirtualBox. .
o toskhostexe wloyd 00 3,763K HostProc..
106¢ dum.exe wloyd 00 1432K Deskdop ...
3504 GaminService,., SYSTEM 00 18,004K GaminSe.
6121 svchost.exe SYSTEM 00 2,79 K HostProc...
ik amsvcens R SISTEM 00 904K Adobe Ac..
[l shosters LOCAL. 00 715K FostProc..
852t sodlsv.exs SISEM 00 5200K Spocker S...
{12914 ExpressTray.... wioyd 00 14,960K Garmin Ex...
1428 schostexs SYSTEM 00 LEDOK Host Proc.
15754 svehost.exe LOCAL ... 00 2,924K HostProc...
Mk schostexe SISTEM 00 3,052K HestProc..
1653 taskengexe SYSTEM 00 L1%0K TaskSche..
2178 sehostexe LOCAL.. 00 9,264K HestProc.
13074 swhostexs METWO.. 00 308K HostProc.
153 VBoxService.... SYSTEM 00 LATEK VirtualBox...
swchostexe SYSTEM 00 284K HestProc.
: | smene SISTEM 00 1,204K Local Ses... =
i [¥] Show processes from all users it
| L
] Processes; 3] CPU Usage: 100% Physical Memory: 36%

T ST TRy

Nreet RT 0 0 0 03 bo b 10y0s mperien
O T
TCSS422: Operating Systems [Fall 2018]
5 % 5 5 . L2.21
October 1,2018 School of Engineering and Technology, University of Washington - Tacoma

CONCURRENCY

® Linux: 654 tasks
® Windows: 37 processes

®= The OS appears to run many programs at once, juggling
them

= Modern multi-threaded programs feature concurrent
threads and processes

® What is a key difference between a process and a thread?

TCSS422: Operating Systems [Fall 2018]

October 1, 2018 School of Engineering and Technology, University of Washington - Tacoma

L2.22

Slides by Wes J. Lloyd L2.11

TCSS 422 A — Fall 2018

School of Engineering and Technology,

CONCURRENCY - 2

O oy Ul WN

#include <stdio.h>
#include <stdlib.h>
#include "common.h"

thread.c

Listing continues ...

October 1, 2018

TCSS422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma

L2.23

CONCURRENCY -3

int

main(int argc, char *argv[])

{

}

if (argc !'= 2) {

fprintf (stderr, "usage: threads <value>\n");

exit(1);
}
loops = atoi (argv[l]);
pthread t pl, p2;
printf ("Initial value : %d\n", counter);

Pthread_create(&pl, NULL, worker, NULL);
Pthread create(&p2, NULL, worker, NULL);
Pthread join(pl, NULL);

Pthread join(p2, NULL);

printf ("Final value : %d\n", counter);
return 0;

= Program creates two threads
® Check documentation: “man pthread_create”
= worker() method counts from O to argv[1] (loop)

October 1, 2018

TCSS422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma

L2.24

Slides by Wes J. Lloyd

9/30/2018

L2.12

TCSS 422 A — Fall 2018
School of Engineering and Technology,

PTHREAD_CREATE(3) Linux Programmer's Manual PTHREAD_CREATE(3)

NAME top

pthread_create - create a new thread

SYNOPSIS top
#include <pthread.h>
- int pthread_create(pthread_t *thread, const pthread_attr_t *actr
Llnux void *(*start_reutine) (void *), void *arg);

“rr‘zl'1!!

Compile and link with -pthread.

DESCRIPTION top

page The pthread_create() function starts a new thread in the calling
process. The new thread starts execution by invoking
start_routine(); arg is passed as the sole argument of
start_routine().

example The new thread terminates in one of the following ways:

* It calls pthread_exit(3), specifying an exit status value that is
available to another thread in the same process that calls
pthread_join(3).

* It returns from start routine(). This is equivalent to calling
pthread_exit(3) with the value supplied in the return statement.

* It is canceled (see pthread_cancel(3)).

* Any of the threads in the process calls exit(3), or the main thread
performs a return from main(). This causes the termination of all
threads in the process.

The attr argument points to a pthread attr_t structure whose contents
are used at thread creation time to determine attributes for the new
thread; this structure is initialized using pthread_attr_init(3) and
related functions. If attr is NULL, then the thread is created with
default attributes.

TCSS422: Operating Systems [Fall 2018]

OclobepLRlE School of Engineering and Technology, University of Washington - Tacoma

L2.25

CONCURRENCY - 4

B Command line parameter argv[1] provides loop length
® Defines number of times the shared counter is incremented

® Loops: 1000

prompt> gcc -o thread thread.c -Wall -pthread
prompt> ./thread 1000

Initial value : 0

Final value : 2000

® Loops 100000

prompt> ./thread 100000

Initial value : 0

Final value : 143012 // huh??
prompt> ./thread 100000

Initial value : 0

Final value : 137298 // what the??

TCSS422: Operating Systems [Fall 2018]

October 1, 2018 School of Engineering and Technology, University of Washington - Tacoma

L2.26

Slides by Wes J. Lloyd

9/30/2018

L2.13

TCSS 422 A — Fall 2018
School of Engineering and Technology,

Slides by Wes J.

CONCURRENCY -5

® When loop value is large why do we not achieve 200000 ?

® C code is translated to (3) assembly code operations
1. Load counter variable into register

2. Increment it

3. Store the register value back in memory

®m These instructions happen concurrently and VERY FAST

®m (P11 || P2) write incremented register values back to memory,
While (P1 || P2) read same memory

® Memory access here is unsynchronized (non-atomic)
® Some of the increments are lost

TCSS422: Operating Systems [Fall 2018]

October 1,2018 School of Engineering and Technology, University of Washington - Tacoma

L2.27

W To perform parallel work, a single process may:

Launch Launch Both Aand B None of the
multiple multiple above
threads to processes to
execute code execute code
in parallel in parallel

while sharing without sharing
globaldatain globaldatain
memory memory

.. Start the presentation to see live content. Still no live content? Install the app or get help at PollEv.com/app ..

Lloyd

9/30/2018

L2.14

TCSS 422 A — Fall 2018

School of Engineering and Technology,

PARALLEL PROGRAMMING

= To perform parallel work, a single process may:

= B. Launch multiple processes to execute code in parallel
without sharing global data in memory

m C. Both A and B

® D. None of the above

® A. Launch multiple threads to execute code in parallel while
sharing global data in memory

October 1, 2018

TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.29

PERSISTENCE

= Stores data while power is present
= When power is lost, data is lost (volatile)

= DRAM: Dynamic Random Access Memory: DIMMs/SIMMs

® Operating System helps “persist” data more permanently

=|/0 device(s): hard disk drive (HDD), solid state drive (SSD)

= File system(s): “catalog” data for storage and retrieval

October 1, 2018

TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.30

Slides by Wes J. Lloyd

9/30/2018

L2.15

TCSS 422 A — Fall 2018 9/30/2018
School of Engineering and Technology,

PERSISTENCE - 2

1 #include <stdio.h>

2 #include <unistd.h>

3 #include <assert.h>

4 #include <fcntl.h>

5 #include <sys/types.h>

6

7 int

8 main(int argc, char *argv[])

9 {

10 int fd = open("/tmp/file", O WRONLY | O CREAT
| O _TRUNC, S_IRWXU);

11 assert (fd > -1);

12 int rc = write(fd, "hello world\n", 13);

13 assert (rc == 13);

14 close (fd) ;

15 return 0;

16 }

® open(), write(), close(): OS system calls for device I/0

= Note: man page for open(), write() require page number:
“man 2 open”, ”“man 2 write”, “man close”

TCSS422: Operating Systems [Fall 2018] 1231
School of Engineering and Technology, University of Washington - Tacoma i

PERSISTENCE - 3

® To write to disk, OS must:
= Determine where on disk data should reside

= Perform sys calls to perform 1/0:
Read/write to file system (inode record)
Read/write data to file

® Provide fault tolerance for system crashes
= Journaling: Record disk operations in a journal for replay
= Copy-on-write - replicating shared data - see ZFS
= Carefully order writes on disk

TCSS422: Operating Systems [Fall 2018] 1232

October 1, 2018 School of Engineering and Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd L2.16

TCSS 422 A — Fall 2018

School of Engineering and Technology,

SUMMARY:

OPERATING SYSTEM DESIGN GOALS

= ABSTRACTING THE HARDWARE
= Makes programming code easier to write
= Automate sharing resources - save programmer burden

®" PROVIDE HIGH PERFORMANCE

= Minimize overhead from OS abstraction
(Virtualization of CPU, RAM, 1/0)

= Share resources fairly

= Attempt to tradeoff performance vs. fairness - consider
priority

= PROVIDE ISOLATION

= User programs can’t interfere with each other’s virtual
machines, the underlying OS, or the sharing of resources

TCSS422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma L233

October 1, 2018

SUMMARY:

OPERATING SYSTEM DESIGN GOALS - 2

= RELIABILITY
= OS must not crash, 24/7 Up-time
= Poor user programs must not bring down the system:

Blue Screen

® Other Issues:
= Energy-efficiency

= Security (of data) Trea ISt - amwess o strs v . e,
. . N M Ry IS
= Cloud: Virtual Machines Seiring B Bl

TCSS422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma L2:34

October 1, 2018

Slides by Wes J. Lloyd

9/30/2018

L2.17

TCSS 422 A - Fall 2018
School of Engineering and Technology,

Slides by Wes J.

Process State

scheduler dispatch
1o
or

lfe}

or
event completion event wait

exit

CHAPTER 4:
PROCESSES

TCSS422: Operating Systems [Fall 2018]

Octobeql2018 School of Engineering and Technology, University of Washington -

§ /proc

CPU VIRTUALIZING

® How should the CPU be shared?

® Time Sharing:
Run one process, pause it, run another

® How do we SWAP processes in and out of the CPU
efficiently?

= Goal is to minimize overhead of the swap

TCSS422: Operating Systems [Fall 2018]

October 1, 2018 School of Engineering and Technology, University of Washington - Tacoma

L2.36

Lioyd

9/30/2018

L2.18

TCSS 422 A — Fall 2018
School of Engineering and Technology,

Slides by Wes J.

PROCESS

running program ‘

® Process comprises of:

= Memory
Instructions (“the code”)
Data (heap)

= Registers
PC: Program counter
Stack pointer

TCSS422: Operating Systems [Fall 2018]

October 1,2018 School of Engineering and Technology, University of Washington - Tacoma

L2.37

PROCESS API

Modern OSes provide a Process API for process support

= Create
= Create a hew process

Destroy
= Terminate a process (ctrl-c)
= Wait
= Wait for a process to complete/stop

Miscellaneous Control
= Suspend process (ctrl-z)
= Resume process (fg, bg)

= Status
= Obtain process statistics: (top)

TCSS422: Operating Systems [Fall 2018]

October 1, 2018 School of Engineering and Technology, University of Washington - Tacoma

L2.38

Lloyd

9/30/2018

L2.19

TCSS 422 A — Fall 2018

School of Engineering and Technology,

PROCESS API: CREATE

1. Load program code (and static data) into memory
= Program executable code (binary): loaded from disk
= Static data: also loaded/created in address space

= Eager loading: Load entire program before running

= Lazy loading: Only load what is immediately needed
Modern OSes: Supports paging & swapping

2. Run-time stack creation
= Stack: local variables, function params, return address(es)

TCSS422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma L2.39

October 1, 2018

PROCESS API: CREATE

3. Create program’s heap memory
= For dynamically allocated data

4. Other initialization

= |/0 Setup
Each process has three open file descriptors:
Standard Input, Standard Output, Standard Error

5. Start program running at the entry point: main ()
= OS transfers CPU control to the new process

TCSS422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma L2.40

October 1, 2018

Slides by Wes J. Lloyd

9/30/2018

L2.20

TCSS 422 A — Fall 2018
School of Engineering and Technology,

Slides by Wes J.

CPU Memory

static data
heap

Loading:
Reads program from
disk into the address
\I"--/_D-r(;-g-r:a;ﬁ"““ P space of process

-

:
| static data
! heap

TCSS422: Operating Systems [Fall 2018]

OclobepLRlE School of Engineering and Technology, University of Washington - Tacoma L2.41

PROCESS STATES

= RUNNING
= Currently executing instructions

= READY
= Process is ready to run, but has been preempted
= CPU is presently allocated for other tasks

= BLOCKED
= Process is nhot ready to run. It is waiting for another event
to complete:
Process has already been initialized and run for awhile
Is now waiting on 1/0 from disk(s) or other devices

TCSS422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma L2.42

October 1, 2018

Lloyd

9/30/2018

L2.21

TCSS 422 A — Fall 2018

School of Engineering and Technology,

PROCESS STATE TRANSITIONS

/\\
Descheduled /

Running [Ready
\ / Scheduled \\

N

1/0: initiate //O: done
/\\

N

/
K Blocked)

TCSS422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma L2.43

October 1, 2018

PROCESS DATA STRUCTURES

m OS provides data structures to track process information

= Process list
Process Data
State of process: Ready, Blocked, Running

= Register context

= PCB (Process Control Block)

= A C-structure that contains information about each
process

TCSS422: Operating Systems [Fall 2018]

October 1, 2018 School of Engineering and Technology, University of Washington - Tacoma

L2.44

Slides by Wes J. Lloyd

9/30/2018

L2.22

TCSS 422 A — Fall 2018

School of Engineering and Technology,

XV6 KERNEL DATA STRUCTURES

m xv6: pedagogical implementation of Linux
®m Simplified structures

//
//

}i
//

the registers xv6 will save and restore
to stop and subsequently restart a process
struct context ({

int eip; // Index pointer register

int esp; // Stack pointer register

int ebx; // Called the base register
int ecx; // Called the counter register
int edx; // Called the data register
int esi; // Source index register

int edi; // Destination index register
int ebp; // Stack base pointer register

the different states a process can be in

enum proc_state { UNUSED, EMBRYO, SLEEPING,

RUNNABLE, RUNNING, ZOMBIE };

October 1, 2018

TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.45

XV6 KERNEL DATA STRUCTURES - 2

//
//

the information xv6 tracks about each process
including its register context and state

struct proc {

char *mem; // Start of process memory
uint sz; // Size of process memory
char *kstack; // Bottom of kernel stack
// for this process
enum proc_state state; // Process state
int pid; // Process 1D
struct proc *parent; // Parent process
void *chan; // If non-zero, sleeping on chan
int killed; // If non-zero, have been killed
struct file *ofile[NOFILE]; // Open files
struct inode *cwd; // Current directory
struct context context; // Switch here to run process
struct trapframe *tf; // Trap frame for the

// current interrupt

October 1, 2018

TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.46

Slides by Wes J. Lloyd

9/30/2018

L2.23

TCSS 422 A — Fall 2018

School of Engineering and Technology,

LINUX: STRUCTURES

B struct task struct, equivalent to struct proc

= Provides process description

= Large: 10,000+ bytes

= /usr/src/linux-headers-{kernel version}/include/linux/sched.h

1227 - 1587

® struct thread info, provides “context”

= thread_info.h is at:

/usr/src/linux-headers-{kernel version}/arch/x86/include/asm/

October 1, 2018

TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.47

LINUX: THREAD_INFO

struct thread_info {
struct task_struct
struct exec_domain
_ u32
_u32
_u32
int

mm_segment_t
struct restart_block
void _ user

#ifdef CONFIG_X86_32
unsigned long

u8
#endif
int

}i

task; /
*exec_domain; /=
flags; /*
status; [/
cpu; /*

preempt count; /*
addr_limit;
restart_block;
*sysenter_return;

previous_esp; /*

*/

main task structure */
execution domain */

low level flags */

thread synchronous flags */
current CPU */

0 => preemptable,

<0 => BUG */

ESP of the previous stack in
case of nested (IRQ) stacks

supervisor_stack[0];

uaccess_err;

October 1, 2018

TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.48

Slides by Wes J. Lloyd

9/30/2018

L2.24

TCSS 422 A — Fall 2018
School of Engineering and Technology,

LINUX STRUCTURES - 2

® List of Linux data structures:
http://www.tldp.org/LDP/tlk/ds/ds.html

® Description of process data structures:
http://www.makelinux.net/books/lkd2/ch0O3levisecl
2"d edition is online (dated from 2005):
Linux Kernel Development, 2"¢ edition
Robert Love
Sams Publishing

TCSS422: Operating Systems [Fall 2018]

October 1,2018 School of Engineering and Technology, University of Washington - Tacoma

L2.49

When a process is in this state, it is

-w- advantageous for the Operating System to

perform a CONTEXT SWITCH to perform other
work

RUNNING READY BLOCKED All ofthe None of
above the above

October 1. 2018 TCSS422: Operating Systems [Fall 2018]
.. o Start the presGERRSI B FE HgiFRaEhg el TRt BF AU HRASRIFB NI ASPAHENGA™ FaBoma L2-5F.

Slides by Wes J. Lloyd

9/30/2018

L2.25

TCSS 422 A - Fall 2018 9/30/2018
School of Engineering and Technology,

QUESTION: WHEN TO CONTEXT SWITCH

® When a process is in this state, it is advantageous for the
Operating System to perform a CONTEXT SWITCH to
perform other work:

® (a) RUNNING

= (b) READY

® (c) BLOCKED

® (d) All of the above

= (e) None of the above

TCSS422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma L2.51

October 1, 2018

QUESTIONS

Slides by Wes J. Lloyd L2.26

