
TCSS 422 A – Fall 2018
School of Engineering and Technology,

9/30/2018

L2.1Slides by Wes J. Lloyd

October 1, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

INTRODUCTION

Wes J. Lloyd
School of Engineering and Technology,
University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 Mostly Review to Me: 1 – 2 respondents
2 – 2 respondents
4 – 3 respondents

 Mostly New to Me >=5 – rest of class
10 – 7 respondents

October 1, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.2

FEEDBACK FROM 9/26

 Abstraction

 Virtualization

 Physical memory vs Vir tual memory

 The OS is a resource manager, and acts almost like a
brain

 Processes vs Threads: What are threads inside a process?

 “Task” not defined as process or thread

 “Task” is seen on Linux top

 Command line

 Linux commands

October 1, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.3

FEEDBACK - 2

 Chapter 2 - Introduction to operating systems

 THREE EASY PIECES:

 Virtualizing the CPU (review)

 Virtualizing Memory

 Virtualizing I/O

 Operating system design goals

 Chapter 4 – Processes

 Chapter 5 – Process API

 Chapter 6 – Limited Direct Execution

October 1, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.4

OBJECTIVES

INTRODUCTION TO
OPERATING SYSTEMS

October 1, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma L2.5

Responsible for:

Making it easy to run programs

Allowing programs to share memory

Enabling programs to interact with devices

October 1, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.6

OPERATING SYSTEMS

OS is in charge of making sure the system
operates correctly and efficiently.

TCSS 422 A – Fall 2018
School of Engineering and Technology,

9/30/2018

L2.2Slides by Wes J. Lloyd

 The OS is a resource manager

Manages CPU, disk, network I/O

Enables many programs to

Share the CPU

Share the underlying physical memory (RAM)

Share physical devices
 Disks

 Network Devices

…

October 1, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.7

RESOURCE MANAGEMENT

 Operating systems present physical resources
as vir tual representations to the programs sharing
them
 Physical resources: CPU, disk, memory, …

 The virtual form is “abstract”

 The OS presents an illusion that each user program
runs in isolation on its own hardware

 This virtual form is general, powerful, and easy-to-use

October 1, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.8

VIRTUALIZATION

What form of abstraction does the OS provide?

CPU
 Process and/or thread

Memory
 Address space

 large array of bytes

 All programs see the same “size” of RAM

Disk
 Files

October 1, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.9

ABSTRACTIONS

Allow applications to reuse common facilities

Make different devices look the same

Easier to write common code to use devices
 Linux/Unix Block Devices

Provide higher level abstractions

More useful functionality

October 1, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.10

WHY ABSTRACTION?

What level of abstraction?

How much of the underlying hardware should be
exposed?
What if too much?

What if too little?

What are the correct abstractions?

Security concerns

October 1, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.11

ABSTRACTION CHALLENGES

 Each running program gets its own “vir tual” representation of
the CPU

 Many programs seem to run at once

 Linux: “top” command shows
process list

 Windows: task manager

October 1, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.12

VIRTUALIZING THE CPU

TCSS 422 A – Fall 2018
School of Engineering and Technology,

9/30/2018

L2.3Slides by Wes J. Lloyd

 Simple Looping C Program

October 1, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.13

VIRTUALIZING THE CPU - 2

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <sys/time.h>
4 #include <assert.h>
5 #include "common.h"
6
7 int
8 main(int argc, char *argv[])
9 {
10 if (argc != 2) {
11 fprintf(stderr, "usage: cpu <string>\n");
12 exit(1);
13 }
14 char *str = argv[1];
15 while (1) {
16 Spin(1); // Repeatedly checks the time and

returns once it has run for a second
17 printf("%s\n", str);
18 }
19 return 0;
20 }

 Runs forever, must Ctrl-C to halt…

October 1, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.14

VIRTUALIZING THE CPU - 3

prompt> gcc -o cpu cpu.c -Wall
prompt> ./cpu "A"
A
A
A
ˆC
prompt>

October 1, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.15

VIRTUALIZATION THE CPU - 4

prompt> ./cpu A & ; ./cpu B & ; ./cpu C & ; ./cpu D &
[1] 7353
[2] 7354
[3] 7355
[4] 7356
A
B
D
C
A
B
D
C
A
C
B
D
...

Even though we have only one processor, all four instances
of our program seem to be running at the same time!

 Computer memory is treated as a large array of bytes

 Programs store all data in this large array

 Read memory (load)

 Specify an address to read data from

Write memory (store)

 Specify data to write to an address

October 1, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.16

VIRTUALIZING MEMORY

 Program to read/write memory:

October 1, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.17

VIRTUALIZING MEMORY - 2

1 #include <unistd.h>
2 #include <stdio.h>
3 #include <stdlib.h>
4 #include "common.h"
5
6 int
7 main(int argc, char *argv[])
8 {
9 int *p = malloc(sizeof(int)); // a1: allocate some

memory
10 assert(p != NULL);
11 printf("(%d) address of p: %08x\n",
12 getpid(), (unsigned) p); // a2: print out the

address of the memmory
13 *p = 0; // a3: put zero into the first slot of the memory
14 while (1) {
15 Spin(1);
16 *p = *p + 1;
17 printf("(%d) p: %d\n", getpid(), *p); // a4
18 }
19 return 0;
20 }

 Output of mem.c

 int value stored at 00200000

 program increments int value

October 1, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.18

VIRTUALIZING MEMORY - 3

prompt> ./mem
(2134) memory address of p: 00200000
(2134) p: 1
(2134) p: 2
(2134) p: 3
(2134) p: 4
(2134) p: 5
ˆC

TCSS 422 A – Fall 2018
School of Engineering and Technology,

9/30/2018

L2.4Slides by Wes J. Lloyd

 Multiple instances of mem.c

 (int*)p receives the same memory location 00200000

 Why does modifying (int*)p in program #1 (PID=24113), not
interfere with (int*)p in program #2 (PID=24114) ?
 The OS has “virtualized” memory, and provides a “virtual” address

October 1, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.19

VIRTUALIZING MEMORY - 4

prompt> ./mem &; ./mem &
[1] 24113
[2] 24114
(24113) memory address of p: 00200000
(24114) memory address of p: 00200000
(24113) p: 1
(24114) p: 1
(24114) p: 2
(24113) p: 2
(24113) p: 3
(24114) p: 3
...

Key take-aways:

 Each process (program) has its own vir tual address space

 The OS maps vir tual address spaces onto
physical memory

 A memory reference from one process can not affect the
address space of others.

 Isolation

 Physical memory, a shared resource, is managed by the OS

October 1, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.20

VIRTUAL MEMORY

October 1, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.21

CONCURRENCY

 Linux: 654 tasks

 Windows: 37 processes

 The OS appears to run many programs at once, juggling
them

 Modern multi-threaded programs feature concurrent
threads and processes

 What is a key difference between a process and a thread?

October 1, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.22

CONCURRENCY

thread.c

Listing continues …

October 1, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.23

CONCURRENCY - 2

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include "common.h"
4
5 volatile int counter = 0;
6 int loops;
7
8 void *worker(void *arg) {
9 int i;
10 for (i = 0; i < loops; i++) {
11 counter++;
12 }
13 return NULL;
14 }
15 ...

Not the same as Java volatile:
Provides a compiler hint than an object may change value
unexpectedly (in this case by a separate thread) so aggressive
optimization must be avoided.

 Program creates two threads

 Check documentation: “man pthread_create”

 worker() method counts from 0 to argv[1] (loop)

October 1, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.24

CONCURRENCY - 3

16 int
17 main(int argc, char *argv[])
18 {
19 if (argc != 2) {
20 fprintf(stderr, "usage: threads <value>\n");
21 exit(1);
22 }
23 loops = atoi(argv[1]);
24 pthread_t p1, p2;
25 printf("Initial value : %d\n", counter);
26
27 Pthread_create(&p1, NULL, worker, NULL);
28 Pthread_create(&p2, NULL, worker, NULL);
29 Pthread_join(p1, NULL);
30 Pthread_join(p2, NULL);
31 printf("Final value : %d\n", counter);
32 return 0;
33 }

TCSS 422 A – Fall 2018
School of Engineering and Technology,

9/30/2018

L2.5Slides by Wes J. Lloyd

October 1, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma L2.25

Linux
“man”
page

example

October 1, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.26

CONCURRENCY - 4

 Command line parameter argv[1] provides loop length

 Defines number of times the shared counter is incremented

 Loops: 1000

 Loops 100000

prompt> gcc -o thread thread.c -Wall -pthread
prompt> ./thread 1000
Initial value : 0
Final value : 2000

prompt> ./thread 100000
Initial value : 0
Final value : 143012 // huh??
prompt> ./thread 100000
Initial value : 0
Final value : 137298 // what the??

 When loop value is large why do we not achieve 200000 ?

 C code is translated to (3) assembly code operations

1. Load counter variable into register

2. Increment it

3. Store the register value back in memory

 These instructions happen concurrently and VERY FAST

 (P1 || P2) write incremented register values back to memory,
While (P1 || P2) read same memory

 Memory access here is unsynchronized (non-atomic)

 Some of the increments are lost

October 1, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.27

CONCURRENCY - 5

October 1, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma L2.28

 To perform parallel work, a single process may:

 A. Launch multiple threads to execute code in parallel while
sharing global data in memory

 B. Launch multiple processes to execute code in parallel
without sharing global data in memory

 C. Both A and B

 D. None of the above

October 1, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.29

PARALLEL PROGRAMMING

 DRAM: Dynamic Random Access Memory: DIMMs/SIMMs

 Stores data while power is present

When power is lost, data is lost (volatile)

 Operating System helps “persist” data more permanently

 I/O device(s): hard disk drive (HDD), solid state drive (SSD)

 File system(s): “catalog” data for storage and retrieval

October 1, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.30

PERSISTENCE

TCSS 422 A – Fall 2018
School of Engineering and Technology,

9/30/2018

L2.6Slides by Wes J. Lloyd

 open(), write(), close(): OS system calls for device I/O

 Note: man page for open(), write() require page number:
“man 2 open”, ”man 2 write”, “man close”

TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.31

PERSISTENCE - 2

1 #include <stdio.h>
2 #include <unistd.h>
3 #include <assert.h>
4 #include <fcntl.h>
5 #include <sys/types.h>
6
7 int
8 main(int argc, char *argv[])
9 {
10 int fd = open("/tmp/file", O_WRONLY | O_CREAT

| O_TRUNC, S_IRWXU);
11 assert(fd > -1);
12 int rc = write(fd, "hello world\n", 13);
13 assert(rc == 13);
14 close(fd);
15 return 0;
16 }

 To write to disk, OS must:

 Determine where on disk data should reside

 Perform sys calls to perform I/O:
 Read/write to file system (inode record)

 Read/write data to file

 Provide fault tolerance for system crashes

 Journaling: Record disk operations in a journal for replay

 Copy-on-write - replicating shared data - see ZFS

 Carefully order writes on disk

October 1, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.32

PERSISTENCE - 3

 ABSTRACTING THE HARDWARE
 Makes programming code easier to write
 Automate sharing resources – save programmer burden

 PROVIDE HIGH PERFORMANCE
 Minimize overhead from OS abstraction

(Virtualization of CPU, RAM, I/O)
 Share resources fairly
 Attempt to tradeoff performance vs. fairness consider

priority

 PROVIDE ISOLATION
 User programs can’t interfere with each other’s virtual

machines, the underlying OS, or the sharing of resources

October 1, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.33

SUMMARY:
OPERATING SYSTEM DESIGN GOALS

 RELIABILITY

 OS must not crash, 24/7 Up-time

 Poor user programs must not bring down the system:

Blue Screen

 Other Issues:
 Energy-efficiency

 Security (of data)

 Cloud: Virtual Machines

October 1, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.34

SUMMARY:
OPERATING SYSTEM DESIGN GOALS - 2

CHAPTER 4:
PROCESSES

October 1, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma L2.35

 How should the CPU be shared?

 Time Sharing:
Run one process, pause it, run another

 How do we SWAP processes in and out of the CPU
efficiently?

 Goal is to minimize overhead of the swap

October 1, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.36

CPU VIRTUALIZING

TCSS 422 A – Fall 2018
School of Engineering and Technology,

9/30/2018

L2.7Slides by Wes J. Lloyd

 Process comprises of:

Memory
 Instructions (“the code”)

 Data (heap)

 Registers
 PC: Program counter

 Stack pointer

October 1, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.37

PROCESS

A process is a running program.
 Modern OSes provide a Process API for process support

 Create
 Create a new process

 Destroy
 Terminate a process (ctrl-c)

 Wait
 Wait for a process to complete/stop

 Miscellaneous Control
 Suspend process (ctrl-z)
 Resume process (fg, bg)

 Status
 Obtain process statistics: (top)

October 1, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.38

PROCESS API

1. Load program code (and static data) into memory

 Program executable code (binary): loaded from disk

 Static data: also loaded/created in address space

 Eager loading: Load entire program before running

 Lazy loading: Only load what is immediately needed
 Modern OSes: Supports paging & swapping

2. Run-time stack creation

 Stack: local variables, function params, return address(es)

October 1, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.39

PROCESS API: CREATE

3. Create program’s heap memory
 For dynamically allocated data

4. Other initialization
 I/O Setup
 Each process has three open file descriptors:

Standard Input, Standard Output, Standard Error

5. Start program running at the entry point: main()
 OS transfers CPU control to the new process

October 1, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.40

PROCESS API: CREATE

October 1, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma L2.41

code
static data

heap

stack

Process

Memory

code
static data

heap

Program

Loading:
Reads program from
disk into the address

space of process

CPU

 RUNNING

 Currently executing instructions

 READY

 Process is ready to run, but has been preempted

 CPU is presently allocated for other tasks

 BLOCKED

 Process is not ready to run. It is waiting for another event
to complete:
 Process has already been initialized and run for awhile

 Is now waiting on I/O from disk(s) or other devices

October 1, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.42

PROCESS STATES

TCSS 422 A – Fall 2018
School of Engineering and Technology,

9/30/2018

L2.8Slides by Wes J. Lloyd

October 1, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.43

PROCESS STATE TRANSITIONS

Running Ready

Blocked

Descheduled

Scheduled

I/O: doneI/O: initiate

 OS provides data structures to track process information

 Process list
 Process Data

 State of process: Ready, Blocked, Running

 Register context

 PCB (Process Control Block)

 A C-structure that contains information about each
process

October 1, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.44

PROCESS DATA STRUCTURES

 xv6: pedagogical implementation of Linux

 Simplified structures

October 1, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.45

XV6 KERNEL DATA STRUCTURES

// the registers xv6 will save and restore
// to stop and subsequently restart a process
struct context {

int eip; // Index pointer register
int esp; // Stack pointer register
int ebx; // Called the base register
int ecx; // Called the counter register
int edx; // Called the data register
int esi; // Source index register
int edi; // Destination index register
int ebp; // Stack base pointer register

};

// the different states a process can be in
enum proc_state { UNUSED, EMBRYO, SLEEPING,

RUNNABLE, RUNNING, ZOMBIE };

October 1, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.46

XV6 KERNEL DATA STRUCTURES - 2

// the information xv6 tracks about each process
// including its register context and state
struct proc {

char *mem; // Start of process memory
uint sz; // Size of process memory
char *kstack; // Bottom of kernel stack

// for this process
enum proc_state state; // Process state
int pid; // Process ID
struct proc *parent; // Parent process
void *chan; // If non-zero, sleeping on chan
int killed; // If non-zero, have been killed
struct file *ofile[NOFILE]; // Open files
struct inode *cwd; // Current directory
struct context context; // Switch here to run process
struct trapframe *tf; // Trap frame for the

// current interrupt
};

 struct task_struct, equivalent to struct proc
 Provides process description

 Large: 10,000+ bytes

 /usr/src/linux-headers-{kernel version}/include/linux/sched.h
 1227 – 1587

 struct thread_info, provides “context”
 thread_info.h is at:

/usr/src/linux-headers-{kernel version}/arch/x86/include/asm/

October 1, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.47

LINUX: STRUCTURES

October 1, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.48

LINUX: THREAD_INFO

struct thread_info {
struct task_struct *task; /* main task structure */
struct exec_domain *exec_domain; /* execution domain */
__u32 flags; /* low level flags */
__u32 status; /* thread synchronous flags */
__u32 cpu; /* current CPU */
int preempt_count; /* 0 => preemptable,

<0 => BUG */
mm_segment_t addr_limit;
struct restart_block restart_block;
void __user *sysenter_return;

#ifdef CONFIG_X86_32
unsigned long previous_esp; /* ESP of the previous stack in

case of nested (IRQ) stacks
*/

__u8 supervisor_stack[0];
#endif

int uaccess_err;
};

TCSS 422 A – Fall 2018
School of Engineering and Technology,

9/30/2018

L2.9Slides by Wes J. Lloyd

 List of Linux data structures:
http://www.tldp.org/LDP/tlk/ds/ds.html

 Description of process data structures:
http://www.makelinux.net/books/lkd2/ch03lev1sec1
2nd edition is online (dated from 2005):
Linux Kernel Development, 2nd edition
Robert Love
Sams Publishing

October 1, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.49

LINUX STRUCTURES - 2

October 1, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma L2.50

 When a process is in this state, it is advantageous for the
Operating System to perform a CONTEXT SWITCH to
perform other work:

 (a) RUNNING

 (b) READY

 (c) BLOCKED

 (d) All of the above

 (e) None of the above

October 1, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L2.51

QUESTION: WHEN TO CONTEXT SWITCH QUESTIONS

