TCSS 422 A - Fall 2018
School of Engineering and Technology,

Slides by Wes J.

TCSS 422: OPERATING SYSTEMS

Beyond Physical Memory,
1/0 Devices

Wes J. Lloyd
School of Engineering and Technology,
University of Washington - Tacoma

TCSS422: Operating Systems [Fall 2018]

Decembeniy2018 School of Engineering and Technology, University of Washington il Tacoma

FEEDBACK FROM 12/3

® Program 3
® Write to a proc file?

= Once we have a reference to a process, we then traverse
pages on that process?

TCSS422: Operating Systems [Fall 2018]

December 5, 2018 School of Engineering and Technology, University of Washington - Tacoma

L19.2

Lioyd

12/6/2018

L19.1

TCSS 422 A — Fall 2018
School of Engineering and Technology,

Slides by Wes J.

FEEDBACK - 2

® Which I/0 Devices work better with interrupts (other than
keyboard)?

® |nterrupt driven 1/0 - - is off-loaded from the CPU
= Via Directory Memory Access (DMA) controller
= CPU non involved in the data transfer
= Interrupts enable a context-switch to notify data is available
= Examples: ISA, PCI bus

= Polled 1/0 is - - programmed 1/0
® Data transfers fully occupy CPU for entire data transfer
® CPU unavailable for other work

= Examples: ATA (parallel ports), legacy serial/parallel ports,
PS/2 keyboard/mouse, MIDI, joysticks

TCSS422: Operating Systems [Fall 2018]

December.5, 2018 School of Engineering and Technology, University of Washington - Tacoma

L19.3

FEEDBACK - 3

® Does the mouse use interrupts, polling, or a hybrid of
both?

= [nterrupts

= Where is the polling (BUSY) process? (see top -d .1)

TCSS422: Operating Systems [Fall 2018]

December 5, 2018 School of Engineering and Technology, University of Washington - Tacoma

L19.4

Lloyd

12/6/2018

L19.2

TCSS 422 A - Fall 2018
School of Engineering and Technology,

Slides by Wes J.

CLOUD AND
DISTRIBUTED SYSTEMS
RESEARCH

kS CLOUD AND DISTRIBUTED SYSTEMS LAB
\%3 WES LLOYD, WLLOYD@UW.EDU, —
: HTTP://FACULTY.WASHINGTON.EDU/WLLOYD '

= Serverless Computing (FaaS):
How should cloud native applications be composed from microservices to
optimize performance and cost? Code structure directly influences
hosting costs.
= Service composition, performance and cost optimization/modeling/analytics,
Application migration, Mitigation of Platform limitations, Influencing
infrastructure, Lambda@Edge
= Containerization (Docker):

How should containers and container platforms be leveraged and .
managed to optimize performance, reduce costs, and maximize server
utilization?
= Containers, container orchestration frameworks, resource allocation, checkpointing
= Infrastructure-as-a-Service (laaS) Cloud:

How should applications and workloads be deployed to optimize
performance and cost? There are many “knobs”, configuration options
to consider.
= Application/workload deployment, performance and cost [—' -T]
optimization/modeling/analytics, infrastructure management, ! [JRE:
resource contention detection/mitigation, HW heterogeneity |;] I:I,D

Lioyd

12/6/2018

L19.3

TCSS 422 A - Fall 2018
School of Engineering and Technology,

= Device I/0
® Chapter 36 - 1/0 Devices

® Chapter 37 - Hard Disk Drives

OBJECTIVES

= Review Quiz 5
= Program 3 Questions
® Practice Final - 12/5

December 5, 2018

TCSS422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma L1s7

December 5, 2018

CHAPTER 36:
/0 DEVICES

TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington -

Slides by Wes J. Lloyd

12/6/2018

L19.4

TCSS 422 A — Fall 2018
School of Engineering and Technology,

Slides by Wes J.

OBJECTIVES

= Chapter 36

=" Polling vs Interrupts

*Programmed |/0 (P10)
Port-mapped I/0 (PMIO)
Memory-mapped I/0 (MMIO)

=*Direct memory Access (DMA)

TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

December 5, 2018

L19.9

/0 DEVICES

® Modern computer systems interact with a variety of devices

input output

Keyboard

Optical pen Joystick Laser printer

Scanner é : 7

Screen — ‘
oy

- PEO“Ef

Inkjet

printer

TCSS422: Operating Systems [Fall 2018]

December 5, 2018 School of Engineering and Technology, University of Washington - Tacoma

L19.10

Lloyd

12/6/2018

L19.5

TCSS 422 A - Fall 2018
School of Engineering and Technology,

S 0 oo

Prototypical System Architecture

COMPUTER SYSTEM ARCHITECTURE

Memeory Bus
(proprietary)

General I/O Bus
(e.g., PCI)

Peripheral I/O Bus
(e.g., SCSI, SATA, USB)

Memory bus

General 1/0 bus

December 5, 2018 TCSS422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma

L19.11

1/0 BUSES

B Buses
= Buses closer to the CPU are faster
= Can support fewer devices

® Physics and costs dictate “levels”
= Memory bus
= General I/0 bus
= Peripheral 1/0 bus

® Tradeoff space: speed vs. locality

= Further buses are slower, but support more devices

December 5, 2018 TCSS422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma

L19.12

Slides by Wes J. Lloyd

12/6/2018

L19.6

TCSS 422 A — Fall 2018

School of Engineering and Technology,

CANONICAL DEVICE

® Consider an arbitrary canonical “standard/generic” device

interface

Micro-controller(CPU))
Memory (DRAM or SRAM or both) internals
Other Hardware-specific Chips

Canonical Device

® Two primary components
= Interface (registers for communication)

= I[nternals: Local CPU, memory, specific chips, firmware
(embedded software)

TCSS422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma L19.13

December 5, 2018

CANONICAL DEVICE:

HARDWARE INTERFACE

m Status register
= Maintains current device status

B Command register
= Where commands for interaction are sent

® Data register
= Used to send and receive data to the device

General concept:

controls device behavior
device registers.

TCSS422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma L1914

December 5, 2018

Slides by Wes J. Lloyd

12/6/2018

L19.7

TCSS 422 A — Fall 2018
School of Engineering and Technology,

OS DEVICE INTERACTION

® Common example of device interaction

while (sTaTus == =usy) <4@mm Poll- Is device available?

; //wait until device is not bus

write command to command register - Send command

Doing so starts the device and executes the command

while (STATUS == 2USY) {gmm Poll - Is device done?

write data to data register == Command parameterization

; //wait until device is done with your request
TCSS422: Operating Systems [Fall 2018]
December.5, 2018 School of Engineering and Technology, University of Washington - Tacoma L19.15

Slides by Wes J.

POLLING

® 0S checks if device is READY by repeatedly checking the
STATUS register

= Simple approach

= CPU cycles are wasted without doing meaningful work

= Ok if only a few cycles, for rapid devices that are often READY
= BUT polling, as with “spin locks” we understand is inefficient

CPU \1]1\1\1]1\Ip|p’P\P|PI1‘1‘1’1‘”

Disk [1{afa]1]1]

heaii; e :task 1 El : polling

CPU utilization by polling

TCSS422: Operating Systems [Fall 2018]
December 5, 2018 School of Engineering and Technology, University of Washington - Tacoma

L19.16

Lloyd

12/6/2018

L19.8

TCSS 422 A — Fall 2018

School of Engineering and Technology,

INTERRUPTS VS POLLING

® For longer waits, put process waiting on 1/0 to sleep

® Context switch (C/S) to another process

= When I/0 completes, fire an interrupt to initiate C/S back
= Advantage: better multi-tasking and CPU utilization
= Avoids: unproductive CPU cycles (polling)

: task 1 : task 2

@ [afafa]a]a [afafafala]a[s]s]s]]

Disk 11|21 1]

Diagram of CPU utilization by interrupt

TCSS422: Operating Systems [Fall 2018]

December.5, 2018 School of Engineering and Technology, University of Washington - Tacoma

L19.17

INTERRUPTS VS POLLING - 2

What is the tradeoff space ?

® [nterrupts are not always the best solution

= How long does the device I/0 require?

= What is the cost of context switching?

polling

interrupts

TCSS422: Operating Systems [Fall 2018]

December 5, 2018 School of Engineering and Technology, University of Washington - Tacoma

L19.18

Slides by Wes J. Lloyd

12/6/2018

L19.9

TCSS 422 A — Fall 2018
School of Engineering and Technology,

Slides by Wes J.

INTERRUPTS VS POLLING - 3

® One solution is a two-phase hybrid approach
= [nitially poll, then sleep and use interrupts

® Livelock problem
= Common with network 1/0
= Many arriving packets generate many many interrupts
= Overloads the CPU!
= No time to execute code, just interrupt handlers !

® Livelock optimization

= Coalesce multiple arriving packets (for different processes) into
fewer interrupts

= Must consider number of interrupts a device could generate

TCSS422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma L19.19

December 5, 2018

DEVICE I/0

®To interact with a device we must send/receive
DATA

=" There are two general approaches:
*Programmed I/0 (P10)

=*Direct memory access (DMA)

TCSS422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma L19.20

December 5, 2018

Lloyd

12/6/2018

L19.10

TCSS 422 A — Fall 2018
School of Engineering and Technology,

Slides by Wes J.

Transfer Modes
Maximum transfer rate

Mode = # - (MB/s) + | cycle time =
o 33 | so0ns
1 5.2 | 383ns
PIO 2 8.3 | z240ns
3 11.1 | 1BOns
4 16.7 [120ns
o 2.1 | e@sons
Single-word DMA, | 1 4.2 | 48O ns
' 2 8.3 | z40ns
o 4.2 | 4sons
1 13.3 | 1s0ns
Multi-word DMA. | 2 16.7 [120ns
3341 ' 20 | 1o00ns
41341 ' 25 ' 80 ns
o ' 16.7 | 240ns+2
1 ' 25.0 160 ns = 2
2 (Ultra ATA/33) | 33.3 120 ns + 2
T ' 3 ' 44.4 90 ns = 2
4 (Ultra ATA/66) 66.7 60 ns + 2
5 (Ultra ATA/100) | 100 40 ns = 2
6 (Ultra ATA/133) | 133 30 ns + 2
| 7 (Ultra ATA/167)1351 | 167 24ns+2

From https:/len.wikipedia.ora/wiki/Parallel ATA

PROGRAMMED 1/0 (P10)

® Spend CPU time to perform I/0
B CPU is involved with the data movement (input/output)
®E PJO is slow -CPU is occupied with meaningless work

s task 1 : task 2
: copy data from memory

clelcafalalafa]]1]1]

PIO “over-burdened”

cu [a]1]a]s

Disk l1f1]e]a]1]

Diagram of CPU utilization

TCSS422: Operating Systems [Fall 2018]

December 5, 2018 School of Engineering and Technology, University of Washington - Tacoma

L19.22

Lloyd

12/6/2018

L19.11

TCSS 422 A — Fall 2018

School of Engineering and Technology,

PIO DEVICES

® Legacy serial ports

® Legacy parallel ports

® PS/2 keyboard and mouse

m Legacy MIDI, joysticks

® Old network interfaces

December 5, 2018

TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L19.23

PROGRAMMED 1/0 DEVICE (P10)

INTERACTION

= Two primary PIO methods

= Port mapped I/0 (PMIO)

* Memory mapped I/0 (MMIO)

December 5, 2018

TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L19.24

Slides by Wes J. Lloyd

12/6/2018

L19.12

TCSS 422 A — Fall 2018

School of Engineering and Technology,

PORT MAPPED 1/0 (PMIO)

® Device specific CPU I/0 Instructions

® Follows a CISC model: extra instructions

® x86-x86-64: in and out instructions
" outb, outw, outl
=1, 2, 4 byte copy from EAX - device’s I/0 port

TCSS422: Operating Systems [Fall 2018]

December.5, 2018 School of Engineering and Technology, University of Washington - Tacoma

L19.25

MEMORY MAPPED I/0 (MMIO)

® Device’s memory is mapped to CPU memory

® Tenet of RISC CPUs: instructions are eliminated, CPU is
simpler

® Old days: 16-bit CPUs didn’t have a lot of spare memory space

® Today’s CPUs: 32-bit (4GB addr space) & 64-bit (128 TB addr
space)

®m Regular CPU instructions used to access device: mapped to
memory

® Devices monitor CPU address bus and respond to their
addresses

® |/0 device address areas of memory are reserved for 1/0
= Must not be available for normal memory operations.

TCSS422: Operating Systems [Fall 2018]

December 5, 2018 School of Engineering and Technology, University of Washington - Tacoma

L19.26

Slides by Wes J. Lloyd

12/6/2018

L19.13

TCSS 422 A — Fall 2018

School of Engineering and Technology,

DIRECT MEMORY ACCESS (DMA)

® Copy data in memory by offloading to “DMA controller”

® Many devices (including CPUs) integrate DMA controllers

m CPU gives DMA: memory address, size, and copy instruction
® DMA performs I/0 independent of the CPU

= DMA controller generates CPU interrupt when I/0 completes

:task 1 : task 2
: copy data from memory

ou [1]a]1] [2 e a2 1 1]1]

DMA

Disk [1]1]1]1]1]

Diagram of CPU utilization by DMA

TCSS422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma L19.27

December 5, 2018

DIRECTORY MEMORY ACCESS - 2

B Many devices use DMA
= HDD/SSD controllers (ISA/PCI)
= Graphics cards
= Network cards
= Sound cards
= [ntra-chip memory transfer for multi-core processors

= DMA allows computation and data transfer time to
proceed in parallel

TCSS422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma L19.28

December 5, 2018

Slides by Wes J. Lloyd

12/6/2018

L19.14

TCSS 422 A - Fall 2018
School of Engineering and Technology,

Slides by Wes J.

DEVICE INTERACTION

® The OS must interact with a variety of devices

= Example: for DISK I/0 consider the variety of disks:

m SCSI, IDE, USB flash drive, DVD, etc.

® Device drivers use abstraction to provide general
interfaces for vendor specific hardware

® |[n Linux: block devices

TCSS422: Operating Systems [Fall 2018]

December.5, 2018 School of Engineering and Technology, University of Washington - Tacoma

L19.29

FILE SYSTEM ABSTRACTION

® Layers of I/0 abstraction in Linux

m C functions (open, read, write) issue block read and write
requests to the generic block layer

‘ Application ‘ user

—————————— POSIX API [open, read, write, close, etc] F NS P

kernel

Generic Block Interface [block read/write]

‘ Generic Block Layer ‘

|
Specific Block Interface [protocol-specific read/write]

The File System Stack

TCSS422: Operating Systems [Fall 2018]

December 5, 2018 School of Engineering and Technology, University of Washington - Tacoma

L19.30

Lloyd

12/6/2018

L19.15

TCSS 422 A - Fall 2018
School of Engineering and Technology,

FILE SYSTEM ABSTRACTION ISSUES

® Too much abstraction

® Many devices provide special capabilities
= Example: SCSI Error handling
m SCSI devices provide extra detail which are lost to the 0S

= Buggy device drivers

® 70% of OS code is in device drivers
= Device drivers are required for every device plugged in

the same level as the OS (Linux, Windows, MacOS, etc.)

= Drivers are often 3" party, which is not quality controlled at

TCSS422: Operating Systems [Fall 2018]

December.5, 2018 School of Engineering and Technology, University of Washington - Tacoma

L19.31

QUESTIONS

TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington -

December 5, 2018

Slides by Wes J. Lloyd

12/6/2018

L19.16

