
TCSS 422 A – Fall 2018
School of Engineering and Technology,

12/6/2018

L19.1Slides by Wes J. Lloyd

December 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

Beyond Physical Memory,
I/O Devices

Wes J. Lloyd
School of Engineering and Technology,
University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 Program 3

 Write to a proc fi le?

 Once we have a reference to a process, we then traverse
pages on that process?

December 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L19.2

FEEDBACK FROM 12/3

TCSS 422 A – Fall 2018
School of Engineering and Technology,

12/6/2018

L19.2Slides by Wes J. Lloyd

 Which I/O Devices work better with interrupts (other than
keyboard)?

 Interrupt driven I/O - - is of f-loaded from the CPU

 Via Directory Memory Access (DMA) controller

 CPU non involved in the data transfer

 Interrupts enable a context-switch to notify data is available

 Examples: ISA, PCI bus

 Polled I/O is - - programmed I/O

 Data transfers fully occupy CPU for entire data transfer

 CPU unavailable for other work

 Examples: ATA (parallel ports), legacy serial/parallel ports,
PS/2 keyboard/mouse, MIDI, joysticks

December 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L19.3

FEEDBACK - 2

 Does the mouse use interrupts, polling, or a hybrid of
both?

 Interrupts

Where is the polling (BUSY) process? (see top –d .1)

December 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L19.4

FEEDBACK - 3

TCSS 422 A – Fall 2018
School of Engineering and Technology,

12/6/2018

L19.3Slides by Wes J. Lloyd

CLOUD AND
DISTRIBUTED SYSTEMS

RESEARCH

L19.5

CLOUD AND DISTRIBUTED SYSTEMS LAB
WES LLOY D, WLLOYD@UW.EDU,

HTTP ://FACULT Y.WASHINGTON.EDU/WLLOYD

 Serverless Computing (FaaS):
 How should c loud native applications be composed from microservices to

opt imize per formance and cost? Code structure direct ly inf luences
host ing costs .
 Service composition, performance and cost optimization/modeling/analytics,

Application migration, Mitigation of Platform limitations, Influencing
infrastructure, Lambda@Edge

 Containerization (Docker):
 How should containers and container platforms be leveraged and

managed to optimize per formance, reduce costs, and maximize server
util ization?
 Containers, container orchestration frameworks, resource allocation, checkpointing

 Infrastructure-as-a-Service (IaaS) Cloud:
 How should applications and workloads be deployed to optimize

per formance and cost? There are many “knobs”, configuration options
to consider.
 Application/workload deployment, performance and cost

optimization/modeling/analytics, infrastructure management,
resource contention detection/mitigation, HW heterogeneity

TCSS 422 A – Fall 2018
School of Engineering and Technology,

12/6/2018

L19.4Slides by Wes J. Lloyd

Review Quiz 5

Program 3 Questions

Practice Final – 12/5

Device I/O

Chapter 36 – I/O Devices

Chapter 37 – Hard Disk Drives

December 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L19.7

OBJECTIVES

CHAPTER 36:
I/O DEVICES

December 5, 2018
TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma L19.8

TCSS 422 A – Fall 2018
School of Engineering and Technology,

12/6/2018

L19.5Slides by Wes J. Lloyd

Chapter 36

Polling vs Interrupts

Programmed I/O (PIO)
 Port-mapped I/O (PMIO)

Memory-mapped I/O (MMIO)

Direct memory Access (DMA)

December 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L19.9

OBJECTIVES

 Modern computer systems interact with a variety of devices

December 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma L19.10

I/O DEVICES

TCSS 422 A – Fall 2018
School of Engineering and Technology,

12/6/2018

L19.6Slides by Wes J. Lloyd

December 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L19.11

COMPUTER SYSTEM ARCHITECTURE

VERY FAST: CPU is attached to main memory via a Memory bus.

FAST: High speed devices (e.g. video) are connected via a General I/O bus.

SLOWER: Disks are connected via a Peripheral I/O bus.

 Buses

 Buses closer to the CPU are faster

 Can support fewer devices

 Further buses are slower, but support more devices

 Physics and costs dictate “levels”

Memory bus

 General I/O bus

 Peripheral I/O bus

 Tradeoff space: speed vs. locality

December 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L19.12

I/O BUSES

TCSS 422 A – Fall 2018
School of Engineering and Technology,

12/6/2018

L19.7Slides by Wes J. Lloyd

 Consider an arbitrary canonical “standard/generic” device

 Two primary components

 Interface (registers for communication)

 Internals: Local CPU, memory, specific chips, firmware
(embedded software)

December 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L19.13

CANONICAL DEVICE

 Status register

Maintains current device status

 Command register

Where commands for interaction are sent

 Data register

 Used to send and receive data to the device

December 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L19.14

CANONICAL DEVICE:
HARDWARE INTERFACE

General concept:
The OS interacts and controls device behavior
by reading and writing the device registers.

TCSS 422 A – Fall 2018
School of Engineering and Technology,

12/6/2018

L19.8Slides by Wes J. Lloyd

 Common example of device interaction

December 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L19.15

OS DEVICE INTERACTION

Poll- Is device available?

Poll – Is device done?

Command parameterization

Send command

 OS checks if device is READY by repeatedly checking the
STATUS register
 Simple approach

 CPU cycles are wasted without doing meaningful work

 Ok if only a few cycles, for rapid devices that are often READY

 BUT polling, as with “spin locks” we understand is inefficient

December 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L19.16

POLLING

TCSS 422 A – Fall 2018
School of Engineering and Technology,

12/6/2018

L19.9Slides by Wes J. Lloyd

 For longer waits, put process waiting on I/O to sleep

 Context switch (C/S) to another process

 When I/O completes, fire an interrupt to initiate C/S back
 Advantage: better multi-tasking and CPU utilization

 Avoids: unproductive CPU cycles (polling)

December 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L19.17

INTERRUPTS VS POLLING

 Interrupts are not always the best solution

 How long does the device I/O require?

What is the cost of context switching?

December 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L19.18

INTERRUPTS VS POLLING - 2

If device I/O is fast polling is better.
If device I/O is slow interrupts are better.

What is the tradeoff space ?

TCSS 422 A – Fall 2018
School of Engineering and Technology,

12/6/2018

L19.10Slides by Wes J. Lloyd

 One solution is a two-phase hybrid approach

 Initially poll, then sleep and use interrupts

 Livelock problem

 Common with network I/O

 Many arriving packets generate many many interrupts

 Overloads the CPU!

 No time to execute code, just interrupt handlers !

 Livelock optimization

 Coalesce multiple arriving packets (for different processes) into
fewer interrupts

 Must consider number of interrupts a device could generate

December 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L19.19

INTERRUPTS VS POLLING - 3

 To interact with a device we must send/receive
DATA

 There are two general approaches:

Programmed I/O (PIO)

Direct memory access (DMA)

December 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L19.20

DEVICE I/O

TCSS 422 A – Fall 2018
School of Engineering and Technology,

12/6/2018

L19.11Slides by Wes J. Lloyd

TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

From https://en.wikipedia.org/wiki/Parallel_ATA

 Spend CPU time to perform I/O

 CPU is involved with the data movement (input/output)

 PIO is slow –CPU is occupied with meaningless work

December 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L19.22

PROGRAMMED I/O (PIO)

PIO

TCSS 422 A – Fall 2018
School of Engineering and Technology,

12/6/2018

L19.12Slides by Wes J. Lloyd

 Legacy serial ports

 Legacy parallel ports

 PS/2 keyboard and mouse

 Legacy MIDI, joysticks

 Old network interfaces

December 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L19.23

PIO DEVICES

 Two primary PIO methods

Port mapped I/O (PMIO)

Memory mapped I/O (MMIO)

December 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L19.24

PROGRAMMED I/O DEVICE (PIO)
INTERACTION

TCSS 422 A – Fall 2018
School of Engineering and Technology,

12/6/2018

L19.13Slides by Wes J. Lloyd

 Device specific CPU I/O Instructions

 Follows a CISC model: extra instructions

 x86-x86-64: in and out instructions

 outb, outw, outl

 1, 2, 4 byte copy from EAX device’s I/O port

December 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L19.25

PORT MAPPED I/O (PMIO)

 Device’s memory is mapped to CPU memory

 Tenet of RISC CPUs: instructions are eliminated, CPU is
simpler

 Old days: 16-bit CPUs didn’t have a lot of spare memory space

 Today’s CPUs: 32-bit (4GB addr space) & 64-bit (128 TB addr
space)

 Regular CPU instructions used to access device: mapped to
memory

 Devices monitor CPU address bus and respond to their
addresses

 I/O device address areas of memory are reserved for I/O
 Must not be available for normal memory operations.

December 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L19.26

MEMORY MAPPED I/O (MMIO)

TCSS 422 A – Fall 2018
School of Engineering and Technology,

12/6/2018

L19.14Slides by Wes J. Lloyd

 Copy data in memory by off loading to “DMA controller”

 Many devices (including CPUs) integrate DMA controllers

 CPU gives DMA: memory address, size, and copy instruction
 DMA performs I/O independent of the CPU

 DMA controller generates CPU interrupt when I/O completes

December 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L19.27

DIRECT MEMORY ACCESS (DMA)

 Many devices use DMA

 HDD/SSD controllers (ISA/PCI)

 Graphics cards

 Network cards

 Sound cards

 Intra-chip memory transfer for multi-core processors

 DMA allows computation and data transfer time to
proceed in parallel

December 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L19.28

DIRECTORY MEMORY ACCESS – 2

TCSS 422 A – Fall 2018
School of Engineering and Technology,

12/6/2018

L19.15Slides by Wes J. Lloyd

 The OS must interact with a variety of devices

 Example: for DISK I/O consider the variety of disks:

 SCSI, IDE, USB flash drive, DVD, etc.

 Device drivers use abstraction to provide general
interfaces for vendor specific hardware

 In Linux: block devices

December 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L19.29

DEVICE INTERACTION

 Layers of I/O abstraction in Linux

 C functions (open, read, write) issue block read and write
requests to the generic block layer

December 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L19.30

FILE SYSTEM ABSTRACTION

TCSS 422 A – Fall 2018
School of Engineering and Technology,

12/6/2018

L19.16Slides by Wes J. Lloyd

 Too much abstraction

 Many devices provide special capabilities

 Example: SCSI Error handling

 SCSI devices provide extra detail which are lost to the OS

 Buggy device drivers

 70% of OS code is in device drivers

 Device drivers are required for every device plugged in

 Drivers are often 3rd party, which is not quality controlled at
the same level as the OS (Linux, Windows, MacOS, etc.)

December 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L19.31

FILE SYSTEM ABSTRACTION ISSUES

QUESTIONS

December 5, 2018
TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma L19.3

2

