
TCSS 422 A – Fall 2018
School of Engineering and Technology,

12/6/2018

L19.1Slides by Wes J. Lloyd

December 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

Beyond Physical Memory,
I/O Devices

Wes J. Lloyd
School of Engineering and Technology,
University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 Program 3

 Write to a proc file?

 Once we have a reference to a process, we then traverse
pages on that process?

December 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L19.2

FEEDBACK FROM 12/3

 Which I/O Devices work better with interrupts (other than
keyboard)?

 Interrupt driven I/O - - is of f-loaded from the CPU

 Via Directory Memory Access (DMA) controller

 CPU non involved in the data transfer

 Interrupts enable a context-switch to notify data is available

 Examples: ISA, PCI bus

 Polled I/O is - - programmed I/O

 Data transfers fully occupy CPU for entire data transfer

 CPU unavailable for other work

 Examples: ATA (parallel ports), legacy serial/parallel ports,
PS/2 keyboard/mouse, MIDI, joysticks

December 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L19.3

FEEDBACK - 2

TCSS 422 A – Fall 2018
School of Engineering and Technology,

12/6/2018

L19.2Slides by Wes J. Lloyd

 Does the mouse use interrupts, polling, or a hybrid of
both?

 Interrupts

Where is the polling (BUSY) process? (see top –d .1)

December 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L19.4

FEEDBACK - 3

CLOUD AND
DISTRIBUTED SYSTEMS

RESEARCH

L19.5

CLOUD AND DISTRIBUTED SYSTEMS LAB
WES LLOY D, WLLOY D@UW.EDU,

HT T P://FACU LT Y.WASHINGTON .EDU /WLLOYD

 Serverless Computing (FaaS):
 How should c loud nat ive applications be composed from microserv ices to

opt imize per formance and cost? Code st ructure d irectly in f luences
host ing costs.
 Service composition, performance and cost optimization/modeling/analytics,

Application migration, Mitigation of Platform limitations, Influencing
infrastructure, Lambda@Edge

 Containerization (Docker):
 How should containers and container platforms be leveraged and

managed to opt imize per formance, reduce costs, and maximize ser ver
uti l ization?
 Containers, container orchestration frameworks, resource allocation, checkpointing

 Infrastructure-as-a-Service (IaaS) Cloud:
 How should applications and workloads be deployed to optimize

per formance and cost? There are many “knobs”, configurat ion opt ions
to consider.
 Application/workload deployment, per formance and cost

optimization/modeling/analytics, infrastructure management,
resource contention detection/mitigation, HW heterogeneity

TCSS 422 A – Fall 2018
School of Engineering and Technology,

12/6/2018

L19.3Slides by Wes J. Lloyd

Review Quiz 5

Program 3 Questions

Practice Final – 12/5

Device I/O

Chapter 36 – I/O Devices

Chapter 37 – Hard Disk Drives

December 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L19.7

OBJECTIVES

CHAPTER 36:
I/O DEVICES

December 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma L19.8

Chapter 36

Polling vs Interrupts

Programmed I/O (PIO)
 Port-mapped I/O (PMIO)

Memory-mapped I/O (MMIO)

Direct memory Access (DMA)

December 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L19.9

OBJECTIVES

TCSS 422 A – Fall 2018
School of Engineering and Technology,

12/6/2018

L19.4Slides by Wes J. Lloyd

 Modern computer systems interact with a variety of devices

December 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma L19.10

I/O DEVICES

December 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L19.11

COMPUTER SYSTEM ARCHITECTURE

VERY FAST: CPU is attached to main memory via a Memory bus.

FAST: High speed devices (e.g. video) are connected via a General I/O bus.

SLOWER: Disks are connected via a Peripheral I/O bus.

 Buses

 Buses closer to the CPU are faster

 Can support fewer devices

 Further buses are slower, but support more devices

 Physics and costs dictate “levels”

Memory bus

 General I/O bus

 Peripheral I/O bus

 Tradeoff space: speed vs. locality

December 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L19.12

I/O BUSES

TCSS 422 A – Fall 2018
School of Engineering and Technology,

12/6/2018

L19.5Slides by Wes J. Lloyd

 Consider an arbitrary canonical “standard/generic” device

 Two primary components

 Interface (registers for communication)

 Internals: Local CPU, memory, specific chips, firmware
(embedded software)

December 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L19.13

CANONICAL DEVICE

 Status register

Maintains current device status

 Command register

Where commands for interaction are sent

 Data register

 Used to send and receive data to the device

December 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L19.14

CANONICAL DEVICE:
HARDWARE INTERFACE

General concept:
The OS interacts and controls device behavior
by reading and writing the device registers.

 Common example of device interaction

December 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L19.15

OS DEVICE INTERACTION

Poll- Is device available?

Poll – Is device done?

Command parameterization

Send command

TCSS 422 A – Fall 2018
School of Engineering and Technology,

12/6/2018

L19.6Slides by Wes J. Lloyd

 OS checks if device is READY by repeatedly checking the
STATUS register
 Simple approach

 CPU cycles are wasted without doing meaningful work

 Ok if only a few cycles, for rapid devices that are often READY

 BUT polling, as with “spin locks” we understand is inefficient

December 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L19.16

POLLING

 For longer waits, put process waiting on I/O to sleep

 Context switch (C/S) to another process

 When I/O completes, fire an interrupt to initiate C/S back
 Advantage: better multi-tasking and CPU utilization

 Avoids: unproductive CPU cycles (polling)

December 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L19.17

INTERRUPTS VS POLLING

 Interrupts are not always the best solution

 How long does the device I/O require?

What is the cost of context switching?

December 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L19.18

INTERRUPTS VS POLLING - 2

If device I/O is fast  polling is better.
If device I/O is slow  interrupts are better.

What is the tradeoff space ?

TCSS 422 A – Fall 2018
School of Engineering and Technology,

12/6/2018

L19.7Slides by Wes J. Lloyd

 One solution is a two-phase hybrid approach

 Initially poll, then sleep and use interrupts

 Livelock problem

 Common with network I/O

 Many arriving packets generate many many interrupts

 Overloads the CPU!

 No time to execute code, just interrupt handlers !

 Livelock optimization

 Coalesce multiple arriving packets (for different processes) into
fewer interrupts

 Must consider number of interrupts a device could generate

December 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L19.19

INTERRUPTS VS POLLING - 3

 To interact with a device we must send/receive
DATA

 There are two general approaches:

Programmed I/O (PIO)

Direct memory access (DMA)

December 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L19.20

DEVICE I/O

TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

From https://en.wikipedia.org/wiki/Parallel_ATA

TCSS 422 A – Fall 2018
School of Engineering and Technology,

12/6/2018

L19.8Slides by Wes J. Lloyd

 Spend CPU time to perform I/O

 CPU is involved with the data movement (input/output)

 PIO is slow –CPU is occupied with meaningless work

December 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L19.22

PROGRAMMED I/O (PIO)

PIO

 Legacy serial ports

 Legacy parallel ports

 PS/2 keyboard and mouse

 Legacy MIDI, joysticks

 Old network interfaces

December 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L19.23

PIO DEVICES

 Two primary PIO methods

Port mapped I/O (PMIO)

Memory mapped I/O (MMIO)

December 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L19.24

PROGRAMMED I/O DEVICE (PIO)
INTERACTION

TCSS 422 A – Fall 2018
School of Engineering and Technology,

12/6/2018

L19.9Slides by Wes J. Lloyd

 Device specific CPU I/O Instructions

 Follows a CISC model: extra instructions

 x86-x86-64: in and out instructions

 outb, outw, outl

 1, 2, 4 byte copy from EAX  device’s I/O port

December 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L19.25

PORT MAPPED I/O (PMIO)

 Device’s memory is mapped to CPU memory

 Tenet of RISC CPUs: instructions are eliminated, CPU is
simpler

 Old days: 16-bit CPUs didn’t have a lot of spare memory space

 Today’s CPUs: 32-bit (4GB addr space) & 64-bit (128 TB addr
space)

 Regular CPU instructions used to access device: mapped to
memory

 Devices monitor CPU address bus and respond to their
addresses

 I/O device address areas of memory are reserved for I/O
 Must not be available for normal memory operations.

December 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L19.26

MEMORY MAPPED I/O (MMIO)

 Copy data in memory by of floading to “DMA controller”

 Many devices (including CPUs) integrate DMA controllers

 CPU gives DMA: memory address, size, and copy instruction
 DMA performs I/O independent of the CPU

 DMA controller generates CPU interrupt when I/O completes

December 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L19.27

DIRECT MEMORY ACCESS (DMA)

TCSS 422 A – Fall 2018
School of Engineering and Technology,

12/6/2018

L19.10Slides by Wes J. Lloyd

 Many devices use DMA

 HDD/SSD controllers (ISA/PCI)

 Graphics cards

 Network cards

 Sound cards

 Intra-chip memory transfer for multi-core processors

 DMA allows computation and data transfer time to
proceed in parallel

December 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L19.28

DIRECTORY MEMORY ACCESS – 2

 The OS must interact with a variety of devices

 Example: for DISK I/O consider the variety of disks:

 SCSI, IDE, USB flash drive, DVD, etc.

 Device drivers use abstraction to provide general
interfaces for vendor specific hardware

 In Linux: block devices

December 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L19.29

DEVICE INTERACTION

 Layers of I/O abstraction in Linux

 C functions (open, read, write) issue block read and write
requests to the generic block layer

December 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L19.30

FILE SYSTEM ABSTRACTION

TCSS 422 A – Fall 2018
School of Engineering and Technology,

12/6/2018

L19.11Slides by Wes J. Lloyd

 Too much abstraction

 Many devices provide special capabilities

 Example: SCSI Error handling

 SCSI devices provide extra detail which are lost to the OS

 Buggy device dr ivers

 70% of OS code is in device drivers

 Device drivers are required for every device plugged in

 Drivers are often 3rd party, which is not quality controlled at
the same level as the OS (Linux, Windows, MacOS, etc.)

December 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L19.31

FILE SYSTEM ABSTRACTION ISSUES

QUESTIONS

December 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L19.3
2

