
TCSS 422 A – Fall 2018
School of Engineering and Technology,

12/3/2018

L18.1Slides by Wes J. Lloyd

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

Beyond Physical Memory,
I/O Devices

Wes J. Lloyd
School of Engineering and Technology,
University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 Assignment #3

 A good starting point is to first iterate the set of processes in
Linux, and print out the proc ID and name.

 This link, Chapter #3, "The Process Family Tree", should be
helpful:

 https://notes.shichao.io/lkd/ch3/

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.2

FEEDBACK FROM 11/28

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.3

FEEDBACK - 2

TCSS 422 A – Fall 2018
School of Engineering and Technology,

12/3/2018

L18.2Slides by Wes J. Lloyd

 Quiz 5

 Program 3

 Practice Final – 12/5

 Paging

 Chapter 21/22 – Beyond Physical Memory

 Chapter 36 – I/O Devices

 Chapter 37 – Hard Disk Drives

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.4

OBJECTIVES

CHAPTER 21/22:
BEYOND PHYSICAL

MEMORY

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma L18.5

 Disks (HDD, SSD) provide another level of storage in the
memory hierarchy

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.6

MEMORY HIERARCHY

TCSS 422 A – Fall 2018
School of Engineering and Technology,

12/3/2018

L18.3Slides by Wes J. Lloyd

 Can provide illusion of an address space larger than
physical RAM

 For a single process

 Convenience

 Ease of use

 For multiple processes

 Large virtual memory space for many concurrent
processes

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.7

MOTIVATION FOR
EXPANDING THE ADDRESS SPACE

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.8

LATENCY TIMES

Design considerations
 SSDs 4x the time of DRAM
 HDDs 80x the time of DRAM

 Lat ency num be rs e ve r y prog ram m e r should know
 From : ht tps ://g ist .g i thub.c om /jbone r/2 841832#f i le - l ate nc y - t x t

 Disk space for storing memory pages

 “Swap” them in and out of memory to disk as needed

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.9

SWAP SPACE

TCSS 422 A – Fall 2018
School of Engineering and Technology,

12/3/2018

L18.4Slides by Wes J. Lloyd

 Page table pages are:

 Stored in memory

 Swapped to disk

 Present bit

 In the page table entry (PTE) indicates if page is present

 Page fault

Memory page is accessed, but has been swapped to disk

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.10

PAGE LOCATION

 OS steps in to handle the page fault

 Loading page from disk requires a free memory page

 Page-Fault Algorithm

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.11

PAGE FAULT

 Page daemon

 Background threads which monitors swapped pages

 Low watermark (LW)

 Threshold for when to swap pages to disk

 Daemon checks: free pages < LW

 Begin swapping to disk until reaching the highwater mark

 High watermark (HW)

 Target threshold of free memory pages

 Daemon free until: free pages >= HW

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.12

PAGE REPLACEMENTS

TCSS 422 A – Fall 2018
School of Engineering and Technology,

12/3/2018

L18.5Slides by Wes J. Lloyd

REPLACEMENT
POLICIES

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.1
3

 Replacement policies apply to “any” cache

 Goal is to minimize the number of misses

 Average memory access time can be estimated:

 Consider TM = 100 ns, TD = 10ms

 Consider Phit = .9 (90%), Pmiss = .1

 Consider Phit = .999 (99.9%), Pmiss = .001

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.14

CACHE MANAGEMENT

𝐴𝑀𝐴𝑇 = 𝑃ு௜௧ ∗ 𝑇ெ + (𝑃ெ௜௦௦ ∗ 𝑇஽)

Argument Meaning

𝑇ெ The cost of accessing memory (time)

𝑇஽ The cost of accessing disk (time)

𝑃ு௜௧ The probability of finding the data item in the cache(a hit)

𝑃ெ௜௦௦ The probability of not finding the data in the cache(a miss)

 What if:
 We could predict the future (… with a magical oracle)

 All future page accesses are known

 Always replace the page in the cache used farthest in the future

 Used for a comparison

 Provides a “best case” replacement policy

 Consider a 3-element empty cache with the following page
accesses:

0 1 2 0 1 3 0 3 1 2 1

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.15

OPTIMAL REPLACEMENT POLICY

What is the hit/miss ratio?

6 hits

TCSS 422 A – Fall 2018
School of Engineering and Technology,

12/3/2018

L18.6Slides by Wes J. Lloyd

 Queue based

 Always replace the oldest element at the back of cache

 Simple to implement

 Doesn’t consider importance… just arrival ordering

 Consider a 3-element empty cache with the following
page accesses:

0 1 2 0 1 3 0 3 1 2 1

 What is the hit/miss ratio?

 How is FIFO different than LRU?

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.16

FIFO REPLACEMENT

4 hits

LRU incorporates history

 Pick a page at random to replace

 Simple and fast implementation

 Performance depends on luck of random choices

0 1 2 0 1 3 0 3 1 2 1

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.17

RANDOM REPLACEMENT

 LRU: Least recently used
 Always replace page with oldest access time (front)
 Always move end of cache when element is read again
 Considers temporal locality (when pg was last accessed)

0 1 2 0 1 3 0 3 1 2 1

 LFU: Least frequently used
 Always replace page with fewest accesses (front)
 Consider frequency of page accesses

0 1 2 0 1 3 0 3 1 2 1

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.18

HISTORY-BASED POLICIES

What is the hit/miss ratio?

6 hits

Hit/miss ratio is=

6 hits

TCSS 422 A – Fall 2018
School of Engineering and Technology,

12/3/2018

L18.7Slides by Wes J. Lloyd

 No-Locality (Random Access) Workload
 Perform 10,000 random page accesses

 Across set of 100 memory pages

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.19

WORKLOAD EXAMPLES: NO-LOCALITY

When the cache is
large enough to fit

the entire workload,
it doesn’t matter

which policy you use.

 80/20 Workload
 Perform 10,000 page accesses, against set of 100 pages

 80% of accesses are to 20% of pages (hot pages)

 20% of accesses are to 80% of pages (cold pages)

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.20

WORKLOAD EXAMPLES: 80/20

LRU is more likely
to hold onto
hot pages

(recalls history)

 Looping sequential workload
 Refer to 50 pages in sequence: 0, 1, …, 49

 Repeat loop

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.21

WORKLOAD EXAMPLES: SEQUENTIAL

Random performs
better than FIFO and

LRU for
cache sizes < 50

Algorithms should provide
“scan resistance”

TCSS 422 A – Fall 2018
School of Engineering and Technology,

12/3/2018

L18.8Slides by Wes J. Lloyd

 Implementing last recently used (LRU) requires tracking
access time for all system memory pages

 Times can be tracked with a list

 For cache eviction, we must scan an entire list

 Consider: 4GB memory system (232),
with 4KB pages (212)

 This requires 220 comparisons !!!

 Simplification is needed

 Consider how to approximate the oldest page access

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.22

IMPLEMENTING LRU

Harness the Page Table Entry (PTE) Use Bit

HW sets to 1 when page is used

OS sets to 0

Clock algorithm (approximate LRU)

Refer to pages in a circular list

Clock hand points to current page

Loops around
 IF USE_BIT=1 set to USE_BIT = 0

 IF USE_BIT=0 replace page

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.23

IMPLEMENTING LRU - 2

 Not as efficient as LRU, but better than other
replacement algorithms that do not consider history

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.24

CLOCK ALGORITHM

TCSS 422 A – Fall 2018
School of Engineering and Technology,

12/3/2018

L18.9Slides by Wes J. Lloyd

Consider dirty pages in cache

 If DIRTY (modified) bit is FALSE

No cost to evict page from cache

 If DIRTY (modified) bit is TRUE

Cache eviction requires updating memory

Contents have changed

Clock algorithm should favor no cost eviction

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.25

CLOCK ALGORITHM - 2

 On demand  demand paging

 Prefetching
 Preload pages based on anticipated demand

 Prediction based on locality
 Access page P, suggest page P+1 may be used

 What other techniques might help anticipate required
memory pages?
 Prediction models, historical analysis
 In general: accuracy vs. effort tradeoff
 High analysis techniques struggle to respond in real time

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.26

WHEN TO LOAD PAGES

Page swaps / writes

Group/cluster pages together

Collect pending writes, perform as batch

Grouping disk writes helps amortize latency costs

 Thrashing

Occurs when system runs many memory intensive
processes and is low in memory

Everything is constantly swapped to-and-from disk

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.27

OTHER SWAPPING POLICIES

TCSS 422 A – Fall 2018
School of Engineering and Technology,

12/3/2018

L18.10Slides by Wes J. Lloyd

Working sets

Groups of related processes

When thrashing: prevent one or more working
set(s) from running

Temporarily reduces memory burden

Allows some processes to run, reduces thrashing

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.28

OTHER SWAPPING POLICIES - 2

CHAPTER 36:
I/O DEVICES

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma L18.29

Chapter 36

Polling vs Interrupts

Programmed I/O (PIO)
 Port-mapped I/O (PMIO)

Memory-mapped I/O (MMIO)

Direct memory Access (DMA)

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.30

OBJECTIVES

TCSS 422 A – Fall 2018
School of Engineering and Technology,

12/3/2018

L18.11Slides by Wes J. Lloyd

 Modern computer systems interact with a variety of devices

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma L18.31

I/O DEVICES

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.32

COMPUTER SYSTEM ARCHITECTURE

VERY FAST: CPU is attached to main memory via a Memory bus.

FAST: High speed devices (e.g. video) are connected via a General I/O bus.

SLOWER: Disks are connected via a Peripheral I/O bus.

 Buses

 Buses closer to the CPU are faster

 Can support fewer devices

 Further buses are slower, but support more devices

 Physics and costs dictate “levels”

Memory bus

 General I/O bus

 Peripheral I/O bus

 Tradeoff space: speed vs. locality

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.33

I/O BUSES

TCSS 422 A – Fall 2018
School of Engineering and Technology,

12/3/2018

L18.12Slides by Wes J. Lloyd

 Consider an arbitrary canonical “standard/generic” device

 Two primary components

 Interface (registers for communication)

 Internals: Local CPU, memory, specific chips, firmware
(embedded software)

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.34

CANONICAL DEVICE

 Status register

Maintains current device status

 Command register

Where commands for interaction are sent

 Data register

 Used to send and receive data to the device

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.35

CANONICAL DEVICE:
HARDWARE INTERFACE

General concept:
The OS interacts and controls device behavior
by reading and writing the device registers.

 Common example of device interaction

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.36

OS DEVICE INTERACTION

Poll- Is device available?

Poll – Is device done?

Command parameterization

Send command

TCSS 422 A – Fall 2018
School of Engineering and Technology,

12/3/2018

L18.13Slides by Wes J. Lloyd

 OS checks if device is READY by repeatedly checking the
STATUS register
 Simple approach

 CPU cycles are wasted without doing meaningful work

 Ok if only a few cycles, for rapid devices that are often READY

 BUT polling, as with “spin locks” we understand is inefficient

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.37

POLLING

 For longer waits, put process waiting on I/O to sleep

 Context switch (C/S) to another process

 When I/O completes, fire an interrupt to initiate C/S back
 Advantage: better multi-tasking and CPU utilization

 Avoids: unproductive CPU cycles (polling)

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.38

INTERRUPTS VS POLLING

 Interrupts are not always the best solution

 How long does the device I/O require?

What is the cost of context switching?

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.39

INTERRUPTS VS POLLING - 2

If device I/O is fast  polling is better.
If device I/O is slow  interrupts are better.

What is the tradeoff space ?

TCSS 422 A – Fall 2018
School of Engineering and Technology,

12/3/2018

L18.14Slides by Wes J. Lloyd

 One solution is a two-phase hybrid approach

 Initially poll, then sleep and use interrupts

 Livelock problem

 Common with network I/O

 Many arriving packets generate many many interrupts

 Overloads the CPU!

 No time to execute code, just interrupt handlers !

 Livelock optimization

 Coalesce multiple arriving packets (for different processes) into
fewer interrupts

 Must consider number of interrupts a device could generate

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.40

INTERRUPTS VS POLLING - 3

 To interact with a device we must send/receive
DATA

 There are two general approaches:

Programmed I/O (PIO)

Direct memory access (DMA)

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.41

DEVICE I/O

TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

From https://en.wikipedia.org/wiki/Parallel_ATA

TCSS 422 A – Fall 2018
School of Engineering and Technology,

12/3/2018

L18.15Slides by Wes J. Lloyd

 Spend CPU time to perform I/O

 CPU is involved with the data movement (input/output)

 PIO is slow –CPU is occupied with meaningless work

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.43

PROGRAMMED I/O (PIO)

PIO

 Legacy serial ports

 Legacy parallel ports

 PS/2 keyboard and mouse

 Legacy MIDI, joysticks

 Old network interfaces

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.44

PIO DEVICES

 Two primary PIO methods

Port mapped I/O (PMIO)

Memory mapped I/O (MMIO)

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.45

PROGRAMMED I/O DEVICE (PIO)
INTERACTION

TCSS 422 A – Fall 2018
School of Engineering and Technology,

12/3/2018

L18.16Slides by Wes J. Lloyd

 Device specific CPU I/O Instructions

 Follows a CISC model: extra instructions

 x86-x86-64: in and out instructions

 outb, outw, outl

 1, 2, 4 byte copy from EAX  device’s I/O port

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.46

PORT MAPPED I/O (PMIO)

 Device’s memory is mapped to CPU memory

 Tenet of RISC CPUs: instructions are eliminated, CPU is
simpler

 Old days: 16-bit CPUs didn’t have a lot of spare memory space

 Today’s CPUs: 32-bit (4GB addr space) & 64-bit (128 TB addr
space)

 Regular CPU instructions used to access device: mapped to
memory

 Devices monitor CPU address bus and respond to their
addresses

 I/O device address areas of memory are reserved for I/O
 Must not be available for normal memory operations.

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.47

MEMORY MAPPED I/O (MMIO)

 Copy data in memory by of floading to “DMA controller”

 Many devices (including CPUs) integrate DMA controllers

 CPU gives DMA: memory address, size, and copy instruction
 DMA performs I/O independent of the CPU

 DMA controller generates CPU interrupt when I/O completes

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.48

DIRECT MEMORY ACCESS (DMA)

TCSS 422 A – Fall 2018
School of Engineering and Technology,

12/3/2018

L18.17Slides by Wes J. Lloyd

 Many devices use DMA

 HDD/SSD controllers (ISA/PCI)

 Graphics cards

 Network cards

 Sound cards

 Intra-chip memory transfer for multi-core processors

 DMA allows computation and data transfer time to
proceed in parallel

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.49

DIRECTORY MEMORY ACCESS – 2

 The OS must interact with a variety of devices

 Example: for DISK I/O consider the variety of disks:

 SCSI, IDE, USB flash drive, DVD, etc.

 Device drivers use abstraction to provide general
interfaces for vendor specific hardware

 In Linux: block devices

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.50

DEVICE INTERACTION

 Layers of I/O abstraction in Linux

 C functions (open, read, write) issue block read and write
requests to the generic block layer

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.51

FILE SYSTEM ABSTRACTION

TCSS 422 A – Fall 2018
School of Engineering and Technology,

12/3/2018

L18.18Slides by Wes J. Lloyd

 Too much abstraction

 Many devices provide special capabilities

 Example: SCSI Error handling

 SCSI devices provide extra detail which are lost to the OS

 Buggy device dr ivers

 70% of OS code is in device drivers

 Device drivers are required for every device plugged in

 Drivers are often 3rd party, which is not quality controlled at
the same level as the OS (Linux, Windows, MacOS, etc.)

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.52

FILE SYSTEM ABSTRACTION ISSUES

CH. 37:
HARD DISK DRIVES

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.5
3

 Chapter 37

 HDD Internals

 Seek time

 Rotational latency

 Transfer speed

 Capacity

 Scheduling algorithms

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.54

OBJECTIVES

TCSS 422 A – Fall 2018
School of Engineering and Technology,

12/3/2018

L18.19Slides by Wes J. Lloyd

 Primary means of data storage (persistence) for decades

 Consists of a large number of data sectors

 Sector size is 512-bytes

 An n sector HDD
can be is addressed as an array of 0..n-1 sectors

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.55

HARD DISK DRIVE (HDD)

 Writing disk sectors is atomic (512 bytes)

 Sector writes are completely successful, or fail

 Many file systems will read/write 4KB at a time

 Linux ext3/4 default filesystem blocksize – 4096

 Same as typical memory page size

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.56

HDD INTERFACE

mkefs.ext4 -i bytes-per-inode

Specify the bytes/inode ratio. mke2fs creates an inode for
every bytes-per-inode bytes of space on the disk. The
larger the bytes-per-inode ratio, the fewer inodes will be
created. This value generally shouldn't be smaller than
the blocksize of the filesystem, since in that case more
inodes would be made than can ever be used. Be warned
that it is not possible to expand the number of inodes on
a filesystem after it is created, so be careful deciding the
correct value for this parameter.

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.57

BLOCK SIZE IN LINUX EXT4

TCSS 422 A – Fall 2018
School of Engineering and Technology,

12/3/2018

L18.20Slides by Wes J. Lloyd

 Host ~2,000,000 files totaling 9.5 GB on a ~20GB
filesystem on a cloud-based Virtual Machine

 With default inode ratio (4096 block size),
only ~488,000 files will fit

 Drive less than half full, but files will not fit !

 HDDs support a minimum block size of 512 bytes

 OS filesystems such as ext3/ext4 can support “finer
grained” management at the expense of a larger catalog
size

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.58

EXAMPLE: USDA SOIL EROSION MODEL
WEB SERVICE (RUSLE2)

Free space in bytes (df)

Device total size bytes-used bytes-free usage

/dev/vda2 13315844 9556412 3049188 76% /mnt

Free inodes (df –i) @ 512 bytes / node

Device total inodes used free usage

/dev/vda2 3552528 1999823 1552705 57% /mnt

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.59

EXAMPLE: USDA SOIL EROSION MODEL
WEB SERVICE (RUSLE2) - 2

 Torn write

When OS uses larger block size than HDD

 Block writes not atomic - they SPAN multiple HDD sectores

 Upon power failure only a portion of the OS block is
written

 HDD access

 Sequential reads of sectors is fastest

 Random sector reads are slow

 Disk head continuously must jump to
different tracks

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.60

HDD INTERFACE - 2

TCSS 422 A – Fall 2018
School of Engineering and Technology,

12/3/2018

L18.21Slides by Wes J. Lloyd

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.61

HDD PLATTER

 Made from aluminum coated with thin magnetic layer

 HDD records on both sides of each platter

 Data is stored by inducing magnetic changes

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.62

HDD SPINDLE

 Connected to motor which spins the disk

 Speed measures in RPM (rotations per minute)

 Typical: 7200-15000 rpm

 10000 rpm – 1 rotation in 6ms; 15k rpm 1 rotation in 4ms

 Concentric circle of sectors

 Single side of platter contains 290 K tracks (2008)

 Zones: groups of tracks with same # of sectors

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.63

HDD TRACK

Outer tracks have
More sectors

TCSS 422 A – Fall 2018
School of Engineering and Technology,

12/3/2018

L18.22Slides by Wes J. Lloyd

 Single track disk

 Head: one per surface of drive

 Arm: moves heads across surface of platters

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.64

EXAMPLE: SIMPLE DISK DRIVE

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.65

HARD DISK STRUCTURE

 Rotational latency (Trotation): time to rotate to desired sector

 Average Trotation is ~ half the time of a full rotation

 Calculate time for 1 rotation based on rpm

 7200rpm = 8.33ms per rotation = ~4.166ms

 10000rpm = 6ms per rotation = ~3ms

 15000rpm = 4ms per rotation = ~2ms

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.66

SINGLE-TRACK LATENCY:
THE ROTATIONAL DELAY

TCSS 422 A – Fall 2018
School of Engineering and Technology,

12/3/2018

L18.23Slides by Wes J. Lloyd

 Seek time (Tseek): time to move disk arm to proper track

 Most time consuming HDD operation

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.67

SEEK TIME

 Acceleration  coasting  deceleration settling

 Acceleration: the arm gets moving

 Coasting: arm moving at full speed

 Deceleration: arm slow down

 Settl ing: Head is carefully positioned over track

 Settling time is often high, from .5 to 2ms

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.68

FOUR PHASES OF SEEK

Data transfer

Final phase of I/O: time to read or write to disk
surface

Complete I/O cycle:

1. Seek (accelerate, coast, decelerate, settle)

2. Wait on rotational latency

3. Data transfer

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.69

HDD I/O

TCSS 422 A – Fall 2018
School of Engineering and Technology,

12/3/2018

L18.24Slides by Wes J. Lloyd

 Sectors are offset across tracks to allow time for head to
reposition for sequential reads

 Without track skew, when head is repositioned sector
would have already been passed

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.70

TRACK SKEW

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.71

TRACK SKEW - 2

 Buffer to support caching reads and writes

 Improves drive response time

 Up to 128 MB, slowly have been growing

 Two styles
Writeback cache

 Report write complete immediately when data is
transferred to HDD cache

 Dangerous

Writethrough cache

 Reports write complete only when write is physically
completed on disk

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.72

HDD CACHE

TCSS 422 A – Fall 2018
School of Engineering and Technology,

12/3/2018

L18.25Slides by Wes J. Lloyd

 I/O Time

 The rate of I/O

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.73

TRANSFER SPEED

 Random workload: 4KB random read on HDD

 Sequential workload: read 100MB contiguous sectors

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.74

I/O SPEED

There is a huge gap in drive throughput
between random and sequential workloads

 See sample HDD configurations here:

 https://www.hgst.com/products/hard-drives

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.75

MODERN HDD SPECS

TCSS 422 A – Fall 2018
School of Engineering and Technology,

12/3/2018

L18.26Slides by Wes J. Lloyd

 Disk scheduler: determine how to order I/O requests

 Multiple levels - OS and HW

 OS: provides ordering

 HW: further optimizes using intricate details of physical
HDD implementation and state

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.76

DISK SCHEDULING

 Disk scheduling – which I/O request to schedule next

 Shortest Seek Time First (SSTF)

 Order queue of I/O requests by nearest track

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.77

SSTF – SHORTEST SEEK TIME FIRST

 Problem 1: HDD abstraction

 Drive geometry not available to OS. Nearest-block-first is
a comparable alternate algorithm.

 Problem 2: Starvation

 Steady stream of requests for local tracks may prevent
arm from traversing to other side of platter

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.78

SSTF ISSUES

TCSS 422 A – Fall 2018
School of Engineering and Technology,

12/3/2018

L18.27Slides by Wes J. Lloyd

 SWEEP

 Single repeated passes across disk

 Issue: if request arrives for a recently visited track it will not
be revisited until a full cycle completes

 F-SCAN

 Freeze request queue during sweep

 Cache arriving requests until later

 Elevator (C-SCAN) – circular scan

 Sweep from outer to inner track and reverse,
inner to outer track, etc.

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.79

DISK SCHEDULING ALGORITHMS

Determine next
sector to read?

On which track?

On which sector?

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.80

SHORTEST TIME POSITIONING FIRST

On modern drives, both seek and rotation are roughly equivalent:
Thus, SPTF (Shortest Positioning Time First) is useful.

Group temporary adjacent requests

Reduce overhead

Read (memory blocks): 33 8 34

How long we should wait for I/O ?

When do we know we have waited too long?

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.81

I/O MERGING

TCSS 422 A – Fall 2018
School of Engineering and Technology,

12/3/2018

L18.28Slides by Wes J. Lloyd

QUESTIONS

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.8
2

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.8
3

 Superparamagnetism limits HDD capacity

 In sufficiently small nanoparticles, magnetization can
randomly flip direction under the influence of
temperature.

 HDD capacity is limited by the minimum usable size of
particles – the superparamagnetic limit.

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.84

HDD CAPACITY

TCSS 422 A – Fall 2018
School of Engineering and Technology,

12/3/2018

L18.29Slides by Wes J. Lloyd

 Longitudinal recording: 100-200GB/in

Perpendicular recording: 667 GB/in

Future technologies under development

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma L18.85

HDD CAPACITY - 2

