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Beyond Physical Memory,
I/O Devices
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TCSS 422: OPERATING SYSTEMS

 Assignment #3

 A good starting point is to first iterate the set of processes in 
Linux, and print out the proc ID and name.

 This link, Chapter #3, "The Process Family Tree", should be 
helpful:

 https://notes.shichao.io/lkd/ch3/
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 Quiz 5

 Program 3

 Practice Final – 12/5

 Paging

 Chapter 21/22 – Beyond Physical Memory

 Chapter 36 – I/O Devices

 Chapter 37 – Hard Disk Drives

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington  - Tacoma

L18.4

OBJECTIVES

CHAPTER 21/22:
BEYOND PHYSICAL 

MEMORY
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 Disks (HDD, SSD) provide another level of storage in the 
memory hierarchy
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MEMORY HIERARCHY
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 Can provide illusion of an address space larger than 
physical RAM

 For a single process

 Convenience

 Ease of use 

 For multiple processes

 Large virtual memory space for many concurrent 
processes
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MOTIVATION FOR 
EXPANDING THE ADDRESS SPACE
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LATENCY TIMES

Design considerations
 SSDs 4x the time of DRAM
 HDDs 80x the time of DRAM

 Lat ency  num be rs  e ve r y  prog ram m e r should  know
 From :  ht tps ://g ist .g i thub.c om /jbone r/2 841832#f i le - l ate nc y - t x t

 Disk space for storing memory pages

 “Swap” them in and out of memory to disk as needed
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SWAP SPACE
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 Page table pages are:

 Stored in memory

 Swapped to disk

 Present bit

 In the page table entry (PTE) indicates if page is present

 Page fault

Memory page is accessed, but has been swapped to disk
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PAGE LOCATION

 OS steps in to handle the page fault

 Loading page from disk requires a free memory page

 Page-Fault Algorithm
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PAGE FAULT

 Page daemon

 Background threads which monitors swapped pages

 Low watermark (LW)

 Threshold for when to swap pages to disk

 Daemon checks: free pages < LW

 Begin swapping to disk until reaching the highwater mark

 High watermark (HW)

 Target threshold of free memory pages

 Daemon free until: free pages >= HW
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REPLACEMENT 
POLICIES
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 Replacement policies apply to “any” cache

 Goal is to minimize the number of misses

 Average memory access time can be estimated:

 Consider TM = 100 ns, TD = 10ms

 Consider Phit = .9 (90%), Pmiss = .1

 Consider Phit = .999 (99.9%), Pmiss = .001
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CACHE MANAGEMENT

𝐴𝑀𝐴𝑇 = 𝑃 ∗ 𝑇 + (𝑃 ∗ 𝑇 )

Argument Meaning

𝑇 The cost of accessing memory (time)

𝑇 The cost of accessing disk (time)

𝑃 The probability of finding the data item in the cache(a hit)

𝑃 The probability of not finding the data in the cache(a miss)

 What if:
 We could predict the future (… with a magical oracle)

 All future page accesses are known

 Always replace the page in the cache used farthest in the future 

 Used for a comparison

 Provides a “best case” replacement policy

 Consider a 3-element empty cache with the following page 
accesses:

0  1  2  0  1  3  0  3  1  2  1

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.15

OPTIMAL REPLACEMENT POLICY

What is the hit/miss ratio?

6 hits
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 Queue based

 Always replace the oldest element at the back of cache

 Simple to implement

 Doesn’t consider importance… just arrival ordering

 Consider a 3-element empty cache with the following 
page accesses:

0  1  2  0  1  3  0  3  1  2  1

 What is the hit/miss ratio?

 How is FIFO different than LRU?

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.16

FIFO REPLACEMENT

4 hits

LRU incorporates history

 Pick a page at random to replace

 Simple and fast implementation

 Performance depends on luck of random choices

0  1  2  0  1  3  0  3  1  2  1
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RANDOM REPLACEMENT

 LRU: Least recently used
 Always replace page with oldest access time (front)
 Always move end of cache when element is read again
 Considers temporal locality (when pg was last accessed)

0  1  2  0  1  3  0  3  1  2  1

 LFU: Least frequently used
 Always replace page with fewest accesses (front)
 Consider frequency of page accesses

0  1  2  0  1  3  0  3  1  2  1
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HISTORY-BASED POLICIES

What is the hit/miss ratio?

6 hits

Hit/miss ratio is=

6 hits
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 No-Locality (Random Access) Workload
 Perform 10,000 random page accesses 

 Across set of 100 memory pages
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WORKLOAD EXAMPLES: NO-LOCALITY

When the cache is
large enough to fit 

the entire workload, 
it doesn’t matter 

which policy you use.

 80/20 Workload
 Perform 10,000 page accesses, against set of 100 pages

 80% of accesses are to 20% of pages (hot pages)

 20% of accesses are to 80% of pages (cold pages)
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WORKLOAD EXAMPLES: 80/20

LRU is more likely
to hold onto
hot pages

(recalls history)

 Looping sequential workload
 Refer to 50 pages in sequence: 0, 1, …, 49

 Repeat loop
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WORKLOAD EXAMPLES: SEQUENTIAL

Random performs 
better than FIFO and 

LRU for 
cache sizes < 50

Algorithms should provide
“scan resistance”
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 Implementing last recently used (LRU) requires tracking 
access time for all system memory pages

 Times can be tracked with a list

 For cache eviction, we must scan an entire list

 Consider: 4GB memory system (232),
with 4KB pages (212)

 This requires 220 comparisons  !!!

 Simplification is needed

 Consider how to approximate the oldest page access
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IMPLEMENTING LRU

Harness the Page Table Entry (PTE) Use Bit

HW sets to 1 when page is used

OS sets to 0

Clock algorithm (approximate LRU)

Refer to pages in a circular list

Clock hand points to current page

Loops around
 IF USE_BIT=1 set to USE_BIT = 0

 IF USE_BIT=0 replace page
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IMPLEMENTING LRU - 2

 Not as efficient as LRU, but better than other 
replacement algorithms that do not consider history

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.24

CLOCK ALGORITHM
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Consider dirty pages in cache

 If DIRTY (modified) bit is FALSE

No cost to evict page from cache

 If DIRTY (modified) bit is TRUE

Cache eviction requires updating memory

Contents have changed

Clock algorithm should favor no cost eviction
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CLOCK ALGORITHM - 2

 On demand  demand paging

 Prefetching
 Preload pages based on anticipated demand

 Prediction based on locality
 Access page P, suggest page P+1 may be used

 What other techniques might help anticipate required 
memory pages?   
 Prediction models, historical analysis 
 In general: accuracy vs. effort tradeoff
 High analysis techniques struggle to respond in real time
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WHEN TO LOAD PAGES

Page swaps / writes

Group/cluster pages together

Collect pending writes, perform as batch

Grouping disk writes helps amortize latency costs

 Thrashing

Occurs when system runs many memory intensive 
processes and is low in memory

Everything is constantly swapped to-and-from disk
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OTHER SWAPPING POLICIES
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Working sets

Groups of related processes

When thrashing: prevent one or more working 
set(s) from running

Temporarily reduces memory burden

Allows some processes to run, reduces thrashing
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OTHER SWAPPING POLICIES - 2

CHAPTER 36:
I/O DEVICES
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Chapter 36

Polling vs Interrupts

Programmed I/O (PIO)
 Port-mapped I/O (PMIO)

Memory-mapped I/O (MMIO)

Direct memory Access (DMA)
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OBJECTIVES
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 Modern computer systems interact with a variety of devices
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I/O DEVICES

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.32

COMPUTER SYSTEM ARCHITECTURE

VERY FAST: CPU is attached to main memory via a Memory bus.

FAST: High speed devices (e.g. video) are connected via a General I/O bus. 

SLOWER:  Disks are connected via a Peripheral I/O bus.

 Buses

 Buses closer to the CPU are faster

 Can support fewer devices

 Further buses are slower, but support more devices

 Physics and costs dictate “levels”

Memory bus

 General I/O bus

 Peripheral I/O bus

 Tradeoff space: speed vs. locality
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I/O BUSES
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 Consider an arbitrary canonical “standard/generic” device

 Two primary components

 Interface (registers for communication)

 Internals: Local CPU, memory, specific chips, firmware 
(embedded software)
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CANONICAL DEVICE

 Status register

Maintains current device status

 Command register

Where commands for interaction are sent

 Data register

 Used to send and receive data to the device
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CANONICAL DEVICE: 
HARDWARE INTERFACE

General concept:
The OS interacts and controls device behavior
by reading and writing the device registers.

 Common example of device interaction
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OS DEVICE INTERACTION

Poll- Is device available?

Poll – Is device done?

Command parameterization

Send command
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 OS checks if device is READY by repeatedly checking the 
STATUS register
 Simple approach

 CPU cycles are wasted without doing meaningful work

 Ok if only a few cycles, for rapid devices that are often READY

 BUT polling, as with “spin locks” we understand is inefficient
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POLLING

 For longer waits, put process waiting on I/O to sleep

 Context switch (C/S) to another process

 When I/O completes, fire an interrupt to initiate C/S back
 Advantage: better multi-tasking and CPU utilization

 Avoids: unproductive CPU cycles (polling)
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INTERRUPTS VS POLLING

 Interrupts are not always the best solution

 How long does the device I/O require?

What is the cost of context switching?
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INTERRUPTS VS POLLING - 2

If device I/O is fast  polling is better.
If device I/O is slow  interrupts are better.

What is the tradeoff space ?
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 One solution is a two-phase hybrid approach

 Initially poll, then sleep and use interrupts

 Livelock problem

 Common with network I/O

 Many arriving packets generate many many interrupts

 Overloads the CPU!

 No time to execute code, just interrupt handlers !

 Livelock optimization

 Coalesce multiple arriving packets (for different processes) into 
fewer interrupts 

 Must consider number of interrupts a device could generate
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INTERRUPTS VS POLLING - 3

 To interact with a device we must send/receive 
DATA

 There are two general approaches:

Programmed I/O (PIO)

Direct memory access (DMA)
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DEVICE I/O
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 Spend CPU time to perform I/O

 CPU is involved with the data movement (input/output)

 PIO is slow –CPU is occupied with meaningless work
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PROGRAMMED I/O (PIO)

PIO

 Legacy serial ports

 Legacy parallel ports

 PS/2 keyboard and mouse

 Legacy MIDI, joysticks

 Old network interfaces
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PIO DEVICES

 Two primary PIO methods

Port mapped I/O  (PMIO)

Memory mapped I/O (MMIO)
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PROGRAMMED I/O DEVICE (PIO) 
INTERACTION



TCSS 422 A – Fall 2018
School of Engineering and Technology,

12/3/2018

L18.16Slides by Wes J. Lloyd

 Device specific CPU I/O Instructions 

 Follows a CISC model: extra instructions

 x86-x86-64: in and out instructions

 outb, outw, outl

 1, 2, 4 byte copy from EAX  device’s I/O port
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PORT MAPPED I/O (PMIO)

 Device’s memory is mapped to CPU memory  

 Tenet of RISC CPUs: instructions are eliminated, CPU is 
simpler

 Old days: 16-bit CPUs didn’t have a lot of spare memory space

 Today’s CPUs: 32-bit (4GB addr space) & 64-bit (128 TB addr
space)

 Regular CPU instructions used to access device: mapped to 
memory

 Devices monitor CPU address bus and respond to their 
addresses

 I/O device address areas of memory are reserved for I/O 
 Must not be available for normal memory operations. 
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MEMORY MAPPED I/O (MMIO)

 Copy data in memory by of floading to “DMA controller”

 Many devices (including CPUs) integrate DMA controllers

 CPU gives DMA: memory address, size, and copy instruction
 DMA performs I/O independent of the CPU

 DMA controller generates CPU interrupt when I/O completes
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DIRECT MEMORY ACCESS (DMA)
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 Many devices use DMA

 HDD/SSD controllers (ISA/PCI)

 Graphics cards

 Network cards

 Sound cards

 Intra-chip memory transfer for multi-core processors

 DMA allows computation and data transfer time to 
proceed in parallel
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DIRECTORY MEMORY ACCESS – 2

 The OS must interact with a variety of devices

 Example: for DISK I/O consider the variety of disks:

 SCSI, IDE, USB flash drive, DVD, etc.

 Device drivers use abstraction to provide general 
interfaces for vendor specific hardware

 In Linux: block devices
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DEVICE INTERACTION

 Layers of I/O abstraction in Linux

 C functions (open, read, write) issue block read and write 
requests to the generic block layer

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.51

FILE SYSTEM ABSTRACTION
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 Too much abstraction

 Many devices provide special capabilities

 Example: SCSI Error handling

 SCSI devices provide extra detail which are lost to the OS

 Buggy device dr ivers

 70% of OS code is in device drivers

 Device drivers are required for every device plugged in

 Drivers are often 3rd party, which is not quality controlled at 
the same level as the OS (Linux, Windows, MacOS, etc.)
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FILE SYSTEM ABSTRACTION ISSUES

CH. 37:
HARD DISK DRIVES
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 Chapter 37

 HDD Internals

 Seek time

 Rotational latency

 Transfer speed

 Capacity

 Scheduling algorithms
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OBJECTIVES
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 Primary means of data storage (persistence) for decades

 Consists of a large number of data sectors

 Sector size is 512-bytes

 An n sector HDD 
can be is addressed as an array of 0..n-1 sectors
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HARD DISK DRIVE (HDD)

 Writing disk sectors is atomic (512 bytes) 

 Sector writes are completely successful, or fail 

 Many file systems will read/write 4KB at a time

 Linux ext3/4 default filesystem blocksize – 4096

 Same as typical memory page size
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HDD INTERFACE

mkefs.ext4  -i bytes-per-inode

Specify the bytes/inode ratio. mke2fs creates an inode for
every bytes-per-inode bytes of space on the disk. The
larger the bytes-per-inode ratio, the fewer inodes will be
created. This value generally shouldn't be smaller than
the blocksize of the filesystem, since in that case more
inodes would be made than can ever be used. Be warned
that it is not possible to expand the number of inodes on
a filesystem after it is created, so be careful deciding the
correct value for this parameter.
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BLOCK SIZE IN LINUX EXT4
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 Host ~2,000,000 files totaling 9.5 GB on a ~20GB 
filesystem on a cloud-based Virtual Machine

 With default inode ratio (4096 block size), 
only ~488,000 files will fit

 Drive less than half full, but files will not fit !

 HDDs support a minimum block size of 512 bytes

 OS filesystems such as ext3/ext4 can support “finer 
grained” management at the expense of a larger catalog 
size
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EXAMPLE: USDA SOIL EROSION MODEL
WEB SERVICE (RUSLE2)

Free space in bytes  (df)

Device total size    bytes-used  bytes-free usage

/dev/vda2             13315844   9556412   3049188  76% /mnt

Free inodes (df –i) @ 512 bytes / node

Device total inodes used       free      usage

/dev/vda2            3552528 1999823 1552705   57%    /mnt
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EXAMPLE: USDA SOIL EROSION MODEL
WEB SERVICE (RUSLE2) - 2

 Torn write

When OS uses larger block size than HDD

 Block writes not atomic - they SPAN multiple HDD sectores

 Upon power failure only a portion of the OS block is 
written

 HDD access

 Sequential reads of sectors is fastest

 Random sector reads are slow

 Disk head continuously must jump to
different tracks
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HDD INTERFACE - 2
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HDD PLATTER

 Made from aluminum coated with thin magnetic layer

 HDD records on both sides of each platter

 Data is stored by inducing magnetic changes
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HDD SPINDLE

 Connected to motor which spins the disk

 Speed measures in RPM (rotations per minute)

 Typical: 7200-15000 rpm

 10000 rpm – 1 rotation in 6ms; 15k rpm 1 rotation in 4ms

 Concentric circle of sectors

 Single side of platter contains 290 K tracks (2008)

 Zones: groups of tracks with same # of sectors
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HDD TRACK

Outer tracks have
More sectors
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 Single track disk

 Head: one per surface of drive

 Arm: moves heads across surface of platters
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EXAMPLE: SIMPLE DISK DRIVE
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HARD DISK STRUCTURE

 Rotational latency (Trotation):  time to rotate to desired sector

 Average Trotation is ~ half the time of a full rotation

 Calculate time for 1 rotation based on rpm

 7200rpm = 8.33ms per rotation = ~4.166ms

 10000rpm = 6ms per rotation = ~3ms

 15000rpm = 4ms per rotation = ~2ms
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SINGLE-TRACK LATENCY:
THE ROTATIONAL DELAY
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 Seek time (Tseek):  time to move disk arm to proper track

 Most time consuming HDD operation
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SEEK TIME

 Acceleration  coasting  deceleration settling

 Acceleration: the arm gets moving

 Coasting: arm moving at full speed

 Deceleration: arm slow down

 Settl ing: Head is carefully positioned over track

 Settling time is often high, from .5 to 2ms
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FOUR PHASES OF SEEK

Data transfer

Final phase of I/O: time to read or write to disk 
surface

Complete I/O cycle:

1. Seek (accelerate, coast, decelerate, settle)

2. Wait on rotational latency

3. Data transfer
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HDD I/O
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 Sectors are offset across tracks to allow time for head to 
reposition for sequential reads

 Without track skew, when head is repositioned sector 
would have already been passed

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.70

TRACK SKEW
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TRACK SKEW - 2

 Buffer to support caching reads and writes

 Improves drive response time

 Up to 128 MB, slowly have been growing

 Two styles
Writeback cache

 Report write complete immediately when data is 
transferred to HDD cache

 Dangerous

Writethrough cache

 Reports write complete only when write is physically 
completed on disk
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HDD CACHE
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 I/O Time

 The rate of I/O
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TRANSFER SPEED

 Random workload: 4KB random read on HDD

 Sequential workload: read 100MB contiguous sectors
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I/O SPEED

There is a huge gap in drive throughput
between random and sequential workloads

 See sample HDD configurations here:

 https://www.hgst.com/products/hard-drives
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MODERN HDD SPECS
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 Disk scheduler: determine how to order I/O requests

 Multiple levels - OS and HW

 OS: provides ordering

 HW: further optimizes using intricate details of physical 
HDD implementation and state
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DISK SCHEDULING

 Disk scheduling – which I/O request to schedule next

 Shortest Seek Time First (SSTF)

 Order queue of I/O requests by nearest track
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SSTF – SHORTEST SEEK TIME FIRST

 Problem 1: HDD abstraction

 Drive geometry not available to OS.  Nearest-block-first is 
a comparable alternate algorithm.

 Problem 2: Starvation

 Steady stream of requests for local tracks may prevent 
arm from traversing to other side of platter
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SSTF ISSUES
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 SWEEP

 Single repeated passes across disk

 Issue: if request arrives for a recently visited track it will not 
be revisited until a full cycle completes

 F-SCAN

 Freeze request queue during sweep

 Cache arriving requests until later

 Elevator (C-SCAN) – circular scan

 Sweep from outer to inner track and reverse,
inner to outer track, etc.
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DISK SCHEDULING ALGORITHMS

Determine next
sector to read?

On which track?

On which sector?
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SHORTEST TIME POSITIONING FIRST

On modern drives, both seek and rotation are roughly equivalent:
Thus, SPTF (Shortest Positioning Time First) is useful.

Group temporary adjacent requests 

Reduce overhead

Read (memory blocks): 33 8 34

How long we should wait for I/O ?

When do we know we have waited too long?
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I/O MERGING
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QUESTIONS
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 Superparamagnetism limits HDD capacity

 In sufficiently small nanoparticles, magnetization can 
randomly flip direction under the influence of 
temperature. 

 HDD capacity is limited by the minimum usable size of 
particles – the superparamagnetic limit.
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HDD CAPACITY
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 Longitudinal recording: 100-200GB/in

Perpendicular recording: 667 GB/in

Future technologies under development
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HDD CAPACITY - 2


