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TCSS 422: OPERATING SYSTEMS

 Assignment #3

 A good starting point is to first iterate the set of processes in 
Linux, and print out the proc ID and name.

 This link, Chapter #3, "The Process Family Tree", should be 
helpful:

 https://notes.shichao.io/lkd/ch3/
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 Quiz 5

 Program 3

 Practice Final – 12/5

 Paging

 Chapter 21/22 – Beyond Physical Memory

 Chapter 36 – I/O Devices

 Chapter 37 – Hard Disk Drives
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OBJECTIVES

CHAPTER 21/22:
BEYOND PHYSICAL 

MEMORY
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 Disks (HDD, SSD) provide another level of storage in the 
memory hierarchy
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MEMORY HIERARCHY
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 Can provide illusion of an address space larger than 
physical RAM

 For a single process

 Convenience

 Ease of use 

 For multiple processes

 Large virtual memory space for many concurrent 
processes
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MOTIVATION FOR 
EXPANDING THE ADDRESS SPACE
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LATENCY TIMES

Design considerations
 SSDs 4x the time of DRAM
 HDDs 80x the time of DRAM

 Lat ency  num be rs  e ve r y  prog ram m e r should  know
 From :  ht tps ://g ist .g i thub.c om /jbone r/2 841832#f i le - l ate nc y - t x t

 Disk space for storing memory pages

 “Swap” them in and out of memory to disk as needed

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.9

SWAP SPACE



TCSS 422 A – Fall 2018
School of Engineering and Technology,

12/3/2018

L18.4Slides by Wes J. Lloyd

 Page table pages are:

 Stored in memory

 Swapped to disk

 Present bit

 In the page table entry (PTE) indicates if page is present

 Page fault

Memory page is accessed, but has been swapped to disk
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PAGE LOCATION

 OS steps in to handle the page fault

 Loading page from disk requires a free memory page

 Page-Fault Algorithm
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PAGE FAULT

 Page daemon

 Background threads which monitors swapped pages

 Low watermark (LW)

 Threshold for when to swap pages to disk

 Daemon checks: free pages < LW

 Begin swapping to disk until reaching the highwater mark

 High watermark (HW)

 Target threshold of free memory pages

 Daemon free until: free pages >= HW
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PAGE REPLACEMENTS
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REPLACEMENT 
POLICIES
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3

 Replacement policies apply to “any” cache

 Goal is to minimize the number of misses

 Average memory access time can be estimated:

 Consider TM = 100 ns, TD = 10ms

 Consider Phit = .9 (90%), Pmiss = .1

 Consider Phit = .999 (99.9%), Pmiss = .001
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CACHE MANAGEMENT

𝐴𝑀𝐴𝑇 = 𝑃ு௜௧ ∗ 𝑇ெ + (𝑃ெ௜௦௦ ∗ 𝑇஽)

Argument Meaning

𝑇ெ The cost of accessing memory (time)

𝑇஽ The cost of accessing disk (time)

𝑃ு௜௧ The probability of finding the data item in the cache(a hit)

𝑃ெ௜௦௦ The probability of not finding the data in the cache(a miss)

 What if:
 We could predict the future (… with a magical oracle)

 All future page accesses are known

 Always replace the page in the cache used farthest in the future 

 Used for a comparison

 Provides a “best case” replacement policy

 Consider a 3-element empty cache with the following page 
accesses:

0  1  2  0  1  3  0  3  1  2  1

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma
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OPTIMAL REPLACEMENT POLICY

What is the hit/miss ratio?

6 hits
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 Queue based

 Always replace the oldest element at the back of cache

 Simple to implement

 Doesn’t consider importance… just arrival ordering

 Consider a 3-element empty cache with the following 
page accesses:

0  1  2  0  1  3  0  3  1  2  1

 What is the hit/miss ratio?

 How is FIFO different than LRU?
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FIFO REPLACEMENT

4 hits

LRU incorporates history

 Pick a page at random to replace

 Simple and fast implementation

 Performance depends on luck of random choices

0  1  2  0  1  3  0  3  1  2  1
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RANDOM REPLACEMENT

 LRU: Least recently used
 Always replace page with oldest access time (front)
 Always move end of cache when element is read again
 Considers temporal locality (when pg was last accessed)

0  1  2  0  1  3  0  3  1  2  1

 LFU: Least frequently used
 Always replace page with fewest accesses (front)
 Consider frequency of page accesses

0  1  2  0  1  3  0  3  1  2  1
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HISTORY-BASED POLICIES

What is the hit/miss ratio?

6 hits

Hit/miss ratio is=

6 hits
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 No-Locality (Random Access) Workload
 Perform 10,000 random page accesses 

 Across set of 100 memory pages
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WORKLOAD EXAMPLES: NO-LOCALITY

When the cache is
large enough to fit 

the entire workload, 
it doesn’t matter 

which policy you use.

 80/20 Workload
 Perform 10,000 page accesses, against set of 100 pages

 80% of accesses are to 20% of pages (hot pages)

 20% of accesses are to 80% of pages (cold pages)
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WORKLOAD EXAMPLES: 80/20

LRU is more likely
to hold onto
hot pages

(recalls history)

 Looping sequential workload
 Refer to 50 pages in sequence: 0, 1, …, 49

 Repeat loop

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma
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WORKLOAD EXAMPLES: SEQUENTIAL

Random performs 
better than FIFO and 

LRU for 
cache sizes < 50

Algorithms should provide
“scan resistance”



TCSS 422 A – Fall 2018
School of Engineering and Technology,

12/3/2018

L18.8Slides by Wes J. Lloyd

 Implementing last recently used (LRU) requires tracking 
access time for all system memory pages

 Times can be tracked with a list

 For cache eviction, we must scan an entire list

 Consider: 4GB memory system (232),
with 4KB pages (212)

 This requires 220 comparisons  !!!

 Simplification is needed

 Consider how to approximate the oldest page access
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IMPLEMENTING LRU

Harness the Page Table Entry (PTE) Use Bit

HW sets to 1 when page is used

OS sets to 0

Clock algorithm (approximate LRU)

Refer to pages in a circular list

Clock hand points to current page

Loops around
 IF USE_BIT=1 set to USE_BIT = 0

 IF USE_BIT=0 replace page

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.23

IMPLEMENTING LRU - 2

 Not as efficient as LRU, but better than other 
replacement algorithms that do not consider history

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
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CLOCK ALGORITHM



TCSS 422 A – Fall 2018
School of Engineering and Technology,

12/3/2018

L18.9Slides by Wes J. Lloyd

Consider dirty pages in cache

 If DIRTY (modified) bit is FALSE

No cost to evict page from cache

 If DIRTY (modified) bit is TRUE

Cache eviction requires updating memory

Contents have changed

Clock algorithm should favor no cost eviction
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CLOCK ALGORITHM - 2

 On demand  demand paging

 Prefetching
 Preload pages based on anticipated demand

 Prediction based on locality
 Access page P, suggest page P+1 may be used

 What other techniques might help anticipate required 
memory pages?   
 Prediction models, historical analysis 
 In general: accuracy vs. effort tradeoff
 High analysis techniques struggle to respond in real time
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WHEN TO LOAD PAGES

Page swaps / writes

Group/cluster pages together

Collect pending writes, perform as batch

Grouping disk writes helps amortize latency costs

 Thrashing

Occurs when system runs many memory intensive 
processes and is low in memory

Everything is constantly swapped to-and-from disk

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma
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OTHER SWAPPING POLICIES
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Working sets

Groups of related processes

When thrashing: prevent one or more working 
set(s) from running

Temporarily reduces memory burden

Allows some processes to run, reduces thrashing
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OTHER SWAPPING POLICIES - 2

CHAPTER 36:
I/O DEVICES
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School of Engineering and Technology, University of Washington - Tacoma L18.29

Chapter 36

Polling vs Interrupts

Programmed I/O (PIO)
 Port-mapped I/O (PMIO)

Memory-mapped I/O (MMIO)

Direct memory Access (DMA)
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 Modern computer systems interact with a variety of devices
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I/O DEVICES
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COMPUTER SYSTEM ARCHITECTURE

VERY FAST: CPU is attached to main memory via a Memory bus.

FAST: High speed devices (e.g. video) are connected via a General I/O bus. 

SLOWER:  Disks are connected via a Peripheral I/O bus.

 Buses

 Buses closer to the CPU are faster

 Can support fewer devices

 Further buses are slower, but support more devices

 Physics and costs dictate “levels”

Memory bus

 General I/O bus

 Peripheral I/O bus

 Tradeoff space: speed vs. locality

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.33

I/O BUSES
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 Consider an arbitrary canonical “standard/generic” device

 Two primary components

 Interface (registers for communication)

 Internals: Local CPU, memory, specific chips, firmware 
(embedded software)
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CANONICAL DEVICE

 Status register

Maintains current device status

 Command register

Where commands for interaction are sent

 Data register

 Used to send and receive data to the device

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.35

CANONICAL DEVICE: 
HARDWARE INTERFACE

General concept:
The OS interacts and controls device behavior
by reading and writing the device registers.

 Common example of device interaction

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.36

OS DEVICE INTERACTION

Poll- Is device available?

Poll – Is device done?

Command parameterization

Send command
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 OS checks if device is READY by repeatedly checking the 
STATUS register
 Simple approach

 CPU cycles are wasted without doing meaningful work

 Ok if only a few cycles, for rapid devices that are often READY

 BUT polling, as with “spin locks” we understand is inefficient

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma
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POLLING

 For longer waits, put process waiting on I/O to sleep

 Context switch (C/S) to another process

 When I/O completes, fire an interrupt to initiate C/S back
 Advantage: better multi-tasking and CPU utilization

 Avoids: unproductive CPU cycles (polling)

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.38

INTERRUPTS VS POLLING

 Interrupts are not always the best solution

 How long does the device I/O require?

What is the cost of context switching?

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma
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INTERRUPTS VS POLLING - 2

If device I/O is fast  polling is better.
If device I/O is slow  interrupts are better.

What is the tradeoff space ?
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 One solution is a two-phase hybrid approach

 Initially poll, then sleep and use interrupts

 Livelock problem

 Common with network I/O

 Many arriving packets generate many many interrupts

 Overloads the CPU!

 No time to execute code, just interrupt handlers !

 Livelock optimization

 Coalesce multiple arriving packets (for different processes) into 
fewer interrupts 

 Must consider number of interrupts a device could generate

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
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INTERRUPTS VS POLLING - 3

 To interact with a device we must send/receive 
DATA

 There are two general approaches:

Programmed I/O (PIO)

Direct memory access (DMA)

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
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DEVICE I/O

TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

From https://en.wikipedia.org/wiki/Parallel_ATA
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 Spend CPU time to perform I/O

 CPU is involved with the data movement (input/output)

 PIO is slow –CPU is occupied with meaningless work

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.43

PROGRAMMED I/O (PIO)

PIO

 Legacy serial ports

 Legacy parallel ports

 PS/2 keyboard and mouse

 Legacy MIDI, joysticks

 Old network interfaces
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PIO DEVICES

 Two primary PIO methods

Port mapped I/O  (PMIO)

Memory mapped I/O (MMIO)

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
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PROGRAMMED I/O DEVICE (PIO) 
INTERACTION
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 Device specific CPU I/O Instructions 

 Follows a CISC model: extra instructions

 x86-x86-64: in and out instructions

 outb, outw, outl

 1, 2, 4 byte copy from EAX  device’s I/O port
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PORT MAPPED I/O (PMIO)

 Device’s memory is mapped to CPU memory  

 Tenet of RISC CPUs: instructions are eliminated, CPU is 
simpler

 Old days: 16-bit CPUs didn’t have a lot of spare memory space

 Today’s CPUs: 32-bit (4GB addr space) & 64-bit (128 TB addr
space)

 Regular CPU instructions used to access device: mapped to 
memory

 Devices monitor CPU address bus and respond to their 
addresses

 I/O device address areas of memory are reserved for I/O 
 Must not be available for normal memory operations. 

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.47

MEMORY MAPPED I/O (MMIO)

 Copy data in memory by of floading to “DMA controller”

 Many devices (including CPUs) integrate DMA controllers

 CPU gives DMA: memory address, size, and copy instruction
 DMA performs I/O independent of the CPU

 DMA controller generates CPU interrupt when I/O completes

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
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DIRECT MEMORY ACCESS (DMA)
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 Many devices use DMA

 HDD/SSD controllers (ISA/PCI)

 Graphics cards

 Network cards

 Sound cards

 Intra-chip memory transfer for multi-core processors

 DMA allows computation and data transfer time to 
proceed in parallel
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DIRECTORY MEMORY ACCESS – 2

 The OS must interact with a variety of devices

 Example: for DISK I/O consider the variety of disks:

 SCSI, IDE, USB flash drive, DVD, etc.

 Device drivers use abstraction to provide general 
interfaces for vendor specific hardware

 In Linux: block devices
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DEVICE INTERACTION

 Layers of I/O abstraction in Linux

 C functions (open, read, write) issue block read and write 
requests to the generic block layer
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FILE SYSTEM ABSTRACTION
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 Too much abstraction

 Many devices provide special capabilities

 Example: SCSI Error handling

 SCSI devices provide extra detail which are lost to the OS

 Buggy device dr ivers

 70% of OS code is in device drivers

 Device drivers are required for every device plugged in

 Drivers are often 3rd party, which is not quality controlled at 
the same level as the OS (Linux, Windows, MacOS, etc.)
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FILE SYSTEM ABSTRACTION ISSUES

CH. 37:
HARD DISK DRIVES
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 Chapter 37

 HDD Internals

 Seek time

 Rotational latency

 Transfer speed

 Capacity

 Scheduling algorithms

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
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OBJECTIVES
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 Primary means of data storage (persistence) for decades

 Consists of a large number of data sectors

 Sector size is 512-bytes

 An n sector HDD 
can be is addressed as an array of 0..n-1 sectors
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HARD DISK DRIVE (HDD)

 Writing disk sectors is atomic (512 bytes) 

 Sector writes are completely successful, or fail 

 Many file systems will read/write 4KB at a time

 Linux ext3/4 default filesystem blocksize – 4096

 Same as typical memory page size
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HDD INTERFACE

mkefs.ext4  -i bytes-per-inode

Specify the bytes/inode ratio. mke2fs creates an inode for
every bytes-per-inode bytes of space on the disk. The
larger the bytes-per-inode ratio, the fewer inodes will be
created. This value generally shouldn't be smaller than
the blocksize of the filesystem, since in that case more
inodes would be made than can ever be used. Be warned
that it is not possible to expand the number of inodes on
a filesystem after it is created, so be careful deciding the
correct value for this parameter.

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
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BLOCK SIZE IN LINUX EXT4
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 Host ~2,000,000 files totaling 9.5 GB on a ~20GB 
filesystem on a cloud-based Virtual Machine

 With default inode ratio (4096 block size), 
only ~488,000 files will fit

 Drive less than half full, but files will not fit !

 HDDs support a minimum block size of 512 bytes

 OS filesystems such as ext3/ext4 can support “finer 
grained” management at the expense of a larger catalog 
size
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EXAMPLE: USDA SOIL EROSION MODEL
WEB SERVICE (RUSLE2)

Free space in bytes  (df)

Device total size    bytes-used  bytes-free usage

/dev/vda2             13315844   9556412   3049188  76% /mnt

Free inodes (df –i) @ 512 bytes / node

Device total inodes used       free      usage

/dev/vda2            3552528 1999823 1552705   57%    /mnt
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EXAMPLE: USDA SOIL EROSION MODEL
WEB SERVICE (RUSLE2) - 2

 Torn write

When OS uses larger block size than HDD

 Block writes not atomic - they SPAN multiple HDD sectores

 Upon power failure only a portion of the OS block is 
written

 HDD access

 Sequential reads of sectors is fastest

 Random sector reads are slow

 Disk head continuously must jump to
different tracks

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
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HDD INTERFACE - 2
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HDD PLATTER

 Made from aluminum coated with thin magnetic layer

 HDD records on both sides of each platter

 Data is stored by inducing magnetic changes
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HDD SPINDLE

 Connected to motor which spins the disk

 Speed measures in RPM (rotations per minute)

 Typical: 7200-15000 rpm

 10000 rpm – 1 rotation in 6ms; 15k rpm 1 rotation in 4ms

 Concentric circle of sectors

 Single side of platter contains 290 K tracks (2008)

 Zones: groups of tracks with same # of sectors
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HDD TRACK

Outer tracks have
More sectors
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 Single track disk

 Head: one per surface of drive

 Arm: moves heads across surface of platters
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EXAMPLE: SIMPLE DISK DRIVE
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HARD DISK STRUCTURE

 Rotational latency (Trotation):  time to rotate to desired sector

 Average Trotation is ~ half the time of a full rotation

 Calculate time for 1 rotation based on rpm

 7200rpm = 8.33ms per rotation = ~4.166ms

 10000rpm = 6ms per rotation = ~3ms

 15000rpm = 4ms per rotation = ~2ms
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SINGLE-TRACK LATENCY:
THE ROTATIONAL DELAY
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 Seek time (Tseek):  time to move disk arm to proper track

 Most time consuming HDD operation
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SEEK TIME

 Acceleration  coasting  deceleration settling

 Acceleration: the arm gets moving

 Coasting: arm moving at full speed

 Deceleration: arm slow down

 Settl ing: Head is carefully positioned over track

 Settling time is often high, from .5 to 2ms
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FOUR PHASES OF SEEK

Data transfer

Final phase of I/O: time to read or write to disk 
surface

Complete I/O cycle:

1. Seek (accelerate, coast, decelerate, settle)

2. Wait on rotational latency

3. Data transfer
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HDD I/O
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 Sectors are offset across tracks to allow time for head to 
reposition for sequential reads

 Without track skew, when head is repositioned sector 
would have already been passed
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TRACK SKEW
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TRACK SKEW - 2

 Buffer to support caching reads and writes

 Improves drive response time

 Up to 128 MB, slowly have been growing

 Two styles
Writeback cache

 Report write complete immediately when data is 
transferred to HDD cache

 Dangerous

Writethrough cache

 Reports write complete only when write is physically 
completed on disk
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HDD CACHE
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 I/O Time

 The rate of I/O
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TRANSFER SPEED

 Random workload: 4KB random read on HDD

 Sequential workload: read 100MB contiguous sectors
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I/O SPEED

There is a huge gap in drive throughput
between random and sequential workloads

 See sample HDD configurations here:

 https://www.hgst.com/products/hard-drives

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.75

MODERN HDD SPECS
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 Disk scheduler: determine how to order I/O requests

 Multiple levels - OS and HW

 OS: provides ordering

 HW: further optimizes using intricate details of physical 
HDD implementation and state

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.76

DISK SCHEDULING

 Disk scheduling – which I/O request to schedule next

 Shortest Seek Time First (SSTF)

 Order queue of I/O requests by nearest track
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SSTF – SHORTEST SEEK TIME FIRST

 Problem 1: HDD abstraction

 Drive geometry not available to OS.  Nearest-block-first is 
a comparable alternate algorithm.

 Problem 2: Starvation

 Steady stream of requests for local tracks may prevent 
arm from traversing to other side of platter
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SSTF ISSUES
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 SWEEP

 Single repeated passes across disk

 Issue: if request arrives for a recently visited track it will not 
be revisited until a full cycle completes

 F-SCAN

 Freeze request queue during sweep

 Cache arriving requests until later

 Elevator (C-SCAN) – circular scan

 Sweep from outer to inner track and reverse,
inner to outer track, etc.
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DISK SCHEDULING ALGORITHMS

Determine next
sector to read?

On which track?

On which sector?
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SHORTEST TIME POSITIONING FIRST

On modern drives, both seek and rotation are roughly equivalent:
Thus, SPTF (Shortest Positioning Time First) is useful.

Group temporary adjacent requests 

Reduce overhead

Read (memory blocks): 33 8 34

How long we should wait for I/O ?

When do we know we have waited too long?
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I/O MERGING
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QUESTIONS
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 Superparamagnetism limits HDD capacity

 In sufficiently small nanoparticles, magnetization can 
randomly flip direction under the influence of 
temperature. 

 HDD capacity is limited by the minimum usable size of 
particles – the superparamagnetic limit.
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HDD CAPACITY
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 Longitudinal recording: 100-200GB/in

Perpendicular recording: 667 GB/in

Future technologies under development
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HDD CAPACITY - 2


