
TCSS 422 A – Fall 2018
School of Engineering and Technology,

12/3/2018

L18.1Slides by Wes J. Lloyd

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

Beyond Physical Memory,
I/O Devices

Wes J. Lloyd
School of Engineering and Technology,
University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 Assignment #3

 A good starting point is to first iterate the set of processes in
Linux, and print out the proc ID and name.

 This link, Chapter #3, "The Process Family Tree", should be
helpful:

 https://notes.shichao.io/lkd/ch3/

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.2

FEEDBACK FROM 11/28

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.3

FEEDBACK - 2

TCSS 422 A – Fall 2018
School of Engineering and Technology,

12/3/2018

L18.2Slides by Wes J. Lloyd

 Quiz 5

 Program 3

 Practice Final – 12/5

 Paging

 Chapter 21/22 – Beyond Physical Memory

 Chapter 36 – I/O Devices

 Chapter 37 – Hard Disk Drives

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.4

OBJECTIVES

CHAPTER 21/22:
BEYOND PHYSICAL

MEMORY

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma L18.5

 Disks (HDD, SSD) provide another level of storage in the
memory hierarchy

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.6

MEMORY HIERARCHY

TCSS 422 A – Fall 2018
School of Engineering and Technology,

12/3/2018

L18.3Slides by Wes J. Lloyd

 Can provide illusion of an address space larger than
physical RAM

 For a single process

 Convenience

 Ease of use

 For multiple processes

 Large virtual memory space for many concurrent
processes

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.7

MOTIVATION FOR
EXPANDING THE ADDRESS SPACE

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.8

LATENCY TIMES

Design considerations
 SSDs 4x the time of DRAM
 HDDs 80x the time of DRAM

 Lat ency num be rs e ve r y prog ram m e r should know
 From : ht tps ://g ist .g i thub.c om /jbone r/2 841832#f i le - l ate nc y - t x t

 Disk space for storing memory pages

 “Swap” them in and out of memory to disk as needed

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.9

SWAP SPACE

TCSS 422 A – Fall 2018
School of Engineering and Technology,

12/3/2018

L18.4Slides by Wes J. Lloyd

 Page table pages are:

 Stored in memory

 Swapped to disk

 Present bit

 In the page table entry (PTE) indicates if page is present

 Page fault

Memory page is accessed, but has been swapped to disk

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.10

PAGE LOCATION

 OS steps in to handle the page fault

 Loading page from disk requires a free memory page

 Page-Fault Algorithm

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.11

PAGE FAULT

 Page daemon

 Background threads which monitors swapped pages

 Low watermark (LW)

 Threshold for when to swap pages to disk

 Daemon checks: free pages < LW

 Begin swapping to disk until reaching the highwater mark

 High watermark (HW)

 Target threshold of free memory pages

 Daemon free until: free pages >= HW

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.12

PAGE REPLACEMENTS

TCSS 422 A – Fall 2018
School of Engineering and Technology,

12/3/2018

L18.5Slides by Wes J. Lloyd

REPLACEMENT
POLICIES

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.1
3

 Replacement policies apply to “any” cache

 Goal is to minimize the number of misses

 Average memory access time can be estimated:

 Consider TM = 100 ns, TD = 10ms

 Consider Phit = .9 (90%), Pmiss = .1

 Consider Phit = .999 (99.9%), Pmiss = .001

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.14

CACHE MANAGEMENT

𝐴𝑀𝐴𝑇 = 𝑃 ∗ 𝑇 + (𝑃 ∗ 𝑇)

Argument Meaning

𝑇 The cost of accessing memory (time)

𝑇 The cost of accessing disk (time)

𝑃 The probability of finding the data item in the cache(a hit)

𝑃 The probability of not finding the data in the cache(a miss)

 What if:
 We could predict the future (… with a magical oracle)

 All future page accesses are known

 Always replace the page in the cache used farthest in the future

 Used for a comparison

 Provides a “best case” replacement policy

 Consider a 3-element empty cache with the following page
accesses:

0 1 2 0 1 3 0 3 1 2 1

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.15

OPTIMAL REPLACEMENT POLICY

What is the hit/miss ratio?

6 hits

TCSS 422 A – Fall 2018
School of Engineering and Technology,

12/3/2018

L18.6Slides by Wes J. Lloyd

 Queue based

 Always replace the oldest element at the back of cache

 Simple to implement

 Doesn’t consider importance… just arrival ordering

 Consider a 3-element empty cache with the following
page accesses:

0 1 2 0 1 3 0 3 1 2 1

 What is the hit/miss ratio?

 How is FIFO different than LRU?

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.16

FIFO REPLACEMENT

4 hits

LRU incorporates history

 Pick a page at random to replace

 Simple and fast implementation

 Performance depends on luck of random choices

0 1 2 0 1 3 0 3 1 2 1

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.17

RANDOM REPLACEMENT

 LRU: Least recently used
 Always replace page with oldest access time (front)
 Always move end of cache when element is read again
 Considers temporal locality (when pg was last accessed)

0 1 2 0 1 3 0 3 1 2 1

 LFU: Least frequently used
 Always replace page with fewest accesses (front)
 Consider frequency of page accesses

0 1 2 0 1 3 0 3 1 2 1

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.18

HISTORY-BASED POLICIES

What is the hit/miss ratio?

6 hits

Hit/miss ratio is=

6 hits

TCSS 422 A – Fall 2018
School of Engineering and Technology,

12/3/2018

L18.7Slides by Wes J. Lloyd

 No-Locality (Random Access) Workload
 Perform 10,000 random page accesses

 Across set of 100 memory pages

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.19

WORKLOAD EXAMPLES: NO-LOCALITY

When the cache is
large enough to fit

the entire workload,
it doesn’t matter

which policy you use.

 80/20 Workload
 Perform 10,000 page accesses, against set of 100 pages

 80% of accesses are to 20% of pages (hot pages)

 20% of accesses are to 80% of pages (cold pages)

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.20

WORKLOAD EXAMPLES: 80/20

LRU is more likely
to hold onto
hot pages

(recalls history)

 Looping sequential workload
 Refer to 50 pages in sequence: 0, 1, …, 49

 Repeat loop

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.21

WORKLOAD EXAMPLES: SEQUENTIAL

Random performs
better than FIFO and

LRU for
cache sizes < 50

Algorithms should provide
“scan resistance”

TCSS 422 A – Fall 2018
School of Engineering and Technology,

12/3/2018

L18.8Slides by Wes J. Lloyd

 Implementing last recently used (LRU) requires tracking
access time for all system memory pages

 Times can be tracked with a list

 For cache eviction, we must scan an entire list

 Consider: 4GB memory system (232),
with 4KB pages (212)

 This requires 220 comparisons !!!

 Simplification is needed

 Consider how to approximate the oldest page access

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.22

IMPLEMENTING LRU

Harness the Page Table Entry (PTE) Use Bit

HW sets to 1 when page is used

OS sets to 0

Clock algorithm (approximate LRU)

Refer to pages in a circular list

Clock hand points to current page

Loops around
 IF USE_BIT=1 set to USE_BIT = 0

 IF USE_BIT=0 replace page

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.23

IMPLEMENTING LRU - 2

 Not as efficient as LRU, but better than other
replacement algorithms that do not consider history

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.24

CLOCK ALGORITHM

TCSS 422 A – Fall 2018
School of Engineering and Technology,

12/3/2018

L18.9Slides by Wes J. Lloyd

Consider dirty pages in cache

 If DIRTY (modified) bit is FALSE

No cost to evict page from cache

 If DIRTY (modified) bit is TRUE

Cache eviction requires updating memory

Contents have changed

Clock algorithm should favor no cost eviction

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.25

CLOCK ALGORITHM - 2

 On demand demand paging

 Prefetching
 Preload pages based on anticipated demand

 Prediction based on locality
 Access page P, suggest page P+1 may be used

 What other techniques might help anticipate required
memory pages?
 Prediction models, historical analysis
 In general: accuracy vs. effort tradeoff
 High analysis techniques struggle to respond in real time

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.26

WHEN TO LOAD PAGES

Page swaps / writes

Group/cluster pages together

Collect pending writes, perform as batch

Grouping disk writes helps amortize latency costs

 Thrashing

Occurs when system runs many memory intensive
processes and is low in memory

Everything is constantly swapped to-and-from disk

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.27

OTHER SWAPPING POLICIES

TCSS 422 A – Fall 2018
School of Engineering and Technology,

12/3/2018

L18.10Slides by Wes J. Lloyd

Working sets

Groups of related processes

When thrashing: prevent one or more working
set(s) from running

Temporarily reduces memory burden

Allows some processes to run, reduces thrashing

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.28

OTHER SWAPPING POLICIES - 2

CHAPTER 36:
I/O DEVICES

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma L18.29

Chapter 36

Polling vs Interrupts

Programmed I/O (PIO)
 Port-mapped I/O (PMIO)

Memory-mapped I/O (MMIO)

Direct memory Access (DMA)

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.30

OBJECTIVES

TCSS 422 A – Fall 2018
School of Engineering and Technology,

12/3/2018

L18.11Slides by Wes J. Lloyd

 Modern computer systems interact with a variety of devices

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma L18.31

I/O DEVICES

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.32

COMPUTER SYSTEM ARCHITECTURE

VERY FAST: CPU is attached to main memory via a Memory bus.

FAST: High speed devices (e.g. video) are connected via a General I/O bus.

SLOWER: Disks are connected via a Peripheral I/O bus.

 Buses

 Buses closer to the CPU are faster

 Can support fewer devices

 Further buses are slower, but support more devices

 Physics and costs dictate “levels”

Memory bus

 General I/O bus

 Peripheral I/O bus

 Tradeoff space: speed vs. locality

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.33

I/O BUSES

TCSS 422 A – Fall 2018
School of Engineering and Technology,

12/3/2018

L18.12Slides by Wes J. Lloyd

 Consider an arbitrary canonical “standard/generic” device

 Two primary components

 Interface (registers for communication)

 Internals: Local CPU, memory, specific chips, firmware
(embedded software)

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.34

CANONICAL DEVICE

 Status register

Maintains current device status

 Command register

Where commands for interaction are sent

 Data register

 Used to send and receive data to the device

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.35

CANONICAL DEVICE:
HARDWARE INTERFACE

General concept:
The OS interacts and controls device behavior
by reading and writing the device registers.

 Common example of device interaction

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.36

OS DEVICE INTERACTION

Poll- Is device available?

Poll – Is device done?

Command parameterization

Send command

TCSS 422 A – Fall 2018
School of Engineering and Technology,

12/3/2018

L18.13Slides by Wes J. Lloyd

 OS checks if device is READY by repeatedly checking the
STATUS register
 Simple approach

 CPU cycles are wasted without doing meaningful work

 Ok if only a few cycles, for rapid devices that are often READY

 BUT polling, as with “spin locks” we understand is inefficient

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.37

POLLING

 For longer waits, put process waiting on I/O to sleep

 Context switch (C/S) to another process

 When I/O completes, fire an interrupt to initiate C/S back
 Advantage: better multi-tasking and CPU utilization

 Avoids: unproductive CPU cycles (polling)

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.38

INTERRUPTS VS POLLING

 Interrupts are not always the best solution

 How long does the device I/O require?

What is the cost of context switching?

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.39

INTERRUPTS VS POLLING - 2

If device I/O is fast polling is better.
If device I/O is slow interrupts are better.

What is the tradeoff space ?

TCSS 422 A – Fall 2018
School of Engineering and Technology,

12/3/2018

L18.14Slides by Wes J. Lloyd

 One solution is a two-phase hybrid approach

 Initially poll, then sleep and use interrupts

 Livelock problem

 Common with network I/O

 Many arriving packets generate many many interrupts

 Overloads the CPU!

 No time to execute code, just interrupt handlers !

 Livelock optimization

 Coalesce multiple arriving packets (for different processes) into
fewer interrupts

 Must consider number of interrupts a device could generate

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.40

INTERRUPTS VS POLLING - 3

 To interact with a device we must send/receive
DATA

 There are two general approaches:

Programmed I/O (PIO)

Direct memory access (DMA)

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.41

DEVICE I/O

TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

From https://en.wikipedia.org/wiki/Parallel_ATA

TCSS 422 A – Fall 2018
School of Engineering and Technology,

12/3/2018

L18.15Slides by Wes J. Lloyd

 Spend CPU time to perform I/O

 CPU is involved with the data movement (input/output)

 PIO is slow –CPU is occupied with meaningless work

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.43

PROGRAMMED I/O (PIO)

PIO

 Legacy serial ports

 Legacy parallel ports

 PS/2 keyboard and mouse

 Legacy MIDI, joysticks

 Old network interfaces

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.44

PIO DEVICES

 Two primary PIO methods

Port mapped I/O (PMIO)

Memory mapped I/O (MMIO)

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.45

PROGRAMMED I/O DEVICE (PIO)
INTERACTION

TCSS 422 A – Fall 2018
School of Engineering and Technology,

12/3/2018

L18.16Slides by Wes J. Lloyd

 Device specific CPU I/O Instructions

 Follows a CISC model: extra instructions

 x86-x86-64: in and out instructions

 outb, outw, outl

 1, 2, 4 byte copy from EAX device’s I/O port

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.46

PORT MAPPED I/O (PMIO)

 Device’s memory is mapped to CPU memory

 Tenet of RISC CPUs: instructions are eliminated, CPU is
simpler

 Old days: 16-bit CPUs didn’t have a lot of spare memory space

 Today’s CPUs: 32-bit (4GB addr space) & 64-bit (128 TB addr
space)

 Regular CPU instructions used to access device: mapped to
memory

 Devices monitor CPU address bus and respond to their
addresses

 I/O device address areas of memory are reserved for I/O
 Must not be available for normal memory operations.

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.47

MEMORY MAPPED I/O (MMIO)

 Copy data in memory by of floading to “DMA controller”

 Many devices (including CPUs) integrate DMA controllers

 CPU gives DMA: memory address, size, and copy instruction
 DMA performs I/O independent of the CPU

 DMA controller generates CPU interrupt when I/O completes

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.48

DIRECT MEMORY ACCESS (DMA)

TCSS 422 A – Fall 2018
School of Engineering and Technology,

12/3/2018

L18.17Slides by Wes J. Lloyd

 Many devices use DMA

 HDD/SSD controllers (ISA/PCI)

 Graphics cards

 Network cards

 Sound cards

 Intra-chip memory transfer for multi-core processors

 DMA allows computation and data transfer time to
proceed in parallel

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.49

DIRECTORY MEMORY ACCESS – 2

 The OS must interact with a variety of devices

 Example: for DISK I/O consider the variety of disks:

 SCSI, IDE, USB flash drive, DVD, etc.

 Device drivers use abstraction to provide general
interfaces for vendor specific hardware

 In Linux: block devices

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.50

DEVICE INTERACTION

 Layers of I/O abstraction in Linux

 C functions (open, read, write) issue block read and write
requests to the generic block layer

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.51

FILE SYSTEM ABSTRACTION

TCSS 422 A – Fall 2018
School of Engineering and Technology,

12/3/2018

L18.18Slides by Wes J. Lloyd

 Too much abstraction

 Many devices provide special capabilities

 Example: SCSI Error handling

 SCSI devices provide extra detail which are lost to the OS

 Buggy device dr ivers

 70% of OS code is in device drivers

 Device drivers are required for every device plugged in

 Drivers are often 3rd party, which is not quality controlled at
the same level as the OS (Linux, Windows, MacOS, etc.)

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.52

FILE SYSTEM ABSTRACTION ISSUES

CH. 37:
HARD DISK DRIVES

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.5
3

 Chapter 37

 HDD Internals

 Seek time

 Rotational latency

 Transfer speed

 Capacity

 Scheduling algorithms

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.54

OBJECTIVES

TCSS 422 A – Fall 2018
School of Engineering and Technology,

12/3/2018

L18.19Slides by Wes J. Lloyd

 Primary means of data storage (persistence) for decades

 Consists of a large number of data sectors

 Sector size is 512-bytes

 An n sector HDD
can be is addressed as an array of 0..n-1 sectors

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.55

HARD DISK DRIVE (HDD)

 Writing disk sectors is atomic (512 bytes)

 Sector writes are completely successful, or fail

 Many file systems will read/write 4KB at a time

 Linux ext3/4 default filesystem blocksize – 4096

 Same as typical memory page size

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.56

HDD INTERFACE

mkefs.ext4 -i bytes-per-inode

Specify the bytes/inode ratio. mke2fs creates an inode for
every bytes-per-inode bytes of space on the disk. The
larger the bytes-per-inode ratio, the fewer inodes will be
created. This value generally shouldn't be smaller than
the blocksize of the filesystem, since in that case more
inodes would be made than can ever be used. Be warned
that it is not possible to expand the number of inodes on
a filesystem after it is created, so be careful deciding the
correct value for this parameter.

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.57

BLOCK SIZE IN LINUX EXT4

TCSS 422 A – Fall 2018
School of Engineering and Technology,

12/3/2018

L18.20Slides by Wes J. Lloyd

 Host ~2,000,000 files totaling 9.5 GB on a ~20GB
filesystem on a cloud-based Virtual Machine

 With default inode ratio (4096 block size),
only ~488,000 files will fit

 Drive less than half full, but files will not fit !

 HDDs support a minimum block size of 512 bytes

 OS filesystems such as ext3/ext4 can support “finer
grained” management at the expense of a larger catalog
size

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.58

EXAMPLE: USDA SOIL EROSION MODEL
WEB SERVICE (RUSLE2)

Free space in bytes (df)

Device total size bytes-used bytes-free usage

/dev/vda2 13315844 9556412 3049188 76% /mnt

Free inodes (df –i) @ 512 bytes / node

Device total inodes used free usage

/dev/vda2 3552528 1999823 1552705 57% /mnt

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.59

EXAMPLE: USDA SOIL EROSION MODEL
WEB SERVICE (RUSLE2) - 2

 Torn write

When OS uses larger block size than HDD

 Block writes not atomic - they SPAN multiple HDD sectores

 Upon power failure only a portion of the OS block is
written

 HDD access

 Sequential reads of sectors is fastest

 Random sector reads are slow

 Disk head continuously must jump to
different tracks

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.60

HDD INTERFACE - 2

TCSS 422 A – Fall 2018
School of Engineering and Technology,

12/3/2018

L18.21Slides by Wes J. Lloyd

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.61

HDD PLATTER

 Made from aluminum coated with thin magnetic layer

 HDD records on both sides of each platter

 Data is stored by inducing magnetic changes

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.62

HDD SPINDLE

 Connected to motor which spins the disk

 Speed measures in RPM (rotations per minute)

 Typical: 7200-15000 rpm

 10000 rpm – 1 rotation in 6ms; 15k rpm 1 rotation in 4ms

 Concentric circle of sectors

 Single side of platter contains 290 K tracks (2008)

 Zones: groups of tracks with same # of sectors

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.63

HDD TRACK

Outer tracks have
More sectors

TCSS 422 A – Fall 2018
School of Engineering and Technology,

12/3/2018

L18.22Slides by Wes J. Lloyd

 Single track disk

 Head: one per surface of drive

 Arm: moves heads across surface of platters

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.64

EXAMPLE: SIMPLE DISK DRIVE

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.65

HARD DISK STRUCTURE

 Rotational latency (Trotation): time to rotate to desired sector

 Average Trotation is ~ half the time of a full rotation

 Calculate time for 1 rotation based on rpm

 7200rpm = 8.33ms per rotation = ~4.166ms

 10000rpm = 6ms per rotation = ~3ms

 15000rpm = 4ms per rotation = ~2ms

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.66

SINGLE-TRACK LATENCY:
THE ROTATIONAL DELAY

TCSS 422 A – Fall 2018
School of Engineering and Technology,

12/3/2018

L18.23Slides by Wes J. Lloyd

 Seek time (Tseek): time to move disk arm to proper track

 Most time consuming HDD operation

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.67

SEEK TIME

 Acceleration coasting deceleration settling

 Acceleration: the arm gets moving

 Coasting: arm moving at full speed

 Deceleration: arm slow down

 Settl ing: Head is carefully positioned over track

 Settling time is often high, from .5 to 2ms

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.68

FOUR PHASES OF SEEK

Data transfer

Final phase of I/O: time to read or write to disk
surface

Complete I/O cycle:

1. Seek (accelerate, coast, decelerate, settle)

2. Wait on rotational latency

3. Data transfer

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.69

HDD I/O

TCSS 422 A – Fall 2018
School of Engineering and Technology,

12/3/2018

L18.24Slides by Wes J. Lloyd

 Sectors are offset across tracks to allow time for head to
reposition for sequential reads

 Without track skew, when head is repositioned sector
would have already been passed

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.70

TRACK SKEW

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.71

TRACK SKEW - 2

 Buffer to support caching reads and writes

 Improves drive response time

 Up to 128 MB, slowly have been growing

 Two styles
Writeback cache

 Report write complete immediately when data is
transferred to HDD cache

 Dangerous

Writethrough cache

 Reports write complete only when write is physically
completed on disk

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.72

HDD CACHE

TCSS 422 A – Fall 2018
School of Engineering and Technology,

12/3/2018

L18.25Slides by Wes J. Lloyd

 I/O Time

 The rate of I/O

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.73

TRANSFER SPEED

 Random workload: 4KB random read on HDD

 Sequential workload: read 100MB contiguous sectors

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.74

I/O SPEED

There is a huge gap in drive throughput
between random and sequential workloads

 See sample HDD configurations here:

 https://www.hgst.com/products/hard-drives

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.75

MODERN HDD SPECS

TCSS 422 A – Fall 2018
School of Engineering and Technology,

12/3/2018

L18.26Slides by Wes J. Lloyd

 Disk scheduler: determine how to order I/O requests

 Multiple levels - OS and HW

 OS: provides ordering

 HW: further optimizes using intricate details of physical
HDD implementation and state

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.76

DISK SCHEDULING

 Disk scheduling – which I/O request to schedule next

 Shortest Seek Time First (SSTF)

 Order queue of I/O requests by nearest track

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.77

SSTF – SHORTEST SEEK TIME FIRST

 Problem 1: HDD abstraction

 Drive geometry not available to OS. Nearest-block-first is
a comparable alternate algorithm.

 Problem 2: Starvation

 Steady stream of requests for local tracks may prevent
arm from traversing to other side of platter

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.78

SSTF ISSUES

TCSS 422 A – Fall 2018
School of Engineering and Technology,

12/3/2018

L18.27Slides by Wes J. Lloyd

 SWEEP

 Single repeated passes across disk

 Issue: if request arrives for a recently visited track it will not
be revisited until a full cycle completes

 F-SCAN

 Freeze request queue during sweep

 Cache arriving requests until later

 Elevator (C-SCAN) – circular scan

 Sweep from outer to inner track and reverse,
inner to outer track, etc.

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.79

DISK SCHEDULING ALGORITHMS

Determine next
sector to read?

On which track?

On which sector?

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.80

SHORTEST TIME POSITIONING FIRST

On modern drives, both seek and rotation are roughly equivalent:
Thus, SPTF (Shortest Positioning Time First) is useful.

Group temporary adjacent requests

Reduce overhead

Read (memory blocks): 33 8 34

How long we should wait for I/O ?

When do we know we have waited too long?

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.81

I/O MERGING

TCSS 422 A – Fall 2018
School of Engineering and Technology,

12/3/2018

L18.28Slides by Wes J. Lloyd

QUESTIONS

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.8
2

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.8
3

 Superparamagnetism limits HDD capacity

 In sufficiently small nanoparticles, magnetization can
randomly flip direction under the influence of
temperature.

 HDD capacity is limited by the minimum usable size of
particles – the superparamagnetic limit.

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L18.84

HDD CAPACITY

TCSS 422 A – Fall 2018
School of Engineering and Technology,

12/3/2018

L18.29Slides by Wes J. Lloyd

 Longitudinal recording: 100-200GB/in

Perpendicular recording: 667 GB/in

Future technologies under development

December 3, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma L18.85

HDD CAPACITY - 2

