
TCSS 422 A – Fall 2018
School of Engineering and Technology,

12/3/2018

L17.1Slides by Wes J. Lloyd

November 28, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

Memory Virtualization,
Segmentation,
Memory Paging

Wes J. Lloyd
School of Engineering and Technology,
University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 I didn’t understand the demo of HW 3. Can you demonstrate
it again please?

 Additional Homework 3 Questions

 What is a page table?

 How is address translation performed using page tables?

November 28, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.2

FEEDBACK FROM 11/26

1. // Extract the VPN from the virtual address

2. VPN = (VirtualAddress & VPN_MASK) >> SHIFT

3.

4. // Form the address of the page-table entry (PTE)

5. PTEAddr = PTBR + (VPN * sizeof(PTE))

6.

7. // Fetch the PTE

8. PTE = AccessMemory(PTEAddr)

9.

10. // Check if process can access the page

11. if (PTE.Valid == False)

12. RaiseException(SEGMENTATION_FAULT)

13. else if (CanAccess(PTE.ProtectBits) == False)

14. RaiseException(PROTECTION_FAULT)

15. else

16. // Access is OK: form physical address and fetch it

17. offset = VirtualAddress & OFFSET_MASK

18. PhysAddr = (PTE.PFN << PFN_SHIFT) | offset

19. Register = AccessMemory(PhysAddr)

November 28, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.3

PAGING MEMORY ACCESS

 What is the difference between single-level page tables and
multi- level page tables?

 More examples for paging would be helpful, going step-by-step

 Examples went too fast, especially bits, bytes, etc.

 Multi-level page tables: determining required memory space
for tables given:
 Physical memory size (“the computer”)

 Virtual memory size (“process address space”)

November 28, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.4

FEEDBACK - 2

 Example:

 Consider a 1-GB computer with 512-byte pages

 Consider a simple hello world program
 Program has only 4 memory pages

 1 code page, 1 stack page, 1 heap page, 1 data segment page

 (1) How many 512-byte memory pages can the computer hold?

 (VPN) The operating system provides each user program a 1GB
vir tual address space.

 (2) How many VPN bits are required to index any virtual page?

November 26, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L16.5

PAGE TRANSLATION EXAMPLE

 (3) To reference any individual byte on a 512-byte page, how
many bits are required (OFFSET bits)?

 A single-level page table provides a one-dimensional array to
look up the physical frame number of each vir tual memory
page

 Each page table entry (PTE) is like a record. It contains the
Physical Frame Number (PFN) and status bits for the page

 PTE example with 20-bit PTE:

November 26, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L16.6

EXAMPLE - 2

TCSS 422 A – Fall 2018
School of Engineering and Technology,

12/3/2018

L17.2Slides by Wes J. Lloyd

 Now consider our Page Table Entry (PTE) for our 1GB computer

 (4) How bits are required for the PFN in the PTE?

 (5) How much capacity (in bits) is available for status bits
given the size of our PFN from #4, if we assume our PTE size
is 4 bytes?

 (6) What is the storage requirement for a 1-level page table?

 (7) Using 1-level page tables to index memory, how many
process would fill main memory with page tables!!??

November 26, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L16.7

EXAMPLE - 3

 Quiz 5

 Program 3

 Paging

 Chapter 20 – Paging Smaller Tables

 Chapter 21/22 – Beyond Physical Memory

November 28, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.8

OBJECTIVES

CHAPTER 20:
PAGING:

SMALLER TABLES

November 28, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma L17.9

Chapter 20

Smaller tables

Hybrid tables

Multi-level page tables

November 28, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.10

OBJECTIVES

 Larger pages = 16KB = 214

 32-bit address space: 232

 218 = 262,144 pages

 Memory requirement cut to ¼

 However pages are huge

 Internal fragmentation results

 16KB page(s) allocated for small programs with only a
few variables

November 28, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.11

PAGING: USE LARGER PAGES

 Process: 16KB Address Space w/ 1KB pages

November 28, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.12

PAGE TABLES: WASTED SPACE

Page Table

TCSS 422 A – Fall 2018
School of Engineering and Technology,

12/3/2018

L17.3Slides by Wes J. Lloyd

 Process: 16KB Address Space w/ 1KB pages

November 28, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.13

PAGE TABLES: WASTED SPACE

Page Table

Most of the page table is unused
and full of wasted space. (73%)

 Add level of indirection, the “page directory”

November 28, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.14

MULTI-LEVEL PAGE TABLES - 2

 Add level of indirection, the “page directory”

November 28, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.15

MULTI-LEVEL PAGE TABLES - 2

Two level page table:
220 pages addressed with

two level-indexing
(page directory index, page table index)

 Advantages

 Only allocates page table space in proportion to the
address space actually used

 Can easily grab next free page to expand page table

 Disadvantages

Multi-level page tables are an example of a time-space
tradeoff

 Sacrifice address translation time (now 2-level) for space

 Complexity: multi-level schemes are more complex

November 28, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.16

MULTI-LEVEL PAGE TABLES - 3

 Given a 16KB address space, with 64byte pages

 How large would a one-level page table need to be?

 214 (address space) / 26 (page size) = 28 = 256 (pages)

November 28, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.17

1-LEVEL PAGING EXAMPLE

 If paging requires 256 total page table entries (4 bytes
each)

 Yields 1,024 bytes page table size

 Page table stored using 64-byte pages

 (1024/64) = 16 memory pages to store page table

 Key idea: the page table is stored using pages too!

November 28, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.18

1-LEVEL PAGING EXAMPLE - 2

TCSS 422 A – Fall 2018
School of Engineering and Technology,

12/3/2018

L17.4Slides by Wes J. Lloyd

 Now, let’s split the page table into two:

 8 bit VPN to map 256 pages

 4 bits for page directory index (PDI – 1st level page table)

 6 bits offset into 64-byte page

November 28, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.19

PAGE DIRECTORY INDEX

 4 bits page directory index (PDI – 1st level)

 4 bits page table index (PTI – 2nd level)

 To dereference one 64-byte memory page,

 We need one page directory entry (PDE)

 One page table Index (PTI) – can address 16 pages

November 28, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.20

PAGE TABLE INDEX

 For this example, how much space is required to store as a
single-level page table with any number of PTEs?

 Fully populated address space (all_memory.c)

 The full memory space is mapped:

 16 page directory entries (PDE) x 16 page table entries (PTE)
= 256 total PTEs

 (1) How much memory is required for the PD?

 (2) How much memory is required for the PT?

 (3) What is the total memory required to map all_memory.c ?

 16KB address space, 64 byte pages

 256 page frames, 4 byte page size

 1,024 bytes required (single level)

November 28, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.21

2-LEVEL EXAMPLE

 How much space is required for a two-level page table with
only 4 page table entries (PTEs) ?

 Nearly empty address space

 hello.c – 4 total pages: stack, heap, code, data:

 Page directory = 16 entries x 4 bytes (1 x 64 byte page)

 Page table = 4 entries x 4 bytes (1 x 64 byte page)

 (4) How much memory is required for the PDs?

 (5) How much memory is required for the PTs?

 (6) What is the total memory required to map hello.c ?

 128 bytes required (2 x 64 byte pages)
 Savings = using just 12.5% the space !!! (128/1024 single-level)

November 28, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.22

2-LEVEL EXAMPLE – 2

 Consider: 32-bit address space, 4KB pages, 220 pages

 Only 4 mapped pages

 Single level: 4 MB (we’ve done this before)

 Two level: (old VPN was 20 bits, split in half)

 Page directory = 210 entries x 4 bytes = 1 x 4 KB page

 Page table = 4 entries x 4 bytes (mapped to 1 4KB page)

 8KB (8,192 bytes) required

 Memory savings = using just .78 % the space !!! (8KB/4MB)

 100 sparse processes now require < 1MB for page tables

November 28, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.23

32-BIT EXAMPLE

 Consider: page size is 29 = 512 bytes

 Page size 512 bytes / Page entry size 4 bytes

 VPN is 21 bits

November 28, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.24

MORE THAN TWO LEVELS

TCSS 422 A – Fall 2018
School of Engineering and Technology,

12/3/2018

L17.5Slides by Wes J. Lloyd

 Page table entries per page = 512 / 4 = 128

 7 bytes – for page table index (PTI)

November 28, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.25

MORE THAN TWO LEVELS - 2

 To map 1 GB address space (230=1GB RAM, 512-byte pages)

 214 = 16,384 page directory entries (PDEs) are required

 When using 27 (128 entry) page tables…

 Page size = 512 bytes / 4 bytes per addr

November 28, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.26

MORE THAN TWO LEVELS - 3

 To map 1 GB address space (230=1GB RAM, 512-byte pages)

 214 = 16,384 page directory entries (PDEs) are required

 When using 27 (128 entry) page tables…

 Page size = 512 bytes / 4 bytes per addr

November 28, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.27

MORE THAN TWO LEVELS - 3

Can’t Store Page Directory with 16K
pages, using 512 bytes pages.

Pages only dereference 128 addresses
(512 bytes / 32 bytes)

 To map 1 GB address space (230=1GB RAM, 512-byte pages)

 214 = 16,384 page directory entries (PDEs) are required

 When using 27 (128 entry) page tables…

 Page size = 512 bytes / 4 bytes per addr

November 28, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.28

MORE THAN TWO LEVELS - 3

Can’t Store Page Directory with 16K
pages, using 512 bytes pages.

Pages only dereference 128 addresses
(512 bytes / 32 bytes)

Need three level page table:
Page directory 0 (PD Index 0)
Page directory 1 (PD Index 1)

Page Table Index

 We can now address 1GB with“fine grained” 512 byte pages

 Using multiple levels of indirection

 Consider the implications for address translation!

 How much space is required for a virtual address space with 4
entries on a 512-byte page? (let’s say 4 32-bit integers)

 PD0 1 page, PD1 1 page, PT 1 page = 1,536 bytes

 Memory Usage= 1,536 (3- level) / 8,388,608 (1- level) = .0183% !!!

November 28, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.29

MORE THAN TWO LEVELS - 4

// 5-level Linux page table address lookup
//
// Inputs:
// mm_struct – process’s memory map struct
// vpage – virtual page address

// Define page struct pointers
pgd_t *pgd;
p4d_t *p4d;
pud_t *pud;
pmd_t *pmt;
pte_t *pte;
struct page *page;

November 28, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.30

ADDRESS TRANSLATION CODE

TCSS 422 A – Fall 2018
School of Engineering and Technology,

12/3/2018

L17.6Slides by Wes J. Lloyd

pgd = pgd_offset(mm, vpage);
if (pgd_none(*pgd) || pgd_bad(*pgd))

return 0;
p4d = p4d_offset(pgd, vpage);
if (p4d_none(*p4d) || p4d_bad(*p4d))

return 0;
pud = pud_offset(p4d, vpage);
if (pud_none(*pud) || pud_bad(*pud))

return 0;
pmd = pmd_offset(pud, vpage);
if (pmd_none(*pmd) || pmd_bad(*pmd))

return 0;
if (!(pte = pte_offset_map(pmd, vpage)))

return 0;
if (!(page = pte_page(*pte)))

return 0;
physical_page_addr = page_to_phys(page);
pte_unmap(pte);
return physical_page_addr; // param to send back

November 28, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.31

ADDRESS TRANSLATION - 2

pgd_offset():
Takes a vpage address and the mm_struct
for the process, returns the PGD entry that
covers the requested address…

p4d/pud/pmd_offset():
Takes a vpage address and the
pgd/p4d/pud entry and returns the
relevant p4d/pud/pmd.

pte_unmap()
release temporary kernel mapping
for the page table entry

 Keep a single page table for each physical page of memory

 Consider 4GB physical memory

 Using 4KB pages, page table requires 4MB to map all of RAM

 Page table stores

 Which process uses each page

 Which process virtual page (from process virtual address
space) maps to the physical page

 All processes share the same page table for memory mapping,
kernel must isolate all use of the shared structure

 Finding process memory pages requires search of 220 pages

 Hash table: can index memory and speed lookups

November 28, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.32

INVERTED PAGE TABLES

 Consider a 16 MB computer which indexes memory using 4KB
pages

 (#1) For a single level page table, how many pages are
required to index memory?

 (#2) How many bits are required for the VPN?

 (#3) Assuming each page table entry (PTE) can index any byte
on a 4KB page, how many offset bits are required?

 (#4) Assuming there are 8 status bits, how many bytes are
required for each page table entry?

November 28, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.33

MULTI-LEVEL PAGE TABLE EXAMPLE

 (#5) How many bytes (or KB) are required for a single level
page table?

 Let’s assume a simple HelloWorld.c program.
 HelloWorld.c requires vir tual address translation for 4 pages:
 1 – code page 1 – stack page
 1 – heap page 1 – data segment page

 (#6) Assuming a two-level page table scheme, how many bits
are required for the Page Directory Index (PDI)?

 (#7) How many bits are required for the Page Table Index
(PTI)?

November 28, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.34

MULTI LEVEL PAGE TABLE EXAMPLE - 2

 Assume each page directory entry (PDE) and page table entry
(PTE) requires 4 bytes:
 6 bits for the Page Directory Index (PDI)

 6 bits for the Page Table Index (PTI)

 12 offset bits

 8 status bits

 (#8) How much total memory is required to index the
HelloWorld.c program using a two-level page table when we
only need to translate 4 total pages?

 HINT: we need to allocate one Page Directory and one Page
Table…

 HINT: how many entries are in the PD and PT

November 28, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.35

MULTI LEVEL PAGE TABLE EXAMPLE - 3

 (#9) Using a single page directory entry (PDE) pointing to a
single page table (PT), if all of the slots of the page table (PT)
are in use, what is the total amount of memory a two-level
page table scheme can address?

 (#10) And finally, for this example, as a percentage (%),
how much memory does the 2-level page table scheme
consume compared to the 1-level scheme?

 HINT: two-level memory use / one-level memory use

November 28, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.36

MULTI LEVEL PAGE TABLE EXAMPLE - 4

TCSS 422 A – Fall 2018
School of Engineering and Technology,

12/3/2018

L17.7Slides by Wes J. Lloyd

 #1 – 4096 pages

 #2 – 12 bits

 #3 – 12 bits

 #4 – 4 bytes

 #5 – 4096 x 4 = 16,384 bytes (16KB)

 #6 – 6 bits

 #7 – 6 bits

 #8 – 256 bytes for Page Directory (PD) (64 entries x 4 bytes)
256 bytes for Page Table (PT) TOTAL = 512 bytes

 #9 – 64 entries, where each entry maps a 4,096 byte page
With 12 offset bits, can address 262,144 bytes (256 KB)

 #10- 512/16384 = .03125  3.125%

November 28, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.37

ANSWERS QUESTIONS

