
TCSS 422 A – Fall 2018
School of Engineering and Technology,

12/3/2018

L17.1Slides by Wes J. Lloyd

November 28, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

Memory Virtualization,
Segmentation,
Memory Paging

Wes J. Lloyd
School of Engineering and Technology,
University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 I didn’t understand the demo of HW 3. Can you demonstrate
it again please?

 Additional Homework 3 Questions

 What is a page table?

 How is address translation performed using page tables?

November 28, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.2

FEEDBACK FROM 11/26

1. // Extract the VPN from the virtual address

2. VPN = (VirtualAddress & VPN_MASK) >> SHIFT

3.

4. // Form the address of the page-table entry (PTE)

5. PTEAddr = PTBR + (VPN * sizeof(PTE))

6.

7. // Fetch the PTE

8. PTE = AccessMemory(PTEAddr)

9.

10. // Check if process can access the page

11. if (PTE.Valid == False)

12. RaiseException(SEGMENTATION_FAULT)

13. else if (CanAccess(PTE.ProtectBits) == False)

14. RaiseException(PROTECTION_FAULT)

15. else

16. // Access is OK: form physical address and fetch it

17. offset = VirtualAddress & OFFSET_MASK

18. PhysAddr = (PTE.PFN << PFN_SHIFT) | offset

19. Register = AccessMemory(PhysAddr)

November 28, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.3

PAGING MEMORY ACCESS

 What is the difference between single-level page tables and
multi- level page tables?

 More examples for paging would be helpful, going step-by-step

 Examples went too fast, especially bits, bytes, etc.

 Multi-level page tables: determining required memory space
for tables given:
 Physical memory size (“the computer”)

 Virtual memory size (“process address space”)

November 28, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.4

FEEDBACK - 2

 Example:

 Consider a 1-GB computer with 512-byte pages

 Consider a simple hello world program
 Program has only 4 memory pages

 1 code page, 1 stack page, 1 heap page, 1 data segment page

 (1) How many 512-byte memory pages can the computer hold?

 (VPN) The operating system provides each user program a 1GB
vir tual address space.

 (2) How many VPN bits are required to index any virtual page?

November 26, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L16.5

PAGE TRANSLATION EXAMPLE

 (3) To reference any individual byte on a 512-byte page, how
many bits are required (OFFSET bits)?

 A single-level page table provides a one-dimensional array to
look up the physical frame number of each vir tual memory
page

 Each page table entry (PTE) is like a record. It contains the
Physical Frame Number (PFN) and status bits for the page

 PTE example with 20-bit PTE:

November 26, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L16.6

EXAMPLE - 2

TCSS 422 A – Fall 2018
School of Engineering and Technology,

12/3/2018

L17.2Slides by Wes J. Lloyd

 Now consider our Page Table Entry (PTE) for our 1GB computer

 (4) How bits are required for the PFN in the PTE?

 (5) How much capacity (in bits) is available for status bits
given the size of our PFN from #4, if we assume our PTE size
is 4 bytes?

 (6) What is the storage requirement for a 1-level page table?

 (7) Using 1-level page tables to index memory, how many
process would fill main memory with page tables!!??

November 26, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L16.7

EXAMPLE - 3

 Quiz 5

 Program 3

 Paging

 Chapter 20 – Paging Smaller Tables

 Chapter 21/22 – Beyond Physical Memory

November 28, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.8

OBJECTIVES

CHAPTER 20:
PAGING:

SMALLER TABLES

November 28, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma L17.9

Chapter 20

Smaller tables

Hybrid tables

Multi-level page tables

November 28, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.10

OBJECTIVES

 Larger pages = 16KB = 214

 32-bit address space: 232

 218 = 262,144 pages

 Memory requirement cut to ¼

 However pages are huge

 Internal fragmentation results

 16KB page(s) allocated for small programs with only a
few variables

November 28, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.11

PAGING: USE LARGER PAGES

 Process: 16KB Address Space w/ 1KB pages

November 28, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.12

PAGE TABLES: WASTED SPACE

Page Table

TCSS 422 A – Fall 2018
School of Engineering and Technology,

12/3/2018

L17.3Slides by Wes J. Lloyd

 Process: 16KB Address Space w/ 1KB pages

November 28, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.13

PAGE TABLES: WASTED SPACE

Page Table

Most of the page table is unused
and full of wasted space. (73%)

 Add level of indirection, the “page directory”

November 28, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.14

MULTI-LEVEL PAGE TABLES - 2

 Add level of indirection, the “page directory”

November 28, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.15

MULTI-LEVEL PAGE TABLES - 2

Two level page table:
220 pages addressed with

two level-indexing
(page directory index, page table index)

 Advantages

 Only allocates page table space in proportion to the
address space actually used

 Can easily grab next free page to expand page table

 Disadvantages

Multi-level page tables are an example of a time-space
tradeoff

 Sacrifice address translation time (now 2-level) for space

 Complexity: multi-level schemes are more complex

November 28, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.16

MULTI-LEVEL PAGE TABLES - 3

 Given a 16KB address space, with 64byte pages

 How large would a one-level page table need to be?

 214 (address space) / 26 (page size) = 28 = 256 (pages)

November 28, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.17

1-LEVEL PAGING EXAMPLE

 If paging requires 256 total page table entries (4 bytes
each)

 Yields 1,024 bytes page table size

 Page table stored using 64-byte pages

 (1024/64) = 16 memory pages to store page table

 Key idea: the page table is stored using pages too!

November 28, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.18

1-LEVEL PAGING EXAMPLE - 2

TCSS 422 A – Fall 2018
School of Engineering and Technology,

12/3/2018

L17.4Slides by Wes J. Lloyd

 Now, let’s split the page table into two:

 8 bit VPN to map 256 pages

 4 bits for page directory index (PDI – 1st level page table)

 6 bits offset into 64-byte page

November 28, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.19

PAGE DIRECTORY INDEX

 4 bits page directory index (PDI – 1st level)

 4 bits page table index (PTI – 2nd level)

 To dereference one 64-byte memory page,

 We need one page directory entry (PDE)

 One page table Index (PTI) – can address 16 pages

November 28, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.20

PAGE TABLE INDEX

 For this example, how much space is required to store as a
single-level page table with any number of PTEs?

 Fully populated address space (all_memory.c)

 The full memory space is mapped:

 16 page directory entries (PDE) x 16 page table entries (PTE)
= 256 total PTEs

 (1) How much memory is required for the PD?

 (2) How much memory is required for the PT?

 (3) What is the total memory required to map all_memory.c ?

 16KB address space, 64 byte pages

 256 page frames, 4 byte page size

 1,024 bytes required (single level)

November 28, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.21

2-LEVEL EXAMPLE

 How much space is required for a two-level page table with
only 4 page table entries (PTEs) ?

 Nearly empty address space

 hello.c – 4 total pages: stack, heap, code, data:

 Page directory = 16 entries x 4 bytes (1 x 64 byte page)

 Page table = 4 entries x 4 bytes (1 x 64 byte page)

 (4) How much memory is required for the PDs?

 (5) How much memory is required for the PTs?

 (6) What is the total memory required to map hello.c ?

 128 bytes required (2 x 64 byte pages)
 Savings = using just 12.5% the space !!! (128/1024 single-level)

November 28, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.22

2-LEVEL EXAMPLE – 2

 Consider: 32-bit address space, 4KB pages, 220 pages

 Only 4 mapped pages

 Single level: 4 MB (we’ve done this before)

 Two level: (old VPN was 20 bits, split in half)

 Page directory = 210 entries x 4 bytes = 1 x 4 KB page

 Page table = 4 entries x 4 bytes (mapped to 1 4KB page)

 8KB (8,192 bytes) required

 Memory savings = using just .78 % the space !!! (8KB/4MB)

 100 sparse processes now require < 1MB for page tables

November 28, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.23

32-BIT EXAMPLE

 Consider: page size is 29 = 512 bytes

 Page size 512 bytes / Page entry size 4 bytes

 VPN is 21 bits

November 28, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.24

MORE THAN TWO LEVELS

TCSS 422 A – Fall 2018
School of Engineering and Technology,

12/3/2018

L17.5Slides by Wes J. Lloyd

 Page table entries per page = 512 / 4 = 128

 7 bytes – for page table index (PTI)

November 28, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.25

MORE THAN TWO LEVELS - 2

 To map 1 GB address space (230=1GB RAM, 512-byte pages)

 214 = 16,384 page directory entries (PDEs) are required

 When using 27 (128 entry) page tables…

 Page size = 512 bytes / 4 bytes per addr

November 28, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.26

MORE THAN TWO LEVELS - 3

 To map 1 GB address space (230=1GB RAM, 512-byte pages)

 214 = 16,384 page directory entries (PDEs) are required

 When using 27 (128 entry) page tables…

 Page size = 512 bytes / 4 bytes per addr

November 28, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.27

MORE THAN TWO LEVELS - 3

Can’t Store Page Directory with 16K
pages, using 512 bytes pages.

Pages only dereference 128 addresses
(512 bytes / 32 bytes)

 To map 1 GB address space (230=1GB RAM, 512-byte pages)

 214 = 16,384 page directory entries (PDEs) are required

 When using 27 (128 entry) page tables…

 Page size = 512 bytes / 4 bytes per addr

November 28, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.28

MORE THAN TWO LEVELS - 3

Can’t Store Page Directory with 16K
pages, using 512 bytes pages.

Pages only dereference 128 addresses
(512 bytes / 32 bytes)

Need three level page table:
Page directory 0 (PD Index 0)
Page directory 1 (PD Index 1)

Page Table Index

 We can now address 1GB with“fine grained” 512 byte pages

 Using multiple levels of indirection

 Consider the implications for address translation!

 How much space is required for a virtual address space with 4
entries on a 512-byte page? (let’s say 4 32-bit integers)

 PD0 1 page, PD1 1 page, PT 1 page = 1,536 bytes

 Memory Usage= 1,536 (3- level) / 8,388,608 (1- level) = .0183% !!!

November 28, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.29

MORE THAN TWO LEVELS - 4

// 5-level Linux page table address lookup
//
// Inputs:
// mm_struct – process’s memory map struct
// vpage – virtual page address

// Define page struct pointers
pgd_t *pgd;
p4d_t *p4d;
pud_t *pud;
pmd_t *pmt;
pte_t *pte;
struct page *page;

November 28, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.30

ADDRESS TRANSLATION CODE

TCSS 422 A – Fall 2018
School of Engineering and Technology,

12/3/2018

L17.6Slides by Wes J. Lloyd

pgd = pgd_offset(mm, vpage);
if (pgd_none(*pgd) || pgd_bad(*pgd))

return 0;
p4d = p4d_offset(pgd, vpage);
if (p4d_none(*p4d) || p4d_bad(*p4d))

return 0;
pud = pud_offset(p4d, vpage);
if (pud_none(*pud) || pud_bad(*pud))

return 0;
pmd = pmd_offset(pud, vpage);
if (pmd_none(*pmd) || pmd_bad(*pmd))

return 0;
if (!(pte = pte_offset_map(pmd, vpage)))

return 0;
if (!(page = pte_page(*pte)))

return 0;
physical_page_addr = page_to_phys(page);
pte_unmap(pte);
return physical_page_addr; // param to send back

November 28, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.31

ADDRESS TRANSLATION - 2

pgd_offset():
Takes a vpage address and the mm_struct
for the process, returns the PGD entry that
covers the requested address…

p4d/pud/pmd_offset():
Takes a vpage address and the
pgd/p4d/pud entry and returns the
relevant p4d/pud/pmd.

pte_unmap()
release temporary kernel mapping
for the page table entry

 Keep a single page table for each physical page of memory

 Consider 4GB physical memory

 Using 4KB pages, page table requires 4MB to map all of RAM

 Page table stores

 Which process uses each page

 Which process virtual page (from process virtual address
space) maps to the physical page

 All processes share the same page table for memory mapping,
kernel must isolate all use of the shared structure

 Finding process memory pages requires search of 220 pages

 Hash table: can index memory and speed lookups

November 28, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.32

INVERTED PAGE TABLES

 Consider a 16 MB computer which indexes memory using 4KB
pages

 (#1) For a single level page table, how many pages are
required to index memory?

 (#2) How many bits are required for the VPN?

 (#3) Assuming each page table entry (PTE) can index any byte
on a 4KB page, how many offset bits are required?

 (#4) Assuming there are 8 status bits, how many bytes are
required for each page table entry?

November 28, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.33

MULTI-LEVEL PAGE TABLE EXAMPLE

 (#5) How many bytes (or KB) are required for a single level
page table?

 Let’s assume a simple HelloWorld.c program.
 HelloWorld.c requires vir tual address translation for 4 pages:
 1 – code page 1 – stack page
 1 – heap page 1 – data segment page

 (#6) Assuming a two-level page table scheme, how many bits
are required for the Page Directory Index (PDI)?

 (#7) How many bits are required for the Page Table Index
(PTI)?

November 28, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.34

MULTI LEVEL PAGE TABLE EXAMPLE - 2

 Assume each page directory entry (PDE) and page table entry
(PTE) requires 4 bytes:
 6 bits for the Page Directory Index (PDI)

 6 bits for the Page Table Index (PTI)

 12 offset bits

 8 status bits

 (#8) How much total memory is required to index the
HelloWorld.c program using a two-level page table when we
only need to translate 4 total pages?

 HINT: we need to allocate one Page Directory and one Page
Table…

 HINT: how many entries are in the PD and PT

November 28, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.35

MULTI LEVEL PAGE TABLE EXAMPLE - 3

 (#9) Using a single page directory entry (PDE) pointing to a
single page table (PT), if all of the slots of the page table (PT)
are in use, what is the total amount of memory a two-level
page table scheme can address?

 (#10) And finally, for this example, as a percentage (%),
how much memory does the 2-level page table scheme
consume compared to the 1-level scheme?

 HINT: two-level memory use / one-level memory use

November 28, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.36

MULTI LEVEL PAGE TABLE EXAMPLE - 4

TCSS 422 A – Fall 2018
School of Engineering and Technology,

12/3/2018

L17.7Slides by Wes J. Lloyd

 #1 – 4096 pages

 #2 – 12 bits

 #3 – 12 bits

 #4 – 4 bytes

 #5 – 4096 x 4 = 16,384 bytes (16KB)

 #6 – 6 bits

 #7 – 6 bits

 #8 – 256 bytes for Page Directory (PD) (64 entries x 4 bytes)
256 bytes for Page Table (PT) TOTAL = 512 bytes

 #9 – 64 entries, where each entry maps a 4,096 byte page
With 12 offset bits, can address 262,144 bytes (256 KB)

 #10- 512/16384 = .03125 3.125%

November 28, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L17.37

ANSWERS QUESTIONS

