TCSS 422 A - Fall 2018
School of Engineering and Technology,

TCSS 422: OPERATING SYSTEMS
| |

Memory Virtualization,
Segmentation,
Memory Paging

Wes J. Lloyd
School of Engineering and Technology,
University of Washington - Tacoma

TCSS422: Operating Systems [Fall 2018]

il 24, 201 School of Engineering and Technology, University of Washington [fl Tacoma

11/25/2018

FEEDBACK FROM 11/20

= Binary buddy allocation:

= How does buddy allocation coalesce fragmented memory?
= Buddy allocation: Freeing memory blocks:

= 1- Free the block of memory
= 2- Check the neighboring block - is it free too?

= 3- If free, combine the two, and repeat step 2 until all memory
is freed, or until a non-free neighbor block is encountered

a2 ozt

o1 @ & 2 2 2

o Z E— From:
YR 5 https:#fen.wikipedia.org/
= wiki/Buddy memory aliocation
TCSS422: Operating Systems [Fall 2018]
November 26, 2018 | e e TechriclosylUnersty " e 1162

= Which (free space) memory allocatlon strategy does
Ubuntu use?

= Overview from:

= https://en.wikibooks.org/wiki/The_Linux_Kernel/Memory

= https://zgqgallen.github.io/2017/08/03/linux-glic-mm-
overview/

TCS5422: Operating Systems [Fall 2018] 63
School of Engineeri i

November 26, 2018 et U ington - Tacoma

Slides by Wes J. Lloyd

L16.1

TCSS 422 A — Fall 2018
School of Engineering and Technology,

OVERVIEW OF VM SYSTEM IN LINUX

Stab Asocator zonea

Standara Subsystems: - -
€ Lbrary ves > -
(o) Notwork
Syscats

Brk(/mmap() -

banusn

Legacy - -

November 26, 2018 TCS5422: Operating Systems [Fall 2018]

.
School of Engineering and Technology, University of Washington - Tacoma | ue.

11/25/2018

COMPONENTS

= Memory Management Unlt (MMU) - HW module on CPU,
integrates “TLB”, supports virtual memory address translation

= Buddy Allocator - Algorithm to allocate/reclaim page frames

from physical memory

= Provides memory pages to consumers such as 0S slab allocators
(obj caches), kmalloc

= Page frames managed in a group for buddy allocation in sizes of 2"
where (size=1,2,4,8,16,32,64,128,256,512,1024...)

= Memory Zones: DMA/DMA32 (Direct Memory Access) for device /0,
NORMAL, and HIGHMEM (32-bit machines)

= See /proc/zoneinfo

= Slab Allocator - allocates OS object caches - OS structs less
than 4kb - provides efficient memory mgmt. for frequently
used OS structs

November 26, 2018 TCS5422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma | tes

COMPONENTS - 2

= Kswapd - kernel swap daemon - maintains memory swap
space in response to memory demands exceeding physical
memory capacity
= Pages can be swapped to disk to reclaim physical memory
= Page frames carry state info to track what to do w/ a page
= FREE: available
= ACTIVE: can’t swap
= INACTIVE DIRTY: no longer used, but modified page
= INACTIVE LAUNDERED: modified page, currently updating to disk
= INACTIVE CLEAN: no longer being used, can be swapped out

= Bdflush - legacy, simple kernel daemon (pdflush thread) to
ensure that dirty pages were periodically written to the
underlying storage device - now a separate thread is
maintained per device

November 26, 2018 TCSS422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma | Les

Slides by Wes J. Lloyd

L16.2

TCSS 422 A - Fall 2018
School of Engineering and Technology,

PAGING TO DISK ?

= Looking for free space?

frame?

= Page frame state
= FREE: available
= ACTIVE: can’t swap
= INACTIVE DIRTY: no longer used, but modified page

= INACTIVE CLEAN: no longer being used, can be swapped out

= What Is a Ilkely order of preferred states for selecting a page

= INACTIVE LAUNDERED: modified page, currently updating to disk

11/25/2018

November 26, 2018 TCS5422: Operating Systems [Fall 2018]
School of

Technology, University ington - Tacoma

| 167

PAGE TRANSLATION EXAMPLE

translation?

= REVIEW Chapter 18...

= Can you go over an example of the page table (address)

November 26, 2018 TCS3422: Operating Systems [Fall 2018]
School of

Technology, University ington - Tacoma

| 168

REVIEW OF CHAPTER 18:
INTRODUCTION TO

PAGING

TCSS422: Operating Systems [Fall 2018]

ST T h 2 School of Engineering and Technology, University of Washington -

Slides by Wes J. Lloyd

L16.3

TCSS 422 A — Fall 2018
School of Engineering and Technology,

called pages

suffers from significant fragmentation

called page frames.

= Each process has a page table which translates virtual
addresses to physical addresses

= Split up address space of process into fixed sized pieces

= Alternative to variable sized pieces (Segmentation) which

= Physical memory is split up into an array of fixed-size slots

11/25/2018

TCS5422: Operating Systems [Fall 2018]

Wil ed, P AT o T B o e s oy Tt A T T

116.10

ADVANTAGES OF PAGING

= Flexibility
= Abstracts the process address space into pages
= No need to track direction of HEAP / STACK growth
Just add more pages...
= No need to store unused space
As with segments...

= Simplicity
= Pages and page frames are the same size
= Easy to allocate and keep a free list of pages

TCS5422: Operating Systems [Fall 2018]

e e oolol Enpinearins ardlTechiolo syl e ity Ve hinetonETecoms

611

address space

P Table:
PAGING: EXAMPLE [NOEXH

VP1 > PF7
VP2 - PF5
= Consider a 128 byte address space VP3 > PF2

with 16-byte pages 0
page frame 0 of
T reserved for OS physical memory
= Consider a 64-byte program (unused) | page frame 1

page 3 of AS | page frame 2

page 0 of AS | page frame 3

0 64
(page 0 of (unused) page frame 4

16 the address space) 80
(page 1) page 2 of AS | page frame 5

2 9%
(page 2) (unused) page frame 6

48 12
@ o= page 1 of AS | page frame 7

128

A Simple 64-byte Address Space 64-Byte Address Space Placed In Physical Memory

TCSS422: Operating Systems [Fall 2018]

Wit ed, 2 Seoo[of Enginearing andiechiiolosylU nversity Ve hington S Tecoms

6.12

Slides by Wes J. Lloyd

L16.4

TCSS 422 A — Fall 2018
School of Engineering and Technology,

PAGING: ADDRESS TRANSLATION

= PAGE: Has two address components
= VPN: Virtual Page Number
= Offset: Offset within a Page

VPN offset
(S N

o[
= Example:

Page Size: 16-bytes, Address Space: 64-bytes

i et Here there are
[——
CLLLL]
8 |#[a /2 [@s]

11/25/2018

116,13

TCS5422: Operating Systems [Fall 2018]
Wil ed, P | AT o T B o e s oy Tt A T T

EXAMPLE:

PAGING ADDRESS TRANSLATION

= Consider a 64-byte program address space (4 pages)
= Stored in 128-byte physical memory (8 frames)

. VPN ffset
= Offset is preserved e
P G—

= VPN is looked up Mo [0 [o o]0]
Vo

Page Table:

VPO - PF3 »
VP1 > PF7 Translr:t?:n
VP2 > PF5

VP3 > PF2 Vo

Physical

e [a]a]e o2]e]x
L)L
PFN offset

TCS5422: Operating Systems [Fall 2018]

e e oolol Enpinearins ardlTechiolo syl e ity Ve hinetonETecoms

L16.14

PAGE TRANSLATION EXAMPLE

= Can you go over an example of the page table (address)
translation?

= Example:
= Consider a 64kb computer with 256-byte pages
= Consider a simple hello world program
= Program has only 4 memory pages
= 1 code page, 1 stack page, 1 heap page, 1 data segment page

= (1) How many 256-byte memory pages can the computer hold?

= (VPN) The operating system provides each user program a
64kb virtual address space.

= (2) How many VPN bits are required to index any virtual page?

TCSS422: Operating Systems [Fall 2018]

Wit ed, 2 SeFoo[of Enginearing andiechriolosylUnversity/chiWeshington i Tacoma

L16.15

Slides by Wes J. Lloyd

L16.5

TCSS 422 A — Fall 2018
School of Engineering and Technology,

EXAMPLE - 2

= (3) To reference any individual byte on a 256-byte page, how
many bits are required (OFFSET bits)?

= A single-level page table provides a one-dimensional array to
look up the physical frame number of each virtual memory
page
= Each page table entry (PTE) is like a record. It contains the
Physical Frame Number (PFN) and status bits for the page
= PTE example with 20-bit PTE:
3100BTXBAUBR220V1B817161514131211109 87 6543

210
| | EEEREEEER

An x86 Page Table Entry(PTE)

11/25/2018

TCS5422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma L1616

| November 26, 2018 |

EXAMPLE - 3

= Now consider our Page Table Entry (PTE) for our 64kb
computer

® (4) How bits are required for the PFN?

= (5) Assuming there are 8 status bits, what is the PTE size in
bits? Bytes?

® (6) What is the storage requirement for a 1-level page table?

= (7) Using 1-level page tables to index memory, how many
process would fill main memory with page tables!!??

TCS5422: Operating Systems [Fall 2018]

e e oolol Enpinearns rdlechiolo sy e ity /chiNes hineronikTacoma

L16.17

OBJECTIVES

= Quiz 4
® Quiz 5
= Program 3

= Paging

= Chapter 18 - Introduction to Paging (finish...)
= Chapter 19 - Translation Lookaside Buffer

= Chapter 20 - Paging Smaller Tables

= Chapter 21/22 - Beyond Physical Memory

TCSS422: Operating Systems [Fall 2018]

Wit ed, 2 SeFoo[of Enginearing andiechriolosylUnversity/chiWeshington i Tacoma

116,18

Slides by Wes J. Lloyd

L16.6

TCSS 422 A - Fall 2018
School of Engineering and Technology,

CHAPTER 18:
INTRODUCTION TO
PAGING

TCSS422: Operating Systems [Fall 2018]

T i 20 School of Engineering and Technology, University of Washington -

11/25/2018

PAGING DESIGN QUESTIONS

= (1) Where are page tables stored?

= (2) What are the typical contents of the page table?

= (3) How big are page tables?

= (4) Does paging make the system too slow?

November 26, 2018

TCS5422: Operating Systems [Fall 2018] 620
School of Engineeri -

Technology, University i Tacoma

(1) WHERE ARE PAGE TABLES STORED?

= Example:
= Consider a 32-bit process address space (up to 4GB)
= With 4 KB pages
= 20 bits for VPN (22° pages)
= 12 bits for the page offset (212 unique bytes in a page)

= Page tables for each process are stored in RAM
= Support potential storage of 220 translations
= 1,048,576 pages per process
= Each page has a page table entry size of 4 bytes

November 26, 2018 TCS422: Operating Systems [Fall 2018]
School of

Technology, University i Tacoma

1621

Slides by Wes J. Lloyd

L16.7

TCSS 422 A — Fall 2018
School of Engineering and Technology,

PAGE TABLE EXAMPLE

= With 220 slots in our page table for a single process

11/25/2018

= Each slot dereferences a VPN VPN,

VPN,

= Provides physical frame number
VPN,

= Each slot requires 4 bytes (32 bits)

= 20 for the PFN on a 4GB system with 4KB pages
= 12 for the offset which is preserved

= (note we have no status bits, so this is VPNyo4576

unrealistically small)

= How much memory to store page table for 1 process?
= 4,194,304 bytes (or 4MB) to index one process

TCS5422: Operating Systems [Fall 2018]

Wil ed, P AT o T B o e s oy Tt A T T

11622

NOW FOR AN ENTIRE OS

= If 4 MB is required to store one process

= Consider how much memory is required for an entire 0S?
= With for example 100 processes...

= Page table memory requirement is now 4MB x 100 = 400MB

= |f computer has 4GB memory (maximum for 32-bits),
the page table consumes 10% of memory

400 MB / 4000 GB

= |s thls efflclent?

TCS5422: Operating Systems [Fall 2018]

e e oolol Enpinearins ardlTechiolo syl e ity Ve hinetonETecoms

11623

(2) WHAT’S ACTUALLY IN THE PAGE TABLE

= Page table is data structure used to map virtual page
numbers (VPN) to the physical address (Physical Frame
Number PFN)

= Linear page table > simple array

= Page-table entry
= 32 bits for capturing state

310087 XXUBLANVIBT6I5MU4131211109 87 6543210
| | EEEREEEED

An x86 Page Table Entry(PTE)

TCSS422: Operating Systems [Fall 2018]

24
School of Engineering and Technology, University of Washington - Tacoma L6

| November 26, 2018 |

Slides by Wes J. Lloyd

L16.8

TCSS 422 A — Fall 2018 11/25/2018
School of Engineering and Technology,

PAGE TABLE ENTRY

o P: present
o R/W: read/write bit
o U/S: supervisor

o A: accessed bit
o D: dirty bit
o PFN: the page frame number

NVVBTXBAB2A019181716151413121110987 6543210
= algle
| | EERRSEEER

An x86 Page Table Entry(PTE)

TCS5422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma L1625

| November 26, 2018 |

PAGE TABLE ENTRY - 2

= Common flags:

= Valld Bit: Indicating whether the particular translation is valid.

= Protection Bit: Indicating whether the page could be read
from, written to, or executed from

= Present Blt: Indicating whether this page is in physical
memory or on disk(swapped out)

= Dirty BIt: Indicating whether the page has been modified since
it was brought into memory

= Reference BlIt(Accessed BIt): Indicating that a page has been

accessed

TCS5422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma L1626

November 26, 2018

(3) HOW BIG ARE PAGE TABLES?

= Page tables are too big to store on the CPU

= Page tables are stored using physical memory

= Paging supports efficiently storing a sparsely populated
address space

= Reduced memory requirement
Compared to base and bounds, and segments

TCSS422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma te.27

November 26, 2018

Slides by Wes J. Lloyd L16.9

TCSS 422 A — Fall 2018
School of Engineering and Technology,

(4) DOES PAGING MAKE

THE SYSTEM TOO SLOW?

= Translation

= Issue #1: Starting location of the page table is

needed
=HW Support: Page-table base register Page Table:
stores active process VPO > PF3
Facilitates translation VP12 PFT
. VP2 > PF5
Stored in RAM > VP3 > PF2

requires an extra memory reference
=HW Support: TLBs (Chapter 19)

= Issue #2: Each memory address translation for paging

TCS5422: Operating Systems [Fall 2018]

Wil ed, P | AT o T B o e s oy Tt A T T

11628

11/25/2018

PAGING MEMORY ACCESS

1 // Extract the VPN from the virtual address

2 VPN = (virtualAddress & VPN_MASK) >> SHIFT

3

4 // Form the address of the page-table entry (PTE)
5. PTEAddr = PTBR + (VPN * sizeof(PTE))

6

7 // Fetch the PTE

8. PTE = AccessMemory(PTEAddr)

9.

10. // check if process can access the page

11. if (PTE.valid == False)

12. RaiseException (SEGMENTATION_FAULT)

I else if (CanAccess(PTE.ProtectBits) == False)

14. RaiseException (PROTECTION_FAULT)

i15s else

16. // Access is ok: form physical address and fetch it
17. offset = virtualAddress & OFFSET_MASK

18. Physaddr = (PTE.PFN << PFN_SHIFT) | offset
19. Register = AccessMemory(PhysAddr)

TCS5422: Operating Systems [Fall 2018]

e e oolol Enpinearins ardlTechiolo syl e ity Ve hinetonETecoms

11629

COUNTING MEMORY ACCESSES

= Example: Use this Array initialization Code

int array[1000];:

for (i = 0; i < 1(
array(i]

i+4)

= Assembly equivalent:

0x1024 movl $0x0, (%edi, teax, 4)
0x1028 incl $eax

0x102c cmpl $0x03e8, $eax
0x1030 jne 0x1024

TCSS422: Operating Systems [Fall 2018]

Wit ed, 2 Seoo[of Enginearing andiechiiolosylU nversity Ve hington S Tecoms

11630

Slides by Wes J. Lloyd

L16.10

TCSS 422 A - Fall 2018
School of Engineering and Technology,

VISUALIZING MEMORY ACCESSES:

FOR THE FIRST 5 LOOP ITERATIONS

Page Table[39]

11/25/2018

" Locations: 54
= Page table s} o o o o un g
= Array Page Table[1] 12 3§
= Code wn B

1024
= 50 accesses 2 40100 . R o
for 5 loop % 40050 % J sz %
iterations < o000 s " Ll . 2 <
g 1124 % E § 3 é F 4196 g
2 1074 5o G
B on Y LT L VT LT LT LB

o 10 20 30 40 50
Memory Access
November 26, 2018 T nton-Tacoma s

PAGING SYSTEM EXAMPLE

= Consider a 4GB Computer:
= With a 4096-byte page size (4KB)
= How many pages would fit in physical memory?

= Now consider a page table:

= For the page table entry, how many bits are required for the
VPN?

= |f we assume the use of 4-byte (32 bit) page table entries,
how many bits are available for status bits?

= How much space does this page table require?
Page Table Entries x Number of pages

= How many page tables (for user processes)
would fill the entire 4GB of memory?

November 26, 2018 TCS3422: Operating Systems [Fall 2018]
School of

Technology, University i Tacoma te32

CHAPTER 19:

TRANSLATION
LOOKASIDE BUFFER
(TLB)

TCSS422: Operating Systems [Fall 2018]
ST T h 2 School of Engineering and Technology, University of Washington -

Slides by Wes J. Lloyd

L16.11

TCSS 422 A — Fall 2018
School of Engineering and Technology,

OBJECTIVES

= Chapter 19

=TLB Algorithm

=TLB Tradeoffs

=TLB Context Switch

11/25/2018

TCS5422: Operating Systems [Fall 2018]
Wil ed, P AT o T B o e s oy Tt A T T

L1634

ElLegacy name...

= Better name, “Address Translation Cache”

=virtual = physical memory

TRANSLATION LOOKASIDE BUFFER

=TLB is an on CPU cache of address translations

TCSS422: Operating Systems [Fall 2018]
e e oolol Enpinearins ardlTechiolo syl e ity Ve hinetonETecoms

11635

Page Table[39]

= Goal:
Reduce access
to the page Page Table[1]
tables

= Example:
50 RAM accesses A0
for first 5 for-loop § 40050
iterations = 40000

= Move lookups
from RAM to TLB
by caching page
table entries

Memory Access

TRANSLATION LOOKASIDE BUFFER - 2

1224
174
1124
1074
1024

7132
7282
7232

419
4146
409

Page Table(PA)

Array(PA)

Code(PA)

TCSS422: Operating Systems [Fall 2018]
Wit ed, 2 Seoo[of Enginearing andiechiiolosylU nversity Ve hington S Tecoms

11636

Slides by Wes J. Lloyd

L16.12

TCSS 422 A — Fall 2018
School of Engineering and Technology,

TRANSLATION LOOKASIDE BUFFER (TLB)

= Part of the CPU’s Memory Management Unit (MMU)

= Address translation cache

e
Logical | Lookup | AN TL8 Hit -
Address TLB Address
popular v to p T
Page 0
Page Table 9
all v to p entries Page 1
Page 2
[Pagen |

Address Translation with MMU "
Physical Memory

11/25/2018

TCS5422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma L1637

November 26, 2018

TRANSLATION LOOKASIDE BUFFER (TLB)

= Part of the CPU’s Memory Management Unit (MMU)
= Address translation cache

— /A .aa..] | —
The TLB is an address translation cache
Different than L1, L2, L3 CPU memory caches

P 0
Page Table 2
all v to p entries L
y 4 Page 2

[Pege n |

Physical Memory

Address Translation with MMU

TCS5422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma L1638

November 26, 2018 |

TLB BASIC ALGORITHM

= For: array based page table
= Hardware managed TLB

»
»

: VPN = (VirtualAddress & VPN_MASK) >> SHIFT
: (Success , TlbEntry) = TLB_Lookup (VEN)

if (Success == True){ // TLB Hit
Offset = VirtualAddress & OFFSET_MASK

‘PhysAddr»(leEntry.PFN << SHIFT) | Offset

AccessMemory(PhysAddr)

T

2

3

4: if (CanAccess (T1bEntry.ProtectBits) == True){
5

6

7

8

}else RaiseException(PROTECTION_ERROR)

| Generate the physical address to access memory I

TCS5422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

| November 26, 2018 L1639

Slides by Wes J. Lloyd

L16.13

TCSS 422 A — Fall 2018
School of Engineering and Technology,

TLB BASIC ALGORITHM - 2

a0 else{ //TLB Miss
12: PTEAddr = PTBR + (VPN * sizeof (PTE))

13: PTE = AccessMemory (PTEAAr)

14: (.) // Check for, and raise exceptions..

15:

16: TLB_Insert(VPN , PTE.PFN , PTE.ProtectBits)
a7l RetryInstruction ()

18: }

19:}

| Retry the instruction... (requery the TLB)

11/25/2018

TCS5422: Operating Systems [Fall 2018]

| Wil ed, P et e T T e e ey e e T 7

acoma

116.40

= Key detail:

populate the TLB... we then requery the TLB

= All address translatlons go through the TLB

TLB - ADDRESS TRANSLATION CACHE

= For a TLB miss, we first access the page table in RAM to

November 26, 2018 TCS5422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma

L16.41

TLB EXAMPLE

0 int sum = 0 ; OFFSET.
0w o g 12 16
s for(i=0; i<10; i++){ veN =00
2 sum+=a[i]; VPN = 01
3 } VPN = 03
e - 04
= Example: o
VEN =06 00] | aly | a2
= Program address space: 256-byte N e e e
= Addressable using 8 total bits (28) VPN =08 | a7) | ai8) | aio)
= 4 bits for the VPN (16 total pages) e
Ve - 10
= Page size: 16 bytes e
ven - 12
= Offset is addressable using 4-bits ——
v
= Store an array: of (10) 4-byte integers VRN =15
TCSS422: Operating Systems [Fall 2018]
Wit ed, 2 Seoo[of Enginearing andiechiiolosylU nversity Ve hington S Tecoms L1642

Slides by Wes J. Lloyd

L16.14

TCSS 422 A — Fall 2018 11/25/2018
School of Engineering and Technology,

TLB EXAMPLE - 2

0 int sum = 0 ; OFFSET.
w o o 1
: 3 for(i=0; 1i<10; i++){ VPN = 00
2: sum+=a[i]; VPN = 01
3) ven =03
ven - o4
= Consider the code above: e
VN - 06 o | e | a1
= |nitially the TLB does not know where a[] is VPN =07 | ap3) | ai4) | b | ale)
= Consider the accesses: = s
Ve =09
= a[0], a[1], a[2], a[3], a[4], a[5], a[6], a[7],
a[8], a[9] -
= How many pages are accessed? ::::z
= What happens when accessing a page not VPN - 14
in the TLB? VN =15

TCSS422: Operating Systems [Fall 2018]
Wil ed, P AT o T B o e s oy Tt A T T L1643
0: int sum = 0 ; OFFSET.
w o o 1
s for(i=0; i<10; i++){ veN =00
2: sum+=a[i]; VPN = 01
3 } VPN = 03
ven - o4
= For the accesses: a[0], a[1], a[2], a[3], a[4], " *
VPN = 06 a0 | a1l | al2]
= a[5], a[6], a[7], a[8], a[9] ven =07 (o) | am | ais) | ale)
VPN =08 | a7) | ai8] | a9
Ve =09
= How many are hits? e
" How many are misses? VN =11
ven - 12
= What is the hit rate? (%) .
= 70% (3 misses one for each VP, 7 hits) VPN - 14
ven =15
TCSS422: Operating Systems [Fall 2018]
e e oolol Enpinearins ardlTechiolo syl e ity Ve hinetonETecoms Li44
0: int sum = 0 ; OFFSET.
w o o 1
s for(i=0; i<10; i++){ veN =00
2: sum+=a[i]; VPN = 01
3 } VPN = 03
ven - o4
. . ven =05
= What factors affect the hit/miss rate? .
=06 a[0] | ap | ap2)
= Page size ven =07 [ag) | a | aps) | ate)
. VPN =08 | ap7) | ai8] | aid]
= Data locality Ven =09
= Temporal locality VNS0
ven =11
ven - 12
ven =13
en - 14
ven =15
TCSS422: Operating Systems [Fall 2018]
Wit ed, 2 Seoo[of Enginearing andiechiiolosylU nversity Ve hington S Tecoms L1645

Slides by Wes J. Lloyd L16.15

TCSS 422 A - Fall 2018
School of Engineering and Technology,

PAGING:
SMALLER TABLES

TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tillbma

November 26, 2018

CHAPTER 20: raii

11/25/2018

OBJECTIVES

= Chapter 20

=Smaller tables

=Hybrid tables

=Multi-level page tables

November 26, 2018 TCS3422: Operating Systems [Fall 2018]
School of

Technology, University i Tacoma

L16.47

LINEAR PAGE TABLES

= Consider array-based page tables:
= Each process has its own page table
= 32-bit process address space (up to 4GB)
= With 4 KB pages
= 20 bits for VPN
=12 bits for the page offset

November 26, 2018 TCS422: Operating Systems [Fall 2018]
School of

Technology, University i Tacoma

L16.48

Slides by Wes J. Lloyd

L16.16

TCSS 422 A - Fall 2018
School of Engineering and Technology,

LINEAR PAGE TABLES - 2

= Page tables stored in RAM
= Support potential storage of 22° translations

= 1,048,576 pages per process @ 4 bytes/page
= Page table size 4MB / process

32
Page table size = % * 4Byte = 4MByte

= Consider 100+ OS processes
= Requires 400+ MB of RAM to store process information

11/25/2018

November 26, 2018 TCS5422: Operating Systems [Fall 2018]
School of

Technology, University i Tacoma

116.49

LINEAR PAGE TABLES - 2

= Page tables stored in RAM

= Support potential storage of 22° translations
= 1,048,576 pages per process @ 4 bytes/page
= Page table size 4MB / process

Page tables are too big and
consume too much memory.

Need Solutions ...

= Consider 100+ OS processes
= Requires 400+ MB of RAM to store process information

November 26, 2018 TCS3422: Operating Systems [Fall 2018]
School of

Technology, University i Tacoma

11650

PAGING: USE LARGER PAGES

= Larger pages = 16KB = 214
= 32-bit address space: 232
m 218 = 262,144 pages

= Memory requirement cut to %
= However pages are huge
= Internal fragmentation results

few variables

32
;T}* 4 =1MB per page table

= 16 KB page(s) allocated for small programs with only a

November 26, 2018 TCS422: Operating Systems [Fall 2018]
School of

Technology, University i Tacoma

L1651

Slides by Wes J. Lloyd

L16.17

TCSS 422 A - Fall 2018
School of Engineering and Technology,

PAGE TABLES: WASTED SPACE

= Process: 16 KB Address Space w/ 1KB pages
Page Table Physical Memory

Virtual Address

code o
T Allocate - =
g\ PFN valid prot present dirty
B 10 1 X 1 0
heap [|4 0
— 0
5
— , 0 ,
8 15 1 W 1 1
S -
0
" :
T e 3 1 w- 1 1
stack 13 23 i w- 1 1
I

A Page Table For 16KB Address Space

A 16KB Address Space with 1KB Pages

11/25/2018

TC55422: Operating Systems [Fall2018]
Wil ed, P e Ty o e s oy Ut f T

L1652

PAGE TABLES: WASTED SPACE

= Process: 16 KB Address Space w/ 1KB pages
Page Table Physical Memory

Virtual Address

code

Allocate "
N PFN valid prot present

dirty

heap Most of the page table is unused
and full of wasted space. (73%)

3 1
3 23 1 w- 1 1

stack

A Page Table For 16KB Address Space

A 16KB Address Space with 1KB Pages

November 26, 2018 TCS3422: Operating Systems [Fall 2018] 653
School of

Technology, University i Tacoma

MULTI-LEVEL PAGE TABLES

= Consider a page table:
= 32-bit addressing, 4KB pages
m 220 page table entries

= Even if memory is sparsely populated the per process page
table requires:

32
Page table size = % * 4Byte = 4MByte

= Often most of the 4MB per process page table is empty
= Page table must be placed in 4MB contiguous block of RAM

" MUST SAVE MEMORY!

November 26, 2018 TCS422: Operating Systems [Fall 2018]
School of

54
Technology, University i Tacoma Les

Slides by Wes J. Lloyd

L16.18

TCSS 422 A - Fall 2018
School of Engineering and Technology,

MULTI-LEVEL PAGE TABLES - 2

= Add level of indirection, the “page directory”

Linear Page Table Multi-level Page Table
PBTR | 201 }—‘ PETR | 200

=

= B = =

2 PN T PN $E

1 = =l 1 201 —> (1 12

el B IY g o 1 5|8
2 S vx g

0 & £ o] - 0 |2

; ol 10 T | 00 |*

o g The Page Directory [Page 1 of PT:Not Allocated]

o £ -

0

o] o

[- 8 0 .

w| & |& of - - |5

| 15] & |£

| 5

Linear (Left) And Multi-Level (Right) Page Tables

11/25/2018

L1655

November 26, 2018 TcssAlzz; Operating Systems [Fall 2018]

School o Technology, University i Tacoma

MULTI-LEVEL PAGE TABLES - 2

= Add level of indirection, the “page directory”
Linear Page Table Multi-level Page Table
PBTR | 201 PBTR | 200

3

Two level page table:
220 pages addressed with

two level-indexing

(page directory index, page table index)

PFN203

1w 36

1w]| 15

0
o] - =
1w | 8
| 15

PFN204

Linear (Left) And Multi-Level (Right) Page Tables

November 26, 2018 L1656

TCS5422: Operating Systems [Fall 2018]
School of Engineeri Technology, University i Tacoma

MULTI-LEVEL PAGE TABLES - 3

= Advantages

= Only allocates page table space in proportion to the
address space actually used

= Can easily grab next free page to expand page table

= Disadvantages

= Multi-level page tables are an example of a time-space
tradeoff

= Sacrifice address translation time (now 2-level) for space
= Complexity: multi-level schemes are more complex

L1657

November 26, 2018 TCS422: Operating Systems [Fall 2018]
School of

Technology, University i Tacoma

Slides by Wes J. Lloyd

L16.19

TCSS 422 A — Fall 2018 11/25/2018
School of Engineering and Technology,

EXAMPLE

= 16KB address space, 64byte pages
= How large would a one-level page table need to be?
= 214 (address space) / 2° (page size) = 28 = 256 (pages)

0000 000g___code
0000 0001]__code
Gree) Address space 168
(ree) Page size 64 byte
heap Virtual address 14 bit
[VPN 8 bit
(ice) Offset 6 bit
(ree) R o
= age table entry 2(256)
11111 stack A 16-KB Address Space With 64-byte Pages

[13]12]11]0[o[8]7[6[5]4a][3]2]2]0]
: d Offset i

TCS5422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma L1658

November 26, 2018 |

EXAMPLE - 2

= 256 total page table entries (64 bytes each)

= 1,024 bytes page table size, stored using 64-byte pages
= (1024/64) = 16 page directory entries (PDEs)

= Each page directory entry (PDE) can hold 16 page table
entries (PTEs) e.g. lookups

= 16 page directory entries (PDE) x 16 page table entries (PTE)
= 256 total PTEs

= Key Idea: the page table Is stored using pages too!

TCS5422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma L1659

November 26, 2018

PAGE DIRECTORY INDEX

= Now, let’s split the page table into two:
= 8 bit VPN to map 256 pages
= 4 bits for page directory index (PDI - 15t level page table)
= 6 bits offset into 64-byte page

. Page Directory Index _,

[0l o[s[7]6[s5]a[3]2]1]0]

: VPN ' Offset !
14-bits Virtual address

TCS5422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

116,60

November 26, 2018

Slides by Wes J. Lloyd L16.20

TCSS 422 A — Fall 2018
School of Engineering and Technology,

PAGE TABLE INDEX

= 4 bits page directory index (PDI - 1stlevel)
= 4 bits page table index (PTI - 2" level)

Page Directory Index , ~ Page Table Index

13|12|11|1o[9]8[7|6 s[a[3]2]1]0]
VPN Offset '
14-bits Virtual address

= To dereference one 64-byte memory page,
= We need one page directory entry (PDE)
= One page table Index (PTI) - can address 16 pages

11/25/2018

TCS5422: Operating Systems [Fall 2018]

Wil ed, P AT o T B o e s oy Tt A T T

L1661

EXAMPLE - 3

= For thils example, how much space Is requlired to store as a
single-level page table with any number of PTEs?

= 16KB address space, 64 byte pages
= 256 page frames, 4 byte page size
= 1,024 bytes required (single level)

= How much space Is requlred for a two-level page table with
only 4 page table entrles (PTEs) ?

= Page directory = 16 entries x 4 bytes (1 x 64 byte page)
= Page table = 4 entries x 4 bytes (1 x 64 byte page)
= 128 bytes required (2 x 64 byte pages)

= Savings = using just 12.5% the space !!!

TCS5422: Operating Systems [Fall 2018]

e e oolol Enpinearins ardlTechiolo syl e ity Ve hinetonETecoms

L1662

32-BIT EXAMPLE

= Consider: 32-bit address space, 4KB pages, 22° pages
= Only 4 mapped pages

= Single level: 4 MB (we’ve done this before)

= Two level: (old VPN was 20 bits, split in half)

= Page directory = 210 entries x 4 bytes = 1 x 4 KB page

= Page table = 4 entries x 4 bytes (mapped to 1 4KB page)
= 8KB (8,192 bytes) required

= Savings = using just .78 % the space !!!

= 100 sparse processes now require < 1MB for page tables

TCSS422: Operating Systems [Fall 2018]

Wit ed, 2 Seoo[of Enginearing andiechiiolosylU nversity Ve hington S Tecoms

L1663

Slides by Wes J. Lloyd

L16.21

TCSS 422 A — Fall 2018
School of Engineering and Technology,

MORE THAN TWO LEVELS

= Consider: page size is 2° = 512 bytes
= Page size 512 bytes / Page entry size 4 bytes
= VPN is 21 bits

3029282726252423222120191817161514131211109 8 7 6 5 4

NARRRNNRRAANRRNNRNE ANNNRAAN

VPN

offset
Flag Detail
Virtual address 30 bit
Page size 512 byte
VPN 21 bit
Offset 9 bit
November 26, 2018 TCS5422: Operating Systems [Fall 2018]

11/25/2018

64
School of Engineering and Technology, University of Washington - Tacoma Lo

MORE THAN TWO LEVELS - 2

= Page table entries per page = 512 / 4 = 128
= 7 bytes - for page table index (PTI)

30292827262524232221201918171615141312111098 7 6 54 3 21 0
Page Directory Index w
VPN offset

Flag Detail

Virtual address 30 bit

Page size 512 byte

VPN 21 bit

Offset 9 bit

Page entry per page 128 PTEs —> log,128 =7

November 26, 2018 TCS5422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma L1665

MORE THAN TWO LEVELS - 3

= To map 1 GB address space (23°=1GB RAM, 512-byte pages)
= 214 = 16,384 page directory entries (PDEs) are required

= When using 27 (128 entry) page tables...

= Page size = 512 bytes / 4 bytes per addr

3029282726252423222120191817161514131211109 8 7 6 5 4

3210
[T T A T
Page Directory Index i
VPN offset
Virtual address 30 bit
Page size 512 byte
VPN 21 bit
Offset 9 bit
Page entry per page 128 PTEs —> log,128 = 7

November 26, 2018 TCSS422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma L1666

Slides by Wes J. Lloyd

L16.22

TCSS 422 A — Fall 2018 11/25/2018

School of Engineering and Technology,

MORE THAN TWO LEVELS - 3

= To map 1 GB address space (23°=1GB RAM, 512-byte pages)
= 214 = 16,384 page directory entries (PDEs) are required

= When using 27 (128 entry) page tables...
= Pagosad ‘ a

Can'’t Store Page Directory with 16K
pages, using 512 bytes pages.
Pages only dereference 128 addresses

(512 bytes / 32 bytes)

irtual address 30 bit

Page size 512 byte
VPN 21 bit
Offset 9 bit

Page entry per page | 128 PTEs ——F—> log,128 =7

TCS5422: Operating Systems [Fall 2018]
School of Engineeri Technology, University i Tacoma

L1667

November 26, 2018

MORE THAN TWO LEVELS - 3

= To map 1 GB address space (23°=1GB RAM, 512-byte pages)
= 214 = 16,384 page directory entries (PDEs) are required

= When using 27 (128 entry) page tables...
= Pagosai ‘ a

Need three level page table:
Page directory 0 (PD Index 0)
Page directory 1 (PD Index 1)

Page Table Index

Virtual address 0 bit

Page size 512 byte

VPN 21 bit

Offset 9 bit

Page entry per page | 128 PTEs ——F—> log,128 =7

TCS5422: Operating Systems [Fall 2018]
School of Engineeri Technology, University i Tacoma

L1668

November 26, 2018

MORE THAN TWO LEVELS - 4

= We can now address 1GB with“fine grained” 512 byte pages
= Using multiple levels of indirection

3029282726252423222120191817161514131211109 876 54 3 21 0

EENARNARNRRNN NN NNARNARENE

" Page Table Index.

VPN

= Consider the implications for address translation!

= How much space is required for a virtual address space with 4
entries on a 512-byte page? (let’s say 4 32-bit integers)

= PDO 1 page, PD1 1 page, PT 1 page = 1,536 bytes

= Savings = 1,536 / 8,388,608 (8mb) = .0183% !!!

TCS5422: Operating Systems [Fall 2018] L6s
School of Engineeri !

Technology, University i Tacoma

November 26, 2018

Slides by Wes J. Lloyd L16.23

TCSS 422 A — Fall 2018 11/25/2018
School of Engineering and Technology,

ADDRESS TRANSLATION CODE

// 5-level Linux page table address lookup

//

// Inputs:

// mm_struct - process’s memory map struct
// vpage - virtual page address

// Define page struct pointers
pgd_t *pgd;

p4d_t *p4d;

pud_t *pud;

pmd_t *pmt;

pte_t *pte;

struct page *page;

TCS5422: Operating Systems [Fall 2018]

Wil ed, P AT o T B o e s oy Tt A T T

116.70

ADDRESS TRANSLATION - 2

d.

pgd = pgd_offset(mm, vpage); Takes a vpage address and the mm_struct

if (pgd_none(*pgd) || pgd_bad(*pgd)) forthe process, returns the PGD entry that
return 0; covers the requested address...

p4d = pdd_offset(pgd, vpage);

1 b * * p4d/pud/pmd_offset():

if (pdd_none(*pdd) || pdd_bad(*pdd)) Takes a vpage address and the

pgd/p4d/pud entry and returns the

relevant p4d/pud/pmd.

return 0;

pud = pud_offset(pdd, vpage);

if (pud_none(*pud) || pud_bad(*pud))
return 0;

pmd = pmd_offset(pud, vpage);

if (pmd_none (*pmd) || pmd_bad (*pmd))
return 0;

if (! (pte = pte_offset_map(pmd, vpage)))
return 0; pte_unmap()

if (!(page = pte_page(*pte))) release temporary kernel mapping

return 0; for the page table entry
physical_page_addr = page_to_phys (page)

pte_unmap (pte) ;
return physical_page_addr; // param to send back

TCS5422: Operating Systems [Fall 2018]

e e oolol Enpinearins ardlTechiolo syl e ity Ve hinetonETecoms

1671

INVERTED PAGE TABLES

= Keep a single page table for each physical page of memory

= Consider 4GB physical memory
= Using 4KB pages, page table requires 4MB to map all of RAM

= Page table stores
= Which process uses each page

= Which process virtual page (from process virtual address
space) maps to the physical page

= All processes share the same page table for memory mapping,
kernel must isolate all use of the shared structure

= Finding process memory pages requires search of 22° pages
= Hash table: can index memory and speed lookups

TCSS422: Operating Systems [Fall 2018]

Wit ed, 2 Seoo[of Enginearing andiechiiolosylU nversity Ve hington S Tecoms

11672

Slides by Wes J. Lloyd L16.24

TCSS 422 A — Fall 2018
School of Engineering and Technology,

MULTI-LEVEL PAGE TABLE EXAMPLE

= Consider a 16 MB computer which indexes memory using 4KB
pages

= (#1) For a single level page table, how many pages are
required to index memory?

= (#2) How many bits are required for the VPN?

= (#3) Assuming each page table entry (PTE) can index any byte
on a 4KB page, how many offset bits are required?

= (#4) Assuming there are 8 status bits, how many bytes are
required for each page table entry?

11/25/2018

TCS5422: Operating Systems [Fall 2018]

Wil ed, P AT o T B o e s oy Tt A T T

11673

MULTI LEVEL PAGE TABLE EXAMPLE - 2

= (#5) How many bytes (or KB) are required for a single level
page table?

= Let’'s assume a simple HelloWorld.c program.

= HelloWorld.c requires virtual address translation for 4 pages:
=1 - code page 1 - stack page
=1 - heap page 1 - data segment page

= (#6) Assuming a two-level page table scheme, how many bits
are required for the Page Directory Index (PDI)?

= (#7) How many bits are required for the Page Table Index
(PTI)?

TCS5422: Operating Systems [Fall 2018]

e e oolol Enpinearins ardlTechiolo syl e ity Ve hinetonETecoms

L1674

MULTI LEVEL PAGE TABLE EXAMPLE - 3

= Assume each page directory entry (PDE) and page table entry
(PTE) requires 4 bytes:
= 6 bits for the Page Directory Index (PDI)
= 6 bits for the Page Table Index (PTI)
= 12 offset bits
= 8 status bits

= (#8) How much total memory is required to index the
HelloWorld.c program using a two-level page table when we
only need to translate 4 total pages?

= HINT: we need to allocate one Page Directory and one Page
Table...

= HINT: how many entries are in the PD and PT

TCSS422: Operating Systems [Fall 2018]

Wit ed, 2 Seoo[of Enginearing andiechiiolosylU nversity Ve hington S Tecoms

11675

Slides by Wes J. Lloyd

L16.25

TCSS 422 A - Fall 2018
School of Engineering and Technology,

MULTI LEVEL PAGE TABLE EXAMPLE - 4

= (#9) Using a single page directory entry (PDE) pointing to a
single page table (PT), if all of the slots of the page table (PT)
are in use, what is the total amount of memory a two-level
page table scheme can address?

= (#10) And finally, for this example, as a percentage (%),
how much memory does the 2-level page table scheme
consume compared to the 1-level scheme?

= HINT: two-level memory use / one-level memory use

11/25/2018

11676

November 26, 2018 TCS5422: Operating Systems [Fall 2018]
School of

Technology, University i Tacoma

ANSWERS

= #1 - 4096 pages

= #2 - 12 bits

= #3 - 12 bits

= #4 - 4 bytes

= #5 - 4096 x 4 = 16,384 bytes (16KB)

= #6 - 6 bits

= #7 - 6 bits

= #8 - 256 bytes for Page Directory (PD) (64 entries x 4 bytes)
256 bytes for Page Table (PT) TOTAL = 512 bytes

= #9 - 64 entries, where each entry maps a 4,096 byte page
With 12 offset bits, can address 262,144 bytes (256 KB)
= #10- 512/16384 = .03125 > 3.125%

November 26, 2018

TCS5422: Operating Systems [Fall 2018] 677
School of Engineeri i

Technology, University i Tacoma

CHAPTER 21/22:

BEYOND PHYSICAL
MEMORY

TCSS422: Operating Systems [Fall 2018]

ST T h 2 School of Engineering and Technology, University of Washington -

Slides by Wes J. Lloyd

L16.26

TCSS 422 A — Fall 2018
School of Engineering and Technology,

MEMORY HIERARCHY

= Disks (HDD, SSD) provide another level of storage in the
memory hierarchy

Registers

Cache

Main Memory

Mass Storage(hard disk, tape, etc...)

Memory Hierarchy in modern system

TCS5422: Operating Systems [Fall 2018] 678

Wil ed, P AT o T B o e s oy Tt A T T

MOTIVATION FOR

EXPANDING THE ADDRESS SPACE

= Can provide illusion of an address space larger than
physical RAM

= For a single process
= Convenience
= Ease of use

= For multiple processes
= Large virtual memory space for many concurrent
processes

TCS5422: Operating Systems [Fall 2018] L1650

11/25/2018

e e oolol Enpinearins ardlTechiolo syl e ity Ve hinetonETecoms

LATENCY TIMES

= Design considerations
= SSDs 4x the time of DRAM
= HDDs 80x the time of DRAM

Action Latency (ns) (ps)
L1 cache reference 0.5ns
L2 cache reference 7ns 14x L1 cache
Mutex lock/unlock 25 ns
Main memory reference 100 ns 20x L2 cache, 200x L1
Read 4K randomly from 55D 150,000 ns 150 ps ~1GB/sec 55D
Read 1 MB sequentially from memory 250,000 ns 250 ps
Read 1 MB sequentially from S5D* 1,000,000 ns 1,000 ps | 1 ms ~1GB/sec 55D, 4X memory
Read 1 MB sequentially from disk 20,000,000 ns 20,000 ps 20 ms 80x memory, 20X 55D

= Latency numbers every programmer should know
= From: https://gist.github.com/jboner/2841832#file-latency-txt

TCSS422: Operating Systems [Fall 2018] L1681

Wit ed, 2 Seoo[of Enginearing andiechiiolosylU nversity Ve hington S Tecoms

Slides by Wes J. Lloyd

L16.27

TCSS 422 A — Fall 2018
School of Engineering and Technology,

SWAP SPACE

= Disk space for storing memory pages

PEN O PN 1 PFN 2 PFN 3
Physical Proc0 Proc 1 Proc 1 Proc2
Memory | [veN 0] [VPN 2) [VPN 3] VPN 0]

= “Swap” them in and out of memory to disk as needed

11/25/2018

School of Engineering and Technology, University of Washington - Tacoma

Block 0 Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 Block 7
Swap | proc0 | Proc0 | g | Procl | Procl | Proc3 | Proc2 | Proc3
Space | [VPN 1] | [VPN 2] [VPNO] | [VPN1] | VPN O] | [VPN 1] | VPN 1]
Physical Memory and Swap Space
November 26, 2018 | TCSS422: Operating Systems [Fall 2018] L1682

PAGE LOCATION

= Page table pages are:
= Stored in memory
= Swapped to disk

= Present bit

= Page fault

= In the page table entry (PTE) indicates if page is present

= Memory page is accessed, but has been swapped to disk

TCSS422: Operating Systems [Fall 2018]
e e oolol Enpinearins ardlTechiolo syl e ity Ve hinetonETecoms

116.83

PAGE FAULT

= 0S steps in to handle the page fault

= Page-Fault Algorithm

= Loading page from disk requires a free memory page

PFN = FindFreePhysicalPage ()

if (PEN == -1) // n
PFN = EvictPage ()

DiskRead (PTE.DiskAddr, pfn) /

PTE.present = True

PTE.PFN = PEN

T S ORI

RetryInstruction()

TCSS422: Operating Systems [Fall 2018]
Wit ed, 2 Seoo[of Enginearing andiechiiolosylU nversity Ve hington S Tecoms

L1684

Slides by Wes J. Lloyd

L16.28

TCSS 422 A - Fall 2018
School of Engineering and Technology,

PAGE REPLACEMENTS

= Page daemon

= Low watermark (LW)
=Threshold for when to swap pages to disk
= Daemon checks: free pages < LW

= High watermark (HW)
= Target threshold of free memory pages
= Daemon free until: free pages >= HW

= Background threads which monitors swapped pages

= Begin swapping to disk until reaching the highwater mark

11/25/2018

TC55422: Operating Systems [Fall2018]
Wil ed, P e Ty o e s oy Ut f T

11685

REPLACEMENT

TCSS422: Operating Systems [Fall 2018]
S T ich 2 School of Engineering and Technology, University of Washington -

POLICIES

CACHE MANAGEMENT

= Replacement policies apply to “any” cache
® Goal is to minimize the number of misses
= Average memory access time can be estimated:

| amar = @+ i+ Prae 1) |

Ty The cost of accessing memory (time)

Tp The cost of accessing disk (time)

Puic The probability of finding the data item in the cache(a hit)
Puiss The probability of not finding the data in the cache(a miss)

= Consider Ty, = 100 ns, T, = 10ms
= Consider Py;; = .9 (90%), Piss = .1
= Consider Py;; = .999 (99.9%), Pss = .001

TCS5422: Operating Systems [Fall2018]
Wit ed, 2 SeFoo[of Enginearing andiechiiolo sy Unversity q Tacoma

116,87

Slides by Wes J. Lloyd

L16.29

TCSS 422 A — Fall 2018
School of Engineering and Technology,

OPTIMAL REPLACEMENT POLICY

= What if:
= We could predict the future (... with a magical oracle)
= All future page accesses are known
= Always replace the page in the cache used farthest in the future

= Used for a comparison
= Provides a “best case” replacement policy

= Consider a 3-element empty cache with the following page

accesses:
What Is the hilt/miss ratlo?

0120130312

TCS5422: Operating Systems [Fall 2018]

olentegze 20l AT o T B o e s oy Tt A T T L688

11/25/2018

FIFO REPLACEMENT

= Queue based

= Always replace the oldest element at the back of cache
= Simple to implement

= Doesn’t consider importance... just arrival ordering

= Consider a 3-element empty cache with the following
page accesses:

01201303121
= What is the hit/miss ratio? m

= How is FIFO different than LRU? LRU incorporates history

TCS5422: Operating Systems [Fall 2018]
School of Engineeri Technology, University i Tacoma

116,89

November 26, 2018

RANDOM REPLACEMENT

= Pick a page at random to replace
= Simple and fast implementation
= Performance depends on luck of random choices

01201303121

50

40 1

Frequency

-
1 2 3 a 5 6
Number of Hits

Random Performance over 10,000 Trials

TCS5422: Operating Systems [Fall 2018]
School of Engineeri Technology, University i Tacoma

November 26, 2018 L16.90

Slides by Wes J. Lloyd

L16.30

TCSS 422 A - Fall 2018
School of Engineering and Technology,

HISTORY-BASED POLICIES

= LRU: Least recently used

= Always replace page with oldest access time (front)

= Always move end of cache when element is read again

= Considers temporal locality (when pg was last accessed)

01201303121 What Is the hit/miss ratlo?

= LFU: Least frequently used
= Always replace page with fewest accesses (front)
= Consider frequency of page accesses

Hit/miss ratlo Is=

01201303121

November 26, 2018 L1691

TCS5422: Operating Systems [Fall 2018]
School of Engineeri

Technology, University i Tacoma

11/25/2018

WORKLOAD EXAMPLES: NO-LOCALITY

= No-Locality (Random Access) Workload
= Perform 10,000 random page accesses
= Across set of 100 memory pages

The No-Locality Workload

,//
80% P
- When the cache is
g o / - large enough to fit
£ / —w the entire workload,
— RAND it doesn’t matter

which policy you use.

T T T 1
20 40 60 s 100

Cache Size (Blocks)

TCS5422: Operating Systems [Fall 2018]
School of Engineeri Technology, University i Tacoma

November 26, 2018 L16.92

WORKLOAD EXAMPLES: 80/20

= 80/20 Workload
= Perform 10,000 page accesses, against set of 100 pages
= 80% of accesses are to 20% of pages (hot pages)
= 20% of accesses are to 80% of pages (cold pages)

The 80-20 Workload

LRU is more likely
to hold onto
hot pages

Hit Rate

(recalls history)

Cache Size (Blocks)

TCS5422: Operating Systems [Fall 2018]
School of Engineeri Technology, University i Tacoma

November 26, 2018 11693

Slides by Wes J. Lloyd

L16.31

TCSS 422 A — Fall 2018
School of Engineering and Technology,

WORKLOAD EXAMPLES: SEQUENTIAL

= Looping sequential workload
= Refer to 50 pages in sequence: 0, 1, ..., 49

= Repeat loop
The Looping-Sequential Workload
100%- ¢

Random performs

e /| better than FIFO and
s // [LRU for
g™ i cache sizes < 50

s 0 L Algorithms should provide
it “scan resistance”
T 1 T T

T
20 40 0 80 100
Cache Size (Blocks)

11/25/2018

November 26, 2018 TCS5422: Operating Systems [Fall 2018]
School of

94
Technology, University i Tacoma L6

IMPLEMENTING LRU

= Implementing last recently used (LRU) requires tracking
access time for all system memory pages

= Times can be tracked with a list
= For cache eviction, we must scan an entire list

= Consider: 4GB memory system (232),
with 4KB pages (212)

= This requires 22° comparisons !!!

= Simplification is needed
= Consider how to approximate the oldest page access

November 26, 2018 L1695

TCS5422: Operating Systems [Fall 2018]
School of Engineeri Technology, University i Tacoma

IMPLEMENTING LRU - 2

= Harness the Page Table Entry (PTE) Use Bit
= HW sets to 1 when page is used
m0S setsto O

= Clock algorithm (approximate LRU)
=Refer to pages in a circular list
=Clock hand points to current page

=Loops around
IF USE_BIT=1 set to USE_BIT =0
IF USE_BIT=0 replace page

116.96

November 26, 2018 TCSSAZZ; Operating Systems [Fall 2018]

School of and Technology, University i Tacoma

Slides by Wes J. Lloyd

L16.32

TCSS 422 A — Fall 2018
School of Engineering and Technology,

CLOCK ALGORITHM

= Not as efficient as LRU, but better than other
replacement algorithms that do not consider history

The 80-20 Workload
o

Hit Rate

Cache Size (Blocks)

11/25/2018

TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

November 26, 2018 116,97

CLOCK ALGORITHM - 2

= Consider dirty pages in cache
= |f DIRTY (modified) bit is FALSE
=No cost to evict page from cache

= |f DIRTY (modified) bit is TRUE
=Cache eviction requires updating memory

=Contents have changed

= Clock algorithm should favor no cost eviction

TCS5422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma L1698

November 26, 2018 |

WHEN TO LOAD PAGES

= On demand > demand paging

= Prefetching
= Preload pages based on anticipated demand

= Prediction based on locality
= Access page P, suggest page P+1 may be used

= What other techniques might help anticipate required
memory pages?
Prediction models, historical analysis
In general: accuracy vs. effort tradeoff
High analysis techniques struggle to respond in real time

TCSS422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma L1699

November 26, 2018

Slides by Wes J. Lloyd

L16.33

TCSS 422 A - Fall 2018
School of Engineering and Technology,

OTHER SWAPPING POLICIES

= Page swaps / writes
=Group/cluster pages together
=Collect pending writes, perform as batch
=Grouping disk writes helps amortize latency costs

= Thrashing

=QOccurs when system runs many memory intensive
processes and is low in memory

=Everything is constantly swapped to-and-from disk

11/25/2018

November 26, 2018 TCS5422: Operating Systems [Fall 2018]
School of

Technology, University i Tacoma

116.100

OTHER SWAPPING POLICIES - 2

= Working sets
=Groups of related processes

=When thrashing: prevent one or more working
set(s) from running

=Temporarily reduces memory burden
=Allows some processes to run, reduces thrashing

November 26, 2018 TCS3422: Operating Systems [Fall 2018]
School of

Technology, University i Tacoma

116,101

QUESTIONS

Slides by Wes J. Lloyd

L16.34

