
TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/25/2018

L16.1Slides by Wes J. Lloyd

November 26, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

Memory Virtualization,
Segmentation,
Memory Paging

Wes J. Lloyd
School of Engineering and Technology,
University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 Binary buddy allocation:

 How does buddy allocation coalesce fragmented memory?

 Buddy al location: Freeing memory blocks:

 1- Free the block of memory

 2- Check the neighboring block - is it free too?

 3- If free, combine the two, and repeat step 2 until all memory
is freed, or until a non-free neighbor block is encountered

November 26, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L16.2

FEEDBACK FROM 11/20

From:
https://en.wikipedia.org/
wiki/Buddy_memory_allocation

 Which (free space) memory allocation strategy does
Ubuntu use?

 Overview from:

 https://en.wikibooks.org/wiki/The_Linux_Kernel/Memory

 https://zgqallen.github.io/2017/08/03/linux-glic-mm-
overview/

November 26, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L16.3

FEEDBACK - 2

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/25/2018

L16.2Slides by Wes J. Lloyd

November 26, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L16.4

OVERVIEW OF VM SYSTEM IN LINUX

Legacy

 Memory Management Unit (MMU) – HW module on CPU,
integrates “TLB”, supports vir tual memory address translation

 Buddy Allocator – Algorithm to allocate/reclaim page frames
from physical memory
 Provides memory pages to consumers such as OS slab allocators

(obj caches), kmalloc
 Page frames managed in a group for buddy allocation in sizes of 2n

where (size=1,2,4,8,16,32,64,128,256,512,1024…)
 Memory Zones: DMA/DMA32 (Direct Memory Access) for device I/O,

NORMAL, and HIGHMEM (32-bit machines)
 See /proc/zoneinfo

 Slab Allocator – allocates OS object caches – OS structs less
than 4kb – provides efficient memory mgmt. for frequently
used OS structs

November 26, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L16.5

COMPONENTS

 Kswapd – kernel swap daemon - maintains memory swap
space in response to memory demands exceeding physical
memory capacity

 Pages can be swapped to disk to reclaim physical memory
 Page frames carry state info to track what to do w/ a page
 FREE: available
 ACTIVE: can’t swap
 INACTIVE DIRTY: no longer used, but modified page
 INACTIVE LAUNDERED: modified page, currently updating to disk
 INACTIVE CLEAN: no longer being used, can be swapped out

 Bdflush – legacy, simple kernel daemon (pdflush thread) to
ensure that dirty pages were periodically written to the
underlying storage device – now a separate thread is
maintained per device

November 26, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L16.6

COMPONENTS - 2

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/25/2018

L16.3Slides by Wes J. Lloyd

 Looking for free space?

 What is a l ikely order of preferred states for selecting a page
frame?

 Page frame state
 FREE: available

 ACTIVE: can’t swap

 INACTIVE DIRTY: no longer used, but modified page

 INACTIVE LAUNDERED: modified page, currently updating to disk

 INACTIVE CLEAN: no longer being used, can be swapped out

November 26, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L16.7

PAGING TO DISK ?

 Can you go over an example of the page table (address)
translation?

 REVIEW Chapter 18…

November 26, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L16.8

PAGE TRANSLATION EXAMPLE

REVIEW OF CHAPTER 18:
INTRODUCTION TO

PAGING

November 26, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma L16.9

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/25/2018

L16.4Slides by Wes J. Lloyd

 Split up address space of process into fixed sized pieces
called pages

 Alternative to variable sized pieces (Segmentation) which
suffers from significant fragmentation

 Physical memory is split up into an array of fixed-size slots
called page frames.

 Each process has a page table which translates virtual
addresses to physical addresses

November 26, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L16.10

PAGING

 Flexibility

 Abstracts the process address space into pages

 No need to track direction of HEAP / STACK growth
 Just add more pages…

 No need to store unused space
 As with segments…

 Simplicity

 Pages and page frames are the same size

 Easy to allocate and keep a free list of pages

November 26, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L16.11

ADVANTAGES OF PAGING

 Consider a 128 byte address space
with 16-byte pages

 Consider a 64-byte program
address space

November 26, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L16.12

PAGING: EXAMPLE
Page Table:
VP0 PF3
VP1 PF7
VP2 PF5
VP3 PF2

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/25/2018

L16.5Slides by Wes J. Lloyd

 PAGE: Has two address components

 VPN: Virtual Page Number

 Offset: Offset within a Page

 Example:
Page Size: 16-bytes, Address Space: 64-bytes

November 26, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L16.13

PAGING: ADDRESS TRANSLATION

Here there are
just four pages…

 Consider a 64-byte program address space (4 pages)

 Stored in 128-byte physical memory (8 frames)

 Offset is preserved

 VPN is looked up

November 26, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L16.14

EXAMPLE:
PAGING ADDRESS TRANSLATION

Page Table:
VP0 PF3
VP1 PF7
VP2 PF5
VP3 PF2

 Can you go over an example of the page table (address)
translation?

 Example:

 Consider a 64kb computer with 256-byte pages

 Consider a simple hello world program
 Program has only 4 memory pages

 1 code page, 1 stack page, 1 heap page, 1 data segment page

 (1) How many 256-byte memory pages can the computer hold?

 (VPN) The operating system provides each user program a
64kb virtual address space.

 (2) How many VPN bits are required to index any virtual page?

November 26, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L16.15

PAGE TRANSLATION EXAMPLE

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/25/2018

L16.6Slides by Wes J. Lloyd

 (3) To reference any individual byte on a 256-byte page, how
many bits are required (OFFSET bits)?

 A single-level page table provides a one-dimensional array to
look up the physical frame number of each vir tual memory
page

 Each page table entry (PTE) is like a record. It contains the
Physical Frame Number (PFN) and status bits for the page

 PTE example with 20-bit PTE:

November 26, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L16.16

EXAMPLE - 2

 Now consider our Page Table Entry (PTE) for our 64kb
computer

 (4) How bits are required for the PFN?

 (5) Assuming there are 8 status bits, what is the PTE size in
bits? Bytes?

 (6) What is the storage requirement for a 1-level page table?

 (7) Using 1-level page tables to index memory, how many
process would fill main memory with page tables!!??

November 26, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L16.17

EXAMPLE - 3

 Quiz 4

 Quiz 5

 Program 3

 Paging

 Chapter 18 – Introduction to Paging (finish…)

 Chapter 19 – Translation Lookaside Buffer

 Chapter 20 – Paging Smaller Tables

 Chapter 21/22 – Beyond Physical Memory

November 26, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L16.18

OBJECTIVES

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/25/2018

L16.7Slides by Wes J. Lloyd

CHAPTER 18:
INTRODUCTION TO

PAGING

November 26, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma L16.19

 (1) Where are page tables stored?

 (2) What are the typical contents of the page table?

 (3) How big are page tables?

 (4) Does paging make the system too slow?

November 26, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L16.20

PAGING DESIGN QUESTIONS

 Example:

 Consider a 32-bit process address space (up to 4GB)

With 4 KB pages

 20 bits for VPN (220 pages)

 12 bits for the page offset (212 unique bytes in a page)

 Page tables for each process are stored in RAM

 Support potential storage of 220 translations
= 1,048,576 pages per process

 Each page has a page table entry size of 4 bytes

November 26, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L16.21

(1) WHERE ARE PAGE TABLES STORED?

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/25/2018

L16.8Slides by Wes J. Lloyd

 With 220 slots in our page table for a single process

 Each slot dereferences a VPN

 Provides physical frame number

 Each slot requires 4 bytes (32 bits)
 20 for the PFN on a 4GB system with 4KB pages
 12 for the offset which is preserved
 (note we have no status bits, so this is

unrealistically small)

 How much memory to store page table for 1 process?
 4,194,304 bytes (or 4MB) to index one process

November 26, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L16.22

PAGE TABLE EXAMPLE

VPN0

VPN1

VPN2

…

…

VPN1048576

 If 4 MB is required to store one process

 Consider how much memory is required for an entire OS?
 With for example 100 processes…

 Page table memory requirement is now 4MB x 100 = 400MB

 If computer has 4GB memory (maximum for 32-bits),
the page table consumes 10% of memory

400 MB / 4000 GB

 Is this ef ficient?

November 26, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L16.23

NOW FOR AN ENTIRE OS

 Page table is data structure used to map virtual page
numbers (VPN) to the physical address (Physical Frame
Number PFN)

 Linear page table simple array

 Page-table entry

 32 bits for capturing state

November 26, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L16.24

(2) WHAT’S ACTUALLY IN THE PAGE TABLE

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/25/2018

L16.9Slides by Wes J. Lloyd

 P: present

 R/W: read/write bit

 U/S: supervisor

 A: accessed bit

 D: dir ty bit

 PFN: the page frame number

November 26, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L16.25

PAGE TABLE ENTRY

 Common flags:

 Val id Bit : Indicating whether the particular translation is valid.

 Protection Bit: Indicating whether the page could be read
from, written to, or executed from

 Present Bit: Indicating whether this page is in physical
memory or on disk(swapped out)

 Dir ty Bit : Indicating whether the page has been modified since
it was brought into memory

 Reference Bit(Accessed Bit): Indicating that a page has been
accessed

November 26, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L16.26

PAGE TABLE ENTRY - 2

 Page tables are too big to store on the CPU

 Page tables are stored using physical memory

 Paging supports efficiently storing a sparsely populated
address space

 Reduced memory requirement
Compared to base and bounds, and segments

November 26, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L16.27

(3) HOW BIG ARE PAGE TABLES?

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/25/2018

L16.10Slides by Wes J. Lloyd

 Translation

 Issue #1: Starting location of the page table is
needed
HW Support: Page-table base register
 stores active process
 Facilitates translation

 Issue #2: Each memory address translation for paging
requires an extra memory reference
HW Support: TLBs (Chapter 19)

November 26, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L16.28

(4) DOES PAGING MAKE
THE SYSTEM TOO SLOW?

Page Table:
VP0 PF3
VP1 PF7
VP2 PF5
VP3 PF2

Stored in RAM

1. // Extract the VPN from the virtual address

2. VPN = (VirtualAddress & VPN_MASK) >> SHIFT

3.

4. // Form the address of the page-table entry (PTE)

5. PTEAddr = PTBR + (VPN * sizeof(PTE))

6.

7. // Fetch the PTE

8. PTE = AccessMemory(PTEAddr)

9.

10. // Check if process can access the page

11. if (PTE.Valid == False)

12. RaiseException(SEGMENTATION_FAULT)

13. else if (CanAccess(PTE.ProtectBits) == False)

14. RaiseException(PROTECTION_FAULT)

15. else

16. // Access is OK: form physical address and fetch it

17. offset = VirtualAddress & OFFSET_MASK

18. PhysAddr = (PTE.PFN << PFN_SHIFT) | offset

19. Register = AccessMemory(PhysAddr)

November 26, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L16.29

PAGING MEMORY ACCESS

 Example: Use this Array initialization Code

 Assembly equivalent:

November 26, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L16.30

COUNTING MEMORY ACCESSES

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/25/2018

L16.11Slides by Wes J. Lloyd

 Locations:
 Page table

 Array

 Code

 50 accesses
for 5 loop
iterations

November 26, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L16.31

VISUALIZING MEMORY ACCESSES:
FOR THE FIRST 5 LOOP ITERATIONS

 Consider a 4GB Computer:

 With a 4096-byte page size (4KB)

 How many pages would fit in physical memory?

 Now consider a page table:

 For the page table entry, how many bits are required for the
VPN?

 If we assume the use of 4-byte (32 bit) page table entries,
how many bits are available for status bits?

 How much space does this page table require?
Page Table Entries x Number of pages

 How many page tables (for user processes)
would fill the entire 4GB of memory?

November 26, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L16.32

PAGING SYSTEM EXAMPLE

CHAPTER 19:
TRANSLATION

LOOKASIDE BUFFER
(TLB)

November 26, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma L16.33

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/25/2018

L16.12Slides by Wes J. Lloyd

Chapter 19

TLB Algorithm

TLB Tradeoffs

TLB Context Switch

November 26, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L16.34

OBJECTIVES

 Legacy name…

Better name, “Address Translation Cache”

 TLB is an on CPU cache of address translations

virtual physical memory

November 26, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L16.35

TRANSLATION LOOKASIDE BUFFER

 Goal:
Reduce access
to the page
tables

 Example:
50 RAM accesses
for first 5 for- loop
iterations

 Move lookups
from RAM to TLB
by caching page
table entries

November 26, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L16.36

TRANSLATION LOOKASIDE BUFFER - 2

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/25/2018

L16.13Slides by Wes J. Lloyd

 Part of the CPU’s Memory Management Unit (MMU)

 Address translation cache

November 26, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L16.37

TRANSLATION LOOKASIDE BUFFER (TLB)

 Part of the CPU’s Memory Management Unit (MMU)

 Address translation cache

November 26, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L16.38

TRANSLATION LOOKASIDE BUFFER (TLB)

The TLB is an address translation cache
Different than L1, L2, L3 CPU memory caches

 For: array based page table

 Hardware managed TLB

November 26, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L16.39

TLB BASIC ALGORITHM

Extract the virtual page numberCheck if the TLB holds the translation for the VPNExtract page frame number from TLBGenerate the physical address to access memory

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/25/2018

L16.14Slides by Wes J. Lloyd

November 26, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L16.40

TLB BASIC ALGORITHM - 2

If TLB miss, access the pg table (in RAM) to find address translationUpdate the TLB with the translationRetry the instruction… (requery the TLB)

Key detail:

 For a TLB miss, we first access the page table in RAM to
populate the TLB… we then requery the TLB

 All address translations go through the TLB

November 26, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L16.41

TLB – ADDRESS TRANSLATION CACHE

 Example:

 Program address space: 256-byte
 Addressable using 8 total bits (28)

 4 bits for the VPN (16 total pages)

 Page size: 16 bytes
 Offset is addressable using 4-bits

 Store an array: of (10) 4-byte integers

November 26, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L16.42

TLB EXAMPLE

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/25/2018

L16.15Slides by Wes J. Lloyd

 Consider the code above:

 Initially the TLB does not know where a[] is

 Consider the accesses:

 a[0], a[1], a[2], a[3], a[4], a[5], a[6], a[7],
a[8], a[9]

 How many pages are accessed?

 What happens when accessing a page not
in the TLB?

November 26, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L16.43

TLB EXAMPLE - 2

 For the accesses: a[0], a[1], a[2], a[3], a[4],

 a[5], a[6], a[7], a[8], a[9]

 How many are hits?

 How many are misses?

 What is the hit rate? (%)
 70% (3 misses one for each VP, 7 hits)

November 26, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L16.44

TLB EXAMPLE - 3

 What factors affect the hit/miss rate?

 Page size

 Data locality

 Temporal locality

November 26, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L16.45

TLB EXAMPLE - 4

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/25/2018

L16.16Slides by Wes J. Lloyd

CHAPTER 20:
PAGING:

SMALLER TABLES

November 26, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma L16.46

Chapter 20

Smaller tables

Hybrid tables

Multi-level page tables

November 26, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L16.47

OBJECTIVES

Consider array-based page tables:
 Each process has its own page table

 32-bit process address space (up to 4GB)

With 4 KB pages

 20 bits for VPN

 12 bits for the page offset

November 26, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L16.48

LINEAR PAGE TABLES

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/25/2018

L16.17Slides by Wes J. Lloyd

 Page tables stored in RAM

 Support potential storage of 220 translations
= 1,048,576 pages per process @ 4 bytes/page

 Page table size 4MB / process

 Consider 100+ OS processes
 Requires 400+ MB of RAM to store process information

November 26, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L16.49

LINEAR PAGE TABLES - 2

 Page tables stored in RAM

 Support potential storage of 220 translations
= 1,048,576 pages per process @ 4 bytes/page

 Page table size 4MB / process

 Consider 100+ OS processes
 Requires 400+ MB of RAM to store process information

November 26, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L16.50

LINEAR PAGE TABLES - 2

Page tables are too big and
consume too much memory.

Need Solutions …

 Larger pages = 16KB = 214

 32-bit address space: 232

 218 = 262,144 pages

 Memory requirement cut to ¼

 However pages are huge

 Internal fragmentation results

 16KB page(s) allocated for small programs with only a
few variables

November 26, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L16.51

PAGING: USE LARGER PAGES

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/25/2018

L16.18Slides by Wes J. Lloyd

 Process: 16KB Address Space w/ 1KB pages

November 26, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L16.52

PAGE TABLES: WASTED SPACE

Page Table

 Process: 16KB Address Space w/ 1KB pages

November 26, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L16.53

PAGE TABLES: WASTED SPACE

Page Table

Most of the page table is unused
and full of wasted space. (73%)

 Consider a page table:

 32-bit addressing, 4KB pages

 220 page table entries

 Even if memory is sparsely populated the per process page
table requires:

 Often most of the 4MB per process page table is empty

 Page table must be placed in 4MB contiguous block of RAM

 MUST SAVE MEMORY!

November 26, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L16.54

MULTI-LEVEL PAGE TABLES

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/25/2018

L16.19Slides by Wes J. Lloyd

 Add level of indirection, the “page directory”

November 26, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L16.55

MULTI-LEVEL PAGE TABLES - 2

 Add level of indirection, the “page directory”

November 26, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L16.56

MULTI-LEVEL PAGE TABLES - 2

Two level page table:
220 pages addressed with

two level-indexing
(page directory index, page table index)

 Advantages

 Only allocates page table space in proportion to the
address space actually used

 Can easily grab next free page to expand page table

 Disadvantages

Multi-level page tables are an example of a time-space
tradeoff

 Sacrifice address translation time (now 2-level) for space

 Complexity: multi-level schemes are more complex

November 26, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L16.57

MULTI-LEVEL PAGE TABLES - 3

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/25/2018

L16.20Slides by Wes J. Lloyd

 16KB address space, 64byte pages

 How large would a one-level page table need to be?

 214 (address space) / 26 (page size) = 28 = 256 (pages)

November 26, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L16.58

EXAMPLE

 256 total page table entries (64 bytes each)

 1,024 bytes page table size, stored using 64-byte pages
= (1024/64) = 16 page directory entries (PDEs)

 Each page directory entry (PDE) can hold 16 page table
entries (PTEs) e.g. lookups

 16 page directory entries (PDE) x 16 page table entries (PTE)
= 256 total PTEs

 Key idea: the page table is stored using pages too!

November 26, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L16.59

EXAMPLE - 2

 Now, let’s split the page table into two:

 8 bit VPN to map 256 pages

 4 bits for page directory index (PDI – 1st level page table)

 6 bits offset into 64-byte page

November 26, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L16.60

PAGE DIRECTORY INDEX

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/25/2018

L16.21Slides by Wes J. Lloyd

 4 bits page directory index (PDI – 1st level)

 4 bits page table index (PTI – 2nd level)

 To dereference one 64-byte memory page,

 We need one page directory entry (PDE)

 One page table Index (PTI) – can address 16 pages

November 26, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L16.61

PAGE TABLE INDEX

 For this example, how much space is required to store as a
single-level page table with any number of PTEs?

 16KB address space, 64 byte pages
 256 page frames, 4 byte page size
 1,024 bytes required (single level)

 How much space is required for a two-level page table with
only 4 page table entries (PTEs) ?

 Page directory = 16 entries x 4 bytes (1 x 64 byte page)
 Page table = 4 entries x 4 bytes (1 x 64 byte page)
 128 bytes required (2 x 64 byte pages)
 Savings = using just 12.5% the space !!!

November 26, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L16.62

EXAMPLE - 3

 Consider: 32-bit address space, 4KB pages, 220 pages

 Only 4 mapped pages

 Single level: 4 MB (we’ve done this before)

 Two level: (old VPN was 20 bits, split in half)

 Page directory = 210 entries x 4 bytes = 1 x 4 KB page

 Page table = 4 entries x 4 bytes (mapped to 1 4KB page)

 8KB (8,192 bytes) required

 Savings = using just .78 % the space !!!

 100 sparse processes now require < 1MB for page tables

November 26, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L16.63

32-BIT EXAMPLE

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/25/2018

L16.22Slides by Wes J. Lloyd

 Consider: page size is 29 = 512 bytes

 Page size 512 bytes / Page entry size 4 bytes

 VPN is 21 bits

November 26, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L16.64

MORE THAN TWO LEVELS

 Page table entries per page = 512 / 4 = 128

 7 bytes – for page table index (PTI)

November 26, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L16.65

MORE THAN TWO LEVELS - 2

 To map 1 GB address space (230=1GB RAM, 512-byte pages)

 214 = 16,384 page directory entries (PDEs) are required

 When using 27 (128 entry) page tables…

 Page size = 512 bytes / 4 bytes per addr

November 26, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L16.66

MORE THAN TWO LEVELS - 3

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/25/2018

L16.23Slides by Wes J. Lloyd

 To map 1 GB address space (230=1GB RAM, 512-byte pages)

 214 = 16,384 page directory entries (PDEs) are required

 When using 27 (128 entry) page tables…

 Page size = 512 bytes / 4 bytes per addr

November 26, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L16.67

MORE THAN TWO LEVELS - 3

Can’t Store Page Directory with 16K
pages, using 512 bytes pages.

Pages only dereference 128 addresses
(512 bytes / 32 bytes)

 To map 1 GB address space (230=1GB RAM, 512-byte pages)

 214 = 16,384 page directory entries (PDEs) are required

 When using 27 (128 entry) page tables…

 Page size = 512 bytes / 4 bytes per addr

November 26, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L16.68

MORE THAN TWO LEVELS - 3

Can’t Store Page Directory with 16K
pages, using 512 bytes pages.

Pages only dereference 128 addresses
(512 bytes / 32 bytes)

Need three level page table:
Page directory 0 (PD Index 0)
Page directory 1 (PD Index 1)

Page Table Index

 We can now address 1GB with“fine grained” 512 byte pages

 Using multiple levels of indirection

 Consider the implications for address translation!

 How much space is required for a virtual address space with 4
entries on a 512-byte page? (let’s say 4 32-bit integers)

 PD0 1 page, PD1 1 page, PT 1 page = 1,536 bytes

 Savings = 1,536 / 8,388,608 (8mb) = .0183% !!!

November 26, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L16.69

MORE THAN TWO LEVELS - 4

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/25/2018

L16.24Slides by Wes J. Lloyd

// 5-level Linux page table address lookup
//
// Inputs:
// mm_struct – process’s memory map struct
// vpage – virtual page address

// Define page struct pointers
pgd_t *pgd;
p4d_t *p4d;
pud_t *pud;
pmd_t *pmt;
pte_t *pte;
struct page *page;

November 26, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L16.70

ADDRESS TRANSLATION CODE

pgd = pgd_offset(mm, vpage);
if (pgd_none(*pgd) || pgd_bad(*pgd))

return 0;
p4d = p4d_offset(pgd, vpage);
if (p4d_none(*p4d) || p4d_bad(*p4d))

return 0;
pud = pud_offset(p4d, vpage);
if (pud_none(*pud) || pud_bad(*pud))

return 0;
pmd = pmd_offset(pud, vpage);
if (pmd_none(*pmd) || pmd_bad(*pmd))

return 0;
if (!(pte = pte_offset_map(pmd, vpage)))

return 0;
if (!(page = pte_page(*pte)))

return 0;
physical_page_addr = page_to_phys(page);
pte_unmap(pte);
return physical_page_addr; // param to send back

November 26, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L16.71

ADDRESS TRANSLATION - 2

pgd_offset():
Takes a vpage address and the mm_struct
for the process, returns the PGD entry that
covers the requested address…

p4d/pud/pmd_offset():
Takes a vpage address and the
pgd/p4d/pud entry and returns the
relevant p4d/pud/pmd.

pte_unmap()
release temporary kernel mapping
for the page table entry

 Keep a single page table for each physical page of memory

 Consider 4GB physical memory

 Using 4KB pages, page table requires 4MB to map all of RAM

 Page table stores

 Which process uses each page

 Which process virtual page (from process virtual address
space) maps to the physical page

 All processes share the same page table for memory mapping,
kernel must isolate all use of the shared structure

 Finding process memory pages requires search of 220 pages

 Hash table: can index memory and speed lookups

November 26, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L16.72

INVERTED PAGE TABLES

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/25/2018

L16.25Slides by Wes J. Lloyd

 Consider a 16 MB computer which indexes memory using 4KB
pages

 (#1) For a single level page table, how many pages are
required to index memory?

 (#2) How many bits are required for the VPN?

 (#3) Assuming each page table entry (PTE) can index any byte
on a 4KB page, how many offset bits are required?

 (#4) Assuming there are 8 status bits, how many bytes are
required for each page table entry?

November 26, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L16.73

MULTI-LEVEL PAGE TABLE EXAMPLE

 (#5) How many bytes (or KB) are required for a single level
page table?

 Let’s assume a simple HelloWorld.c program.
 HelloWorld.c requires vir tual address translation for 4 pages:
 1 – code page 1 – stack page
 1 – heap page 1 – data segment page

 (#6) Assuming a two-level page table scheme, how many bits
are required for the Page Directory Index (PDI)?

 (#7) How many bits are required for the Page Table Index
(PTI)?

November 26, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L16.74

MULTI LEVEL PAGE TABLE EXAMPLE - 2

 Assume each page directory entry (PDE) and page table entry
(PTE) requires 4 bytes:
 6 bits for the Page Directory Index (PDI)

 6 bits for the Page Table Index (PTI)

 12 offset bits

 8 status bits

 (#8) How much total memory is required to index the
HelloWorld.c program using a two-level page table when we
only need to translate 4 total pages?

 HINT: we need to allocate one Page Directory and one Page
Table…

 HINT: how many entries are in the PD and PT

November 26, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L16.75

MULTI LEVEL PAGE TABLE EXAMPLE - 3

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/25/2018

L16.26Slides by Wes J. Lloyd

 (#9) Using a single page directory entry (PDE) pointing to a
single page table (PT), if all of the slots of the page table (PT)
are in use, what is the total amount of memory a two-level
page table scheme can address?

 (#10) And finally, for this example, as a percentage (%),
how much memory does the 2-level page table scheme
consume compared to the 1-level scheme?

 HINT: two-level memory use / one-level memory use

November 26, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L16.76

MULTI LEVEL PAGE TABLE EXAMPLE - 4

 #1 – 4096 pages

 #2 – 12 bits

 #3 – 12 bits

 #4 – 4 bytes

 #5 – 4096 x 4 = 16,384 bytes (16KB)

 #6 – 6 bits

 #7 – 6 bits

 #8 – 256 bytes for Page Directory (PD) (64 entries x 4 bytes)
256 bytes for Page Table (PT) TOTAL = 512 bytes

 #9 – 64 entries, where each entry maps a 4,096 byte page
With 12 offset bits, can address 262,144 bytes (256 KB)

 #10- 512/16384 = .03125 3.125%

November 26, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L16.77

ANSWERS

CHAPTER 21/22:
BEYOND PHYSICAL

MEMORY

November 26, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma L16.78

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/25/2018

L16.27Slides by Wes J. Lloyd

 Disks (HDD, SSD) provide another level of storage in the
memory hierarchy

November 26, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L16.79

MEMORY HIERARCHY

 Can provide illusion of an address space larger than
physical RAM

 For a single process

 Convenience

 Ease of use

 For multiple processes

 Large virtual memory space for many concurrent
processes

November 26, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L16.80

MOTIVATION FOR
EXPANDING THE ADDRESS SPACE

November 26, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L16.81

LATENCY TIMES

Design considerations
 SSDs 4x the time of DRAM
 HDDs 80x the time of DRAM

 Lat ency num be rs e ve r y prog ram m e r should know
 From : ht tps ://g ist .g i thub.c om /jbone r/2 841832#f i le - l ate nc y - t x t

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/25/2018

L16.28Slides by Wes J. Lloyd

 Disk space for storing memory pages

 “Swap” them in and out of memory to disk as needed

November 26, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L16.82

SWAP SPACE

 Page table pages are:

 Stored in memory

 Swapped to disk

 Present bit

 In the page table entry (PTE) indicates if page is present

 Page fault

Memory page is accessed, but has been swapped to disk

November 26, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L16.83

PAGE LOCATION

 OS steps in to handle the page fault

 Loading page from disk requires a free memory page

 Page-Fault Algorithm

November 26, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L16.84

PAGE FAULT

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/25/2018

L16.29Slides by Wes J. Lloyd

 Page daemon

 Background threads which monitors swapped pages

 Low watermark (LW)

 Threshold for when to swap pages to disk

 Daemon checks: free pages < LW

 Begin swapping to disk until reaching the highwater mark

 High watermark (HW)

 Target threshold of free memory pages

 Daemon free until: free pages >= HW

November 26, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L16.85

PAGE REPLACEMENTS

REPLACEMENT
POLICIES

November 26, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L16.8
6

 Replacement policies apply to “any” cache

 Goal is to minimize the number of misses

 Average memory access time can be estimated:

 Consider TM = 100 ns, TD = 10ms

 Consider Phit = .9 (90%), Pmiss = .1

 Consider Phit = .999 (99.9%), Pmiss = .001

November 26, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L16.87

CACHE MANAGEMENT

𝐴𝑀𝐴𝑇 = 𝑃 ∗ 𝑇 + (𝑃 ∗ 𝑇)

Argument Meaning

𝑇 The cost of accessing memory (time)

𝑇 The cost of accessing disk (time)

𝑃 The probability of finding the data item in the cache(a hit)

𝑃 The probability of not finding the data in the cache(a miss)

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/25/2018

L16.30Slides by Wes J. Lloyd

 What if:
 We could predict the future (… with a magical oracle)

 All future page accesses are known

 Always replace the page in the cache used farthest in the future

 Used for a comparison

 Provides a “best case” replacement policy

 Consider a 3-element empty cache with the following page
accesses:

0 1 2 0 1 3 0 3 1 2 1

November 26, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L16.88

OPTIMAL REPLACEMENT POLICY

What is the hit/miss ratio?

6 hits

 Queue based

 Always replace the oldest element at the back of cache

 Simple to implement

 Doesn’t consider importance… just arrival ordering

 Consider a 3-element empty cache with the following
page accesses:

0 1 2 0 1 3 0 3 1 2 1

 What is the hit/miss ratio?

 How is FIFO different than LRU?

November 26, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L16.89

FIFO REPLACEMENT

4 hits

LRU incorporates history

 Pick a page at random to replace

 Simple and fast implementation

 Performance depends on luck of random choices

0 1 2 0 1 3 0 3 1 2 1

November 26, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L16.90

RANDOM REPLACEMENT

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/25/2018

L16.31Slides by Wes J. Lloyd

 LRU: Least recently used
 Always replace page with oldest access time (front)
 Always move end of cache when element is read again
 Considers temporal locality (when pg was last accessed)

0 1 2 0 1 3 0 3 1 2 1

 LFU: Least frequently used
 Always replace page with fewest accesses (front)
 Consider frequency of page accesses

0 1 2 0 1 3 0 3 1 2 1

November 26, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L16.91

HISTORY-BASED POLICIES

What is the hit/miss ratio?

6 hits

Hit/miss ratio is=

6 hits

 No-Locality (Random Access) Workload
 Perform 10,000 random page accesses

 Across set of 100 memory pages

November 26, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L16.92

WORKLOAD EXAMPLES: NO-LOCALITY

When the cache is
large enough to fit

the entire workload,
it doesn’t matter

which policy you use.

 80/20 Workload
 Perform 10,000 page accesses, against set of 100 pages

 80% of accesses are to 20% of pages (hot pages)

 20% of accesses are to 80% of pages (cold pages)

November 26, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L16.93

WORKLOAD EXAMPLES: 80/20

LRU is more likely
to hold onto
hot pages

(recalls history)

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/25/2018

L16.32Slides by Wes J. Lloyd

 Looping sequential workload
 Refer to 50 pages in sequence: 0, 1, …, 49

 Repeat loop

November 26, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L16.94

WORKLOAD EXAMPLES: SEQUENTIAL

Random performs
better than FIFO and

LRU for
cache sizes < 50

Algorithms should provide
“scan resistance”

 Implementing last recently used (LRU) requires tracking
access time for all system memory pages

 Times can be tracked with a list

 For cache eviction, we must scan an entire list

 Consider: 4GB memory system (232),
with 4KB pages (212)

 This requires 220 comparisons !!!

 Simplification is needed

 Consider how to approximate the oldest page access

November 26, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L16.95

IMPLEMENTING LRU

Harness the Page Table Entry (PTE) Use Bit

HW sets to 1 when page is used

OS sets to 0

Clock algorithm (approximate LRU)

Refer to pages in a circular list

Clock hand points to current page

Loops around
 IF USE_BIT=1 set to USE_BIT = 0

 IF USE_BIT=0 replace page

November 26, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L16.96

IMPLEMENTING LRU - 2

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/25/2018

L16.33Slides by Wes J. Lloyd

 Not as efficient as LRU, but better than other
replacement algorithms that do not consider history

November 26, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma L16.97

CLOCK ALGORITHM

Consider dirty pages in cache

 If DIRTY (modified) bit is FALSE

No cost to evict page from cache

 If DIRTY (modified) bit is TRUE

Cache eviction requires updating memory

Contents have changed

Clock algorithm should favor no cost eviction

November 26, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L16.98

CLOCK ALGORITHM - 2

 On demand demand paging

 Prefetching
 Preload pages based on anticipated demand

 Prediction based on locality
 Access page P, suggest page P+1 may be used

 What other techniques might help anticipate required
memory pages?
 Prediction models, historical analysis
 In general: accuracy vs. effort tradeoff
 High analysis techniques struggle to respond in real time

November 26, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L16.99

WHEN TO LOAD PAGES

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/25/2018

L16.34Slides by Wes J. Lloyd

Page swaps / writes

Group/cluster pages together

Collect pending writes, perform as batch

Grouping disk writes helps amortize latency costs

 Thrashing

Occurs when system runs many memory intensive
processes and is low in memory

Everything is constantly swapped to-and-from disk

November 26, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L16.100

OTHER SWAPPING POLICIES

Working sets

Groups of related processes

When thrashing: prevent one or more working
set(s) from running

Temporarily reduces memory burden

Allows some processes to run, reduces thrashing

November 26, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L16.101

OTHER SWAPPING POLICIES - 2

QUESTIONS

