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TCSS 422: OPERATING SYSTEMS

 Assignment #2:
 Can we have another example of optimizing TLP by moving 

locks around?

 Assignment #3:
 What is the purpose of a Linux “proc” file?

 Memory Virtualization:
 When would you need to use brk(), sbrk()?

 Legacy: The brk() and sbrk() functions are historical curiosities 
left over from earlier days before virtual memory management.

 Called internally by malloc(),realloc(), to adjust heap location
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 From stackoverflow.com:
 https://stackover f low.com/quest ions/6988487/what-does-the-brk -system-cal l -do

 The "break“, the address manipulated by brk() and 
sbrk(), is the dotted l ine at the top of the heap

 In traditional Unix (before shared libraries) the 
data segment was continuous with the heap.

 Before the program star ts, the kernel would load 
the "text" and "data" blocks into RAM starting at 
address zero and set the break address to the 
end of the data segment. 

 The first call to malloc() would use sbrk() to move the break 
up and create the heap in between the top of the data 
segment and the new, higher break address, as shown in the 
diagram, and subsequent use of malloc() would use it  to make 
the heap bigger as necessary.
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BRK(), SBRK()

 Hard to track the details relevant for final exam

 All is of course important, but my notes weren’t substantial 
enough for the midterm
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 Quiz 4

 Program 2

 Program 3

 Segments

 Chapter 17 – Free Space Management

 Paging

 Chapter 18 – Introduction to Paging

 Chapter 19 – Translation Lookaside Buffer 

 Chapter 20 – Paging Smaller Tables

 Chapter 21/22 – Beyond Physical Memory
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OBJECTIVES

CHAPTER 17: FREE 
SPACE MANAGEMENT
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 Management of memory using

 Only fixed-sized units

 Easy: keep a list

Memory request  return first free entry
 Simple search

 With variable sized units

More challenging

 Results from variable sized malloc requests

 Leads to fragmentation
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FREE SPACE MANAGEMENT

 Consider a 30-byte heap

 Request for 15-bytes

 Free space: 20 bytes

 No available contiguous chunk  return NULL
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 External: OS can compact

 Example: Client asks for 100 bytes:  malloc(100)

 OS: No 100 byte contiguous chunk is available:
returns NULL

Memory is externally fragmented - - Compaction can fix!

 Internal: lost space – OS can’t compact

 OS returns memory units that are too large

 Example:  Client asks for 100 bytes:  malloc(100)

 OS: Returns 125 byte chunk

 Fragmentation is *in* the allocated chunk

Memory is lost, and unaccounted for – can’t compact
November 20, 2018 TCSS422: Operating Systems [Fall 2018]
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FRAGMENTATION - 2

 Request for 1 byte of memory:  malloc(1)

 OS locates a free chunk to satisfy request

 Splits chunk into two, returns first chunk
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 Consider 30-byte heap

 Free() frees all 10 bytes segments  ( l ist of  3-free 10-byte chunks)

 Request arrives:  malloc(30)

 SPLIT DOES NOT WORK - no contiguous 30-byte chunk exists!

 Coalescing regroups chunks into contiguous chunk

 Allocation can now proceed

 Coalescing is defragmentation of the free space l ist
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ALLOCATION STRATEGY: COALESCING

 free(void *ptr): Does not require a size parameter

 How does the OS know how much memory to free?

 Header block

 Small descriptive block of memory at start of chunk
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MEMORY HEADERS
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 Contains size

 Pointers: for faster memory access

 Magic number: integrity checking
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MEMORY HEADERS - 2

 Size of memory chunk is:

 Header size + user malloc size

 N bytes + sizeof(header)

 Easy to determine address of header
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MEMORY HEADERS - 3
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 Simple free list struct

 Use mmap to create free l ist

 4kb heap, 4 byte header, one contiguous free chunk
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THE FREE LIST

 Create and initialize free-l ist “heap”

 Heap layout:
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 Consider a request for a 100 bytes:   malloc(100)

 Header block requires 8 bytes 
 4 bytes for size, 4 bytes for magic number

 Split  the heap – header goes with each block

November 20, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L15.17

FREE LIST:  MALLOC() CALL

First block
is used

 Addresses of chunks

 Start=16384 
+ 108 (end of 1st chunk)
+ 108 (end of 2nd chunk)
+ 108 (end of 3rd chunk)
= 16708
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FREE LIST: FREE() CALL

Free this
block
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 Free(sptr)

 Our 3 chunks start at 16 KB
(@ 16,384 bytes)

 Free chunk #2 - sptr

 Sptr = 16500
 addr – sizeof(node_t)

 Actual start of chunk #2
 16492
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FREE LIST: 
FREE() CHUNK #2

Block
Now Free

 Now free remaining chunks:

 Free(16392)
 Free(16608)

 Walk back 8 bytes for  actual 
star t of chunk

 External fragmentation
 Free chunk pointers 

out of order

 Coalescing of next 
pointers is needed
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FREE LIST- FREE ALL CHUNKS
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 Start with small sized heap

 Request more memory when full

 sbrk(), brk()
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GROWING THE HEAP

Segmented heap

 Best fit

 Traverse free list

 Identify all candidate free chunks

 Note which is smallest (has best fit)

When splitting, “leftover” pieces are small 
(and potentially less useful  -- fragmented)

 Worst fit

 Traverse free list

 Identify largest free chunk

 Split largest free chunk, leaving a still large free chunk
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MEMORY ALLOCATION STRATEGIES
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 Allocation request for 15 bytes

 Result of Best Fit

 Result of Worst Fit
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EXAMPLES

 First fit
 Start search at beginning of free list

 Find first chunk large enough for request

 Split chunk, returning a “fit” chunk, saving the remainder

 Avoids full free list traversal of best and worst fit

 Next fit
 Similar to first fit, but start search at last search location

 Maintain a pointer that “cycles” through the list 

 Helps balance chunk distribution vs. first fit

 Find first chunk, that is large enough for the request, and split

 Avoids full free list traversal
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MEMORY ALLOCATION STRATEGIES - 2
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 For popular sized requests 
e.g. for kernel objects such as locks, inodes, etc.

 Manage as segregated free lists 

 Provide object caches: stores pre-initialized objects

 How much memory should be dedicated for specialized 
requests (object caches)?

 If a given cache is low in memory, can request “slabs” of 
memory from the general allocator for caches.

 General allocator will  reclaim slabs when not used
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SEGREGATED LISTS

 Binary buddy allocation
 Divides free space by two to find a block that is big enough to 

accommodate the request; the next split is too small…

 Consider a 7KB request
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BUDDY ALLOCATION
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 Buddy allocation: suffers from internal fragmentation

 Allocated fragments, typically too large

 Coalescing is simple

 Two adjacent blocks are promoted up

November 20, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L15.27

BUDDY ALLOCATION - 2

CHAPTER 18:
INTRODUCTION TO

PAGING
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 Split  up address space of process into f ixed sized pieces
called pages

 Alternative to variable sized pieces (Segmentation) which 
suffers from significant fragmentation

 Physical memory is split up into an array of fixed-size slots 
called page frames.

 Each process has a page table which translates vir tual 
addresses to physical addresses

November 20, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L15.29

PAGING

 Flexibility

 Abstracts the process address space into pages

 No need to track direction of HEAP / STACK growth
 Just add more pages…

 No need to store unused space 
 As with segments…

 Simplicity

 Pages and page frames are the same size

 Easy to allocate and keep a free list of pages
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ADVANTAGES OF PAGING
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 Consider a 128 byte address space 
with 16-byte pages  

 Consider a 64-byte program
address space

November 20, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L15.31

PAGING: EXAMPLE
Page Table:
VP0  PF3
VP1  PF7
VP2  PF5
VP3  PF2

 PAGE: Has two address components

 VPN: Virtual Page Number

 Offset: Offset within a Page

 Example: 
Page Size: 16-bytes, Address Space: 64-bytes
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PAGING: ADDRESS TRANSLATION

Here there are
just four pages…
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 Consider a 64-byte program address space (4 pages)

 Stored in 128-byte physical memory (8 frames)

 Offset is preserved

 VPN is looked up
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EXAMPLE:
PAGING ADDRESS TRANSLATION 

Page Table:
VP0  PF3
VP1  PF7
VP2  PF5
VP3  PF2

 (1) Where are page tables stored?

 (2) What are the typical contents of the page table?

 (3) How big are page tables?

 (4) Does paging make the system too slow?
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PAGING DESIGN QUESTIONS
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 Example:

 Consider a 32-bit process address space (up to 4GB)

With 4 KB pages

 20 bits for VPN (220 pages)

 12 bits for the page offset (212 unique bytes in a page)

 Page tables for each process are stored in RAM

 Support potential storage of 220 translations 
= 1,048,576 pages per process

 Each page has a page table entry size of 4 bytes
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(1) WHERE ARE PAGE TABLES STORED?

 With 220 slots in our page table for a single process

 Each slot dereferences a VPN

 Provides physical frame number

 Each slot requires 4 bytes (32 bits)
 20 for the PFN on a 4GB system with 4KB pages
 12 for the offset which is preserved
 (note we have no status bits, so this is 

unrealistically small)

 How much memory to store page table for 1 process?
 4,194,304 bytes (or 4MB) to index one process
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PAGE TABLE EXAMPLE

VPN0

VPN1

VPN2

…

…

VPN1048576



TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/25/2018

L15.19Slides by Wes J. Lloyd

 If 4 MB is required to store one process

 Consider how much memory is required for an entire OS?
 With for example 100 processes…

 Page table memory requirement is now 4MB x 100 = 400MB

 If computer has 4GB memory (maximum for 32-bits), 
the page table consumes 10% of memory

400 MB / 4000 GB

 Is this ef ficient?
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NOW FOR AN ENTIRE OS

 Page table is data structure used to map virtual page 
numbers (VPN) to the physical address (Physical Frame 
Number PFN)

 Linear page table  simple array

 Page-table entry

 32 bits for capturing state
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(2) WHAT’S ACTUALLY IN THE PAGE TABLE
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 P: present

 R/W: read/write bit

 U/S: supervisor

 A: accessed bit

 D: dirty bit

 PFN: the page frame number
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PAGE TABLE ENTRY

 Common flags:

 Valid Bit : Indicating whether the particular translation is valid.

 Protection Bit: Indicating whether the page could be read 
from, written to, or executed from

 Present Bit: Indicating whether this page is in physical 
memory or on disk(swapped out)

 Dirty Bit: Indicating whether the page has been modified since 
it was brought into memory

 Reference Bit(Accessed Bit): Indicating that a page has been 
accessed
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PAGE TABLE ENTRY - 2
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 Page tables are too big to store on the CPU

 Page tables are stored using physical memory

 Paging supports efficiently storing a sparsely populated 
address space

 Reduced memory requirement
Compared to base and bounds, and segments
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(3) HOW BIG ARE PAGE TABLES?

 Translation

 Issue #1: Starting location of the page table is 
needed
HW Support: Page-table base register
 stores active process 
 Facilitates translation

 Issue #2: Each memory address translation for paging 
requires an extra memory reference
HW Support: TLBs (Chapter 19)
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(4) DOES PAGING MAKE 
THE SYSTEM TOO SLOW?

Page Table:
VP0  PF3
VP1  PF7
VP2  PF5
VP3  PF2

Stored in RAM 
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1. // Extract the VPN from the virtual address 

2. VPN = (VirtualAddress & VPN_MASK) >> SHIFT 

3.

4. // Form the address of the page-table entry (PTE) 

5. PTEAddr = PTBR + (VPN * sizeof(PTE)) 

6.

7. // Fetch the PTE 

8. PTE = AccessMemory(PTEAddr) 

9.

10. // Check if process can access the page 

11. if (PTE.Valid == False) 

12. RaiseException(SEGMENTATION_FAULT) 

13. else if (CanAccess(PTE.ProtectBits) == False) 

14. RaiseException(PROTECTION_FAULT) 

15. else

16. // Access is OK: form physical address and fetch it 

17. offset = VirtualAddress & OFFSET_MASK 

18. PhysAddr = (PTE.PFN << PFN_SHIFT) | offset 

19. Register = AccessMemory(PhysAddr)
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PAGING MEMORY ACCESS

QUESTIONS


