
TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/25/2018

L15.1Slides by Wes J. Lloyd

November 20, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

Memory Virtualization,
Segmentation,
Memory Paging

Wes J. Lloyd
School of Engineering and Technology,
University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 Assignment #2:
 Can we have another example of optimizing TLP by moving

locks around?

 Assignment #3:
 What is the purpose of a Linux “proc” file?

 Memory Virtualization:
 When would you need to use brk(), sbrk()?

 Legacy: The brk() and sbrk() functions are historical curiosities
left over from earlier days before virtual memory management.

 Called internally by malloc(),realloc(), to adjust heap location

November 20, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L15.2

FEEDBACK FROM 11/19

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/25/2018

L15.2Slides by Wes J. Lloyd

 From stackoverflow.com:
 https://stackover f low.com/quest ions/6988487/what-does-the-brk -system-cal l -do

 The "break“, the address manipulated by brk() and
sbrk(), is the dotted l ine at the top of the heap

 In traditional Unix (before shared libraries) the
data segment was continuous with the heap.

 Before the program star ts, the kernel would load
the "text" and "data" blocks into RAM starting at
address zero and set the break address to the
end of the data segment.

 The first call to malloc() would use sbrk() to move the break
up and create the heap in between the top of the data
segment and the new, higher break address, as shown in the
diagram, and subsequent use of malloc() would use it to make
the heap bigger as necessary.

November 20, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L15.3

BRK(), SBRK()

 Hard to track the details relevant for final exam

 All is of course important, but my notes weren’t substantial
enough for the midterm

November 20, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L15.4

FEEDBACK - 2

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/25/2018

L15.3Slides by Wes J. Lloyd

 Quiz 4

 Program 2

 Program 3

 Segments

 Chapter 17 – Free Space Management

 Paging

 Chapter 18 – Introduction to Paging

 Chapter 19 – Translation Lookaside Buffer

 Chapter 20 – Paging Smaller Tables

 Chapter 21/22 – Beyond Physical Memory

November 20, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L15.5

OBJECTIVES

CHAPTER 17: FREE
SPACE MANAGEMENT

November 20, 2018
TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma L15.6

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/25/2018

L15.4Slides by Wes J. Lloyd

 Management of memory using

 Only fixed-sized units

 Easy: keep a list

Memory request  return first free entry
 Simple search

 With variable sized units

More challenging

 Results from variable sized malloc requests

 Leads to fragmentation

November 20, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L15.7

FREE SPACE MANAGEMENT

 Consider a 30-byte heap

 Request for 15-bytes

 Free space: 20 bytes

 No available contiguous chunk  return NULL

November 20, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L15.8

FRAGMENTATION

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/25/2018

L15.5Slides by Wes J. Lloyd

 External: OS can compact

 Example: Client asks for 100 bytes: malloc(100)

 OS: No 100 byte contiguous chunk is available:
returns NULL

Memory is externally fragmented - - Compaction can fix!

 Internal: lost space – OS can’t compact

 OS returns memory units that are too large

 Example: Client asks for 100 bytes: malloc(100)

 OS: Returns 125 byte chunk

 Fragmentation is *in* the allocated chunk

Memory is lost, and unaccounted for – can’t compact
November 20, 2018 TCSS422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma
L15.9

FRAGMENTATION - 2

 Request for 1 byte of memory: malloc(1)

 OS locates a free chunk to satisfy request

 Splits chunk into two, returns first chunk

November 20, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L15.10

ALLOCATION STRATEGY: SPLITTING

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/25/2018

L15.6Slides by Wes J. Lloyd

 Consider 30-byte heap

 Free() frees all 10 bytes segments (l ist of 3-free 10-byte chunks)

 Request arrives: malloc(30)

 SPLIT DOES NOT WORK - no contiguous 30-byte chunk exists!

 Coalescing regroups chunks into contiguous chunk

 Allocation can now proceed

 Coalescing is defragmentation of the free space l ist

November 20, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L15.11

ALLOCATION STRATEGY: COALESCING

 free(void *ptr): Does not require a size parameter

 How does the OS know how much memory to free?

 Header block

 Small descriptive block of memory at start of chunk

November 20, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L15.12

MEMORY HEADERS

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/25/2018

L15.7Slides by Wes J. Lloyd

 Contains size

 Pointers: for faster memory access

 Magic number: integrity checking

November 20, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L15.13

MEMORY HEADERS - 2

 Size of memory chunk is:

 Header size + user malloc size

 N bytes + sizeof(header)

 Easy to determine address of header

November 20, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L15.14

MEMORY HEADERS - 3

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/25/2018

L15.8Slides by Wes J. Lloyd

 Simple free list struct

 Use mmap to create free l ist

 4kb heap, 4 byte header, one contiguous free chunk

November 20, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L15.15

THE FREE LIST

 Create and initialize free-l ist “heap”

 Heap layout:

November 20, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L15.16

FREE LIST - 2

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/25/2018

L15.9Slides by Wes J. Lloyd

 Consider a request for a 100 bytes: malloc(100)

 Header block requires 8 bytes
 4 bytes for size, 4 bytes for magic number

 Split the heap – header goes with each block

November 20, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L15.17

FREE LIST: MALLOC() CALL

First block
is used

 Addresses of chunks

 Start=16384
+ 108 (end of 1st chunk)
+ 108 (end of 2nd chunk)
+ 108 (end of 3rd chunk)
= 16708

November 20, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L15.18

FREE LIST: FREE() CALL

Free this
block

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/25/2018

L15.10Slides by Wes J. Lloyd

 Free(sptr)

 Our 3 chunks start at 16 KB
(@ 16,384 bytes)

 Free chunk #2 - sptr

 Sptr = 16500
 addr – sizeof(node_t)

 Actual start of chunk #2
 16492

November 20, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L15.19

FREE LIST:
FREE() CHUNK #2

Block
Now Free

 Now free remaining chunks:

 Free(16392)
 Free(16608)

 Walk back 8 bytes for actual
star t of chunk

 External fragmentation
 Free chunk pointers

out of order

 Coalescing of next
pointers is needed

November 20, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L15.20

FREE LIST- FREE ALL CHUNKS

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/25/2018

L15.11Slides by Wes J. Lloyd

 Start with small sized heap

 Request more memory when full

 sbrk(), brk()

November 20, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L15.21

GROWING THE HEAP

Segmented heap

 Best fit

 Traverse free list

 Identify all candidate free chunks

 Note which is smallest (has best fit)

When splitting, “leftover” pieces are small
(and potentially less useful -- fragmented)

 Worst fit

 Traverse free list

 Identify largest free chunk

 Split largest free chunk, leaving a still large free chunk

November 20, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L15.22

MEMORY ALLOCATION STRATEGIES

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/25/2018

L15.12Slides by Wes J. Lloyd

 Allocation request for 15 bytes

 Result of Best Fit

 Result of Worst Fit

November 20, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L15.23

EXAMPLES

 First fit
 Start search at beginning of free list

 Find first chunk large enough for request

 Split chunk, returning a “fit” chunk, saving the remainder

 Avoids full free list traversal of best and worst fit

 Next fit
 Similar to first fit, but start search at last search location

 Maintain a pointer that “cycles” through the list

 Helps balance chunk distribution vs. first fit

 Find first chunk, that is large enough for the request, and split

 Avoids full free list traversal

November 20, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L15.24

MEMORY ALLOCATION STRATEGIES - 2

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/25/2018

L15.13Slides by Wes J. Lloyd

 For popular sized requests
e.g. for kernel objects such as locks, inodes, etc.

 Manage as segregated free lists

 Provide object caches: stores pre-initialized objects

 How much memory should be dedicated for specialized
requests (object caches)?

 If a given cache is low in memory, can request “slabs” of
memory from the general allocator for caches.

 General allocator will reclaim slabs when not used

November 20, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L15.25

SEGREGATED LISTS

 Binary buddy allocation
 Divides free space by two to find a block that is big enough to

accommodate the request; the next split is too small…

 Consider a 7KB request

November 20, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L15.26

BUDDY ALLOCATION

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/25/2018

L15.14Slides by Wes J. Lloyd

 Buddy allocation: suffers from internal fragmentation

 Allocated fragments, typically too large

 Coalescing is simple

 Two adjacent blocks are promoted up

November 20, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L15.27

BUDDY ALLOCATION - 2

CHAPTER 18:
INTRODUCTION TO

PAGING

November 20, 2018
TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma L15.28

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/25/2018

L15.15Slides by Wes J. Lloyd

 Split up address space of process into f ixed sized pieces
called pages

 Alternative to variable sized pieces (Segmentation) which
suffers from significant fragmentation

 Physical memory is split up into an array of fixed-size slots
called page frames.

 Each process has a page table which translates vir tual
addresses to physical addresses

November 20, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L15.29

PAGING

 Flexibility

 Abstracts the process address space into pages

 No need to track direction of HEAP / STACK growth
 Just add more pages…

 No need to store unused space
 As with segments…

 Simplicity

 Pages and page frames are the same size

 Easy to allocate and keep a free list of pages

November 20, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L15.30

ADVANTAGES OF PAGING

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/25/2018

L15.16Slides by Wes J. Lloyd

 Consider a 128 byte address space
with 16-byte pages

 Consider a 64-byte program
address space

November 20, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L15.31

PAGING: EXAMPLE
Page Table:
VP0  PF3
VP1  PF7
VP2  PF5
VP3  PF2

 PAGE: Has two address components

 VPN: Virtual Page Number

 Offset: Offset within a Page

 Example:
Page Size: 16-bytes, Address Space: 64-bytes

November 20, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L15.32

PAGING: ADDRESS TRANSLATION

Here there are
just four pages…

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/25/2018

L15.17Slides by Wes J. Lloyd

 Consider a 64-byte program address space (4 pages)

 Stored in 128-byte physical memory (8 frames)

 Offset is preserved

 VPN is looked up

November 20, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L15.33

EXAMPLE:
PAGING ADDRESS TRANSLATION

Page Table:
VP0  PF3
VP1  PF7
VP2  PF5
VP3  PF2

 (1) Where are page tables stored?

 (2) What are the typical contents of the page table?

 (3) How big are page tables?

 (4) Does paging make the system too slow?

November 20, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L15.34

PAGING DESIGN QUESTIONS

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/25/2018

L15.18Slides by Wes J. Lloyd

 Example:

 Consider a 32-bit process address space (up to 4GB)

With 4 KB pages

 20 bits for VPN (220 pages)

 12 bits for the page offset (212 unique bytes in a page)

 Page tables for each process are stored in RAM

 Support potential storage of 220 translations
= 1,048,576 pages per process

 Each page has a page table entry size of 4 bytes

November 20, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L15.35

(1) WHERE ARE PAGE TABLES STORED?

 With 220 slots in our page table for a single process

 Each slot dereferences a VPN

 Provides physical frame number

 Each slot requires 4 bytes (32 bits)
 20 for the PFN on a 4GB system with 4KB pages
 12 for the offset which is preserved
 (note we have no status bits, so this is

unrealistically small)

 How much memory to store page table for 1 process?
 4,194,304 bytes (or 4MB) to index one process

November 20, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L15.36

PAGE TABLE EXAMPLE

VPN0

VPN1

VPN2

…

…

VPN1048576

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/25/2018

L15.19Slides by Wes J. Lloyd

 If 4 MB is required to store one process

 Consider how much memory is required for an entire OS?
 With for example 100 processes…

 Page table memory requirement is now 4MB x 100 = 400MB

 If computer has 4GB memory (maximum for 32-bits),
the page table consumes 10% of memory

400 MB / 4000 GB

 Is this ef ficient?

November 20, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L15.37

NOW FOR AN ENTIRE OS

 Page table is data structure used to map virtual page
numbers (VPN) to the physical address (Physical Frame
Number PFN)

 Linear page table  simple array

 Page-table entry

 32 bits for capturing state

November 20, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L15.38

(2) WHAT’S ACTUALLY IN THE PAGE TABLE

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/25/2018

L15.20Slides by Wes J. Lloyd

 P: present

 R/W: read/write bit

 U/S: supervisor

 A: accessed bit

 D: dirty bit

 PFN: the page frame number

November 20, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L15.39

PAGE TABLE ENTRY

 Common flags:

 Valid Bit : Indicating whether the particular translation is valid.

 Protection Bit: Indicating whether the page could be read
from, written to, or executed from

 Present Bit: Indicating whether this page is in physical
memory or on disk(swapped out)

 Dirty Bit: Indicating whether the page has been modified since
it was brought into memory

 Reference Bit(Accessed Bit): Indicating that a page has been
accessed

November 20, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L15.40

PAGE TABLE ENTRY - 2

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/25/2018

L15.21Slides by Wes J. Lloyd

 Page tables are too big to store on the CPU

 Page tables are stored using physical memory

 Paging supports efficiently storing a sparsely populated
address space

 Reduced memory requirement
Compared to base and bounds, and segments

November 20, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L15.41

(3) HOW BIG ARE PAGE TABLES?

 Translation

 Issue #1: Starting location of the page table is
needed
HW Support: Page-table base register
 stores active process
 Facilitates translation

 Issue #2: Each memory address translation for paging
requires an extra memory reference
HW Support: TLBs (Chapter 19)

November 20, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L15.42

(4) DOES PAGING MAKE
THE SYSTEM TOO SLOW?

Page Table:
VP0  PF3
VP1  PF7
VP2  PF5
VP3  PF2

Stored in RAM 

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/25/2018

L15.22Slides by Wes J. Lloyd

1. // Extract the VPN from the virtual address

2. VPN = (VirtualAddress & VPN_MASK) >> SHIFT

3.

4. // Form the address of the page-table entry (PTE)

5. PTEAddr = PTBR + (VPN * sizeof(PTE))

6.

7. // Fetch the PTE

8. PTE = AccessMemory(PTEAddr)

9.

10. // Check if process can access the page

11. if (PTE.Valid == False)

12. RaiseException(SEGMENTATION_FAULT)

13. else if (CanAccess(PTE.ProtectBits) == False)

14. RaiseException(PROTECTION_FAULT)

15. else

16. // Access is OK: form physical address and fetch it

17. offset = VirtualAddress & OFFSET_MASK

18. PhysAddr = (PTE.PFN << PFN_SHIFT) | offset

19. Register = AccessMemory(PhysAddr)

November 20, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L15.43

PAGING MEMORY ACCESS

QUESTIONS

