
TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/25/2018

L15.1Slides by Wes J. Lloyd

November 20, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

Memory Virtualization,
Segmentation,
Memory Paging

Wes J. Lloyd
School of Engineering and Technology,
University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 Assignment #2:
 Can we have another example of optimizing TLP by moving

locks around?

 Assignment #3:
 What is the purpose of a Linux “proc” file?

 Memory Virtualization:
 When would you need to use brk(), sbrk()?

 Legacy: The brk() and sbrk() functions are historical curiosities
left over from earlier days before virtual memory management.

 Called internally by malloc(),realloc(), to adjust heap location

November 20, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L15.2

FEEDBACK FROM 11/19

 From stackoverflow.com:
 ht tps ://stackover f low.com/quest ions/6988487/what -does -the-brk -system-cal l -do

 The "break“, the address manipulated by brk() and
sbrk(), is the dotted line at the top of the heap

 In traditional Unix (before shared libraries) the
data segment was continuous with the heap.

 Before the program starts, the kernel would load
the "text" and "data" blocks into RAM starting at
address zero and set the break address to the
end of the data segment.

 The first call to malloc() would use sbrk() to move the break
up and create the heap in between the top of the data
segment and the new, higher break address, as shown in the
diagram, and subsequent use of malloc() would use it to make
the heap bigger as necessary.

November 20, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L15.3

BRK(), SBRK()

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/25/2018

L15.2Slides by Wes J. Lloyd

 Hard to track the details relevant for final exam

 All is of course important, but my notes weren’t substantial
enough for the midterm

November 20, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L15.4

FEEDBACK - 2

 Quiz 4

 Program 2

 Program 3

 Segments

 Chapter 17 – Free Space Management

 Paging

 Chapter 18 – Introduction to Paging

 Chapter 19 – Translation Lookaside Buffer

 Chapter 20 – Paging Smaller Tables

 Chapter 21/22 – Beyond Physical Memory

November 20, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L15.5

OBJECTIVES

CHAPTER 17: FREE
SPACE MANAGEMENT

November 20, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma L15.6

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/25/2018

L15.3Slides by Wes J. Lloyd

 Management of memory using

 Only fixed-sized units

 Easy: keep a list

Memory request return first free entry
 Simple search

 With variable sized units

More challenging

 Results from variable sized malloc requests

 Leads to fragmentation

November 20, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L15.7

FREE SPACE MANAGEMENT

 Consider a 30-byte heap

 Request for 15-bytes

 Free space: 20 bytes

 No available contiguous chunk return NULL

November 20, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L15.8

FRAGMENTATION

 External: OS can compact

 Example: Client asks for 100 bytes: malloc(100)

 OS: No 100 byte contiguous chunk is available:
returns NULL

Memory is externally fragmented - - Compaction can fix!

 Internal: lost space – OS can’t compact

 OS returns memory units that are too large

 Example: Client asks for 100 bytes: malloc(100)

 OS: Returns 125 byte chunk

 Fragmentation is *in* the allocated chunk

Memory is lost, and unaccounted for – can’t compact
November 20, 2018 TCSS422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma
L15.9

FRAGMENTATION - 2

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/25/2018

L15.4Slides by Wes J. Lloyd

 Request for 1 byte of memory: malloc(1)

 OS locates a free chunk to satisfy request

 Splits chunk into two, returns first chunk

November 20, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L15.10

ALLOCATION STRATEGY: SPLITTING

 Consider 30-byte heap

 Free() frees all 10 bytes segments (l ist of 3-free 10-byte chunks)

 Request arrives: malloc(30)

 SPLIT DOES NOT WORK - no contiguous 30-byte chunk exists!

 Coalescing regroups chunks into contiguous chunk

 Allocation can now proceed

 Coalescing is defragmentation of the free space list

November 20, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L15.11

ALLOCATION STRATEGY: COALESCING

 free(void *ptr): Does not require a size parameter

 How does the OS know how much memory to free?

 Header block

 Small descriptive block of memory at start of chunk

November 20, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L15.12

MEMORY HEADERS

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/25/2018

L15.5Slides by Wes J. Lloyd

 Contains size

 Pointers: for faster memory access

 Magic number: integrity checking

November 20, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L15.13

MEMORY HEADERS - 2

 Size of memory chunk is:

 Header size + user malloc size

 N bytes + sizeof(header)

 Easy to determine address of header

November 20, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L15.14

MEMORY HEADERS - 3

 Simple free list struct

 Use mmap to create free list

 4kb heap, 4 byte header, one contiguous free chunk

November 20, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L15.15

THE FREE LIST

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/25/2018

L15.6Slides by Wes J. Lloyd

 Create and initialize free-list “heap”

 Heap layout:

November 20, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L15.16

FREE LIST - 2

 Consider a request for a 100 bytes: malloc(100)

 Header block requires 8 bytes
 4 bytes for size, 4 bytes for magic number

 Split the heap – header goes with each block

November 20, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L15.17

FREE LIST: MALLOC() CALL

First block
is used

 Addresses of chunks

 Start=16384
+ 108 (end of 1st chunk)
+ 108 (end of 2nd chunk)
+ 108 (end of 3rd chunk)
= 16708

November 20, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L15.18

FREE LIST: FREE() CALL

Free this
block

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/25/2018

L15.7Slides by Wes J. Lloyd

 Free(sptr)

 Our 3 chunks start at 16 KB
(@ 16,384 bytes)

 Free chunk #2 - sptr

 Sptr = 16500
 addr – sizeof(node_t)

 Actual start of chunk #2
 16492

November 20, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L15.19

FREE LIST:
FREE() CHUNK #2

Block
Now Free

 Now free remaining chunks:

 Free(16392)
 Free(16608)

 Walk back 8 bytes for actual
start of chunk

 External fragmentation
 Free chunk pointers

out of order

 Coalescing of next
pointers is needed

November 20, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L15.20

FREE LIST- FREE ALL CHUNKS

 Start with small sized heap

 Request more memory when full

 sbrk(), brk()

November 20, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L15.21

GROWING THE HEAP

Segmented heap

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/25/2018

L15.8Slides by Wes J. Lloyd

 Best f it

 Traverse free list

 Identify all candidate free chunks

 Note which is smallest (has best fit)

When splitting, “leftover” pieces are small
(and potentially less useful -- fragmented)

 Worst f it

 Traverse free list

 Identify largest free chunk

 Split largest free chunk, leaving a still large free chunk

November 20, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L15.22

MEMORY ALLOCATION STRATEGIES

 Allocation request for 15 bytes

 Result of Best Fit

 Result of Worst Fit

November 20, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L15.23

EXAMPLES

 First f i t
 Start search at beginning of free list

 Find first chunk large enough for request

 Split chunk, returning a “fit” chunk, saving the remainder

 Avoids full free list traversal of best and worst fit

 Next f it
 Similar to first fit, but start search at last search location

 Maintain a pointer that “cycles” through the list

 Helps balance chunk distribution vs. first fit

 Find first chunk, that is large enough for the request, and split

 Avoids full free list traversal

November 20, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L15.24

MEMORY ALLOCATION STRATEGIES - 2

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/25/2018

L15.9Slides by Wes J. Lloyd

 For popular sized requests
e.g. for kernel objects such as locks, inodes, etc.

 Manage as segregated free lists

 Provide object caches: stores pre-initialized objects

 How much memory should be dedicated for specialized
requests (object caches)?

 If a given cache is low in memory, can request “slabs” of
memory from the general allocator for caches.

 General allocator will reclaim slabs when not used

November 20, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L15.25

SEGREGATED LISTS

 Binary buddy allocation
 Divides free space by two to find a block that is big enough to

accommodate the request; the next split is too small…

 Consider a 7KB request

November 20, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L15.26

BUDDY ALLOCATION

 Buddy allocation: suffers from internal fragmentation

 Allocated fragments, typically too large

 Coalescing is simple

 Two adjacent blocks are promoted up

November 20, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L15.27

BUDDY ALLOCATION - 2

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/25/2018

L15.10Slides by Wes J. Lloyd

CHAPTER 18:
INTRODUCTION TO

PAGING

November 20, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma L15.28

 Split up address space of process into fixed sized pieces
called pages

 Alternative to variable sized pieces (Segmentation) which
suffers from significant fragmentation

 Physical memory is split up into an array of fixed-size slots
called page frames.

 Each process has a page table which translates virtual
addresses to physical addresses

November 20, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L15.29

PAGING

 Flexibility

 Abstracts the process address space into pages

 No need to track direction of HEAP / STACK growth
 Just add more pages…

 No need to store unused space
 As with segments…

 Simplicity

 Pages and page frames are the same size

 Easy to allocate and keep a free list of pages

November 20, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L15.30

ADVANTAGES OF PAGING

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/25/2018

L15.11Slides by Wes J. Lloyd

 Consider a 128 byte address space
with 16-byte pages

 Consider a 64-byte program
address space

November 20, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L15.31

PAGING: EXAMPLE
Page Table:
VP0 PF3
VP1 PF7
VP2 PF5
VP3 PF2

 PAGE: Has two address components

 VPN: Virtual Page Number

 Offset: Offset within a Page

 Example:
Page Size: 16-bytes, Address Space: 64-bytes

November 20, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L15.32

PAGING: ADDRESS TRANSLATION

Here there are
just four pages…

 Consider a 64-byte program address space (4 pages)

 Stored in 128-byte physical memory (8 frames)

 Offset is preserved

 VPN is looked up

November 20, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L15.33

EXAMPLE:
PAGING ADDRESS TRANSLATION

Page Table:
VP0 PF3
VP1 PF7
VP2 PF5
VP3 PF2

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/25/2018

L15.12Slides by Wes J. Lloyd

 (1) Where are page tables stored?

 (2) What are the typical contents of the page table?

 (3) How big are page tables?

 (4) Does paging make the system too slow?

November 20, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L15.34

PAGING DESIGN QUESTIONS

 Example:

 Consider a 32-bit process address space (up to 4GB)

With 4 KB pages

 20 bits for VPN (220 pages)

 12 bits for the page offset (212 unique bytes in a page)

 Page tables for each process are stored in RAM

 Support potential storage of 220 translations
= 1,048,576 pages per process

 Each page has a page table entry size of 4 bytes

November 20, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L15.35

(1) WHERE ARE PAGE TABLES STORED?

 With 220 slots in our page table for a single process

 Each slot dereferences a VPN

 Provides physical frame number

 Each slot requires 4 bytes (32 bits)
 20 for the PFN on a 4GB system with 4KB pages
 12 for the offset which is preserved
 (note we have no status bits, so this is

unrealistically small)

 How much memory to store page table for 1 process?
 4,194,304 bytes (or 4MB) to index one process

November 20, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L15.36

PAGE TABLE EXAMPLE

VPN0

VPN1

VPN2

…

…

VPN1048576

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/25/2018

L15.13Slides by Wes J. Lloyd

 If 4 MB is required to store one process

 Consider how much memory is required for an entire OS?
 With for example 100 processes…

 Page table memory requirement is now 4MB x 100 = 400MB

 If computer has 4GB memory (maximum for 32-bits),
the page table consumes 10% of memory

400 MB / 4000 GB

 Is this ef ficient?

November 20, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L15.37

NOW FOR AN ENTIRE OS

 Page table is data structure used to map virtual page
numbers (VPN) to the physical address (Physical Frame
Number PFN)

 Linear page table simple array

 Page-table entry

 32 bits for capturing state

November 20, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L15.38

(2) WHAT’S ACTUALLY IN THE PAGE TABLE

 P: present

 R/W: read/write bit

 U/S: supervisor

 A: accessed bit

 D: dir ty bit

 PFN: the page frame number

November 20, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L15.39

PAGE TABLE ENTRY

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/25/2018

L15.14Slides by Wes J. Lloyd

 Common flags:

 Val id Bit : Indicating whether the particular translation is valid.

 Protection Bit: Indicating whether the page could be read
from, written to, or executed from

 Present Bit: Indicating whether this page is in physical
memory or on disk(swapped out)

 Dir ty Bit : Indicating whether the page has been modified since
it was brought into memory

 Reference Bit(Accessed Bit): Indicating that a page has been
accessed

November 20, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L15.40

PAGE TABLE ENTRY - 2

 Page tables are too big to store on the CPU

 Page tables are stored using physical memory

 Paging supports efficiently storing a sparsely populated
address space

 Reduced memory requirement
Compared to base and bounds, and segments

November 20, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L15.41

(3) HOW BIG ARE PAGE TABLES?

 Translation

 Issue #1: Starting location of the page table is
needed
HW Support: Page-table base register
 stores active process
 Facilitates translation

 Issue #2: Each memory address translation for paging
requires an extra memory reference
HW Support: TLBs (Chapter 19)

November 20, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L15.42

(4) DOES PAGING MAKE
THE SYSTEM TOO SLOW?

Page Table:
VP0 PF3
VP1 PF7
VP2 PF5
VP3 PF2

Stored in RAM

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/25/2018

L15.15Slides by Wes J. Lloyd

1. // Extract the VPN from the virtual address

2. VPN = (VirtualAddress & VPN_MASK) >> SHIFT

3.

4. // Form the address of the page-table entry (PTE)

5. PTEAddr = PTBR + (VPN * sizeof(PTE))

6.

7. // Fetch the PTE

8. PTE = AccessMemory(PTEAddr)

9.

10. // Check if process can access the page

11. if (PTE.Valid == False)

12. RaiseException(SEGMENTATION_FAULT)

13. else if (CanAccess(PTE.ProtectBits) == False)

14. RaiseException(PROTECTION_FAULT)

15. else

16. // Access is OK: form physical address and fetch it

17. offset = VirtualAddress & OFFSET_MASK

18. PhysAddr = (PTE.PFN << PFN_SHIFT) | offset

19. Register = AccessMemory(PhysAddr)

November 20, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L15.43

PAGING MEMORY ACCESS

QUESTIONS

