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TCSS 422: OPERATING SYSTEMS

 How to kill all child threads with a 
pthread_cond_broadcast() ?

 At end of the program, some threads (producers or 
consumers) may be asleep waiting on a signal.

 For consumers, there are no more matrices being 
produced, so there is no signal for “consumption”

 Need some way to shutdown/end the program

 Can leverage when producer threads finish their work

 Producers last “signal” can be a “broadcast” to awaken
all consumers to evaluate special “end of program” state 
variable.
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 Program 2
 Program 3

 Memory Virtualization
 Chapter 14 – The Memory API
 Chapter 15 – Address Translation

 Segments
 Chapter 16 – Segmentation
 Chapter 17 – Free Space Management

 Paging
 Chapter 18 – Introduction to Paging
 Chapter 19 – Translation Lookaside Buffer 
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OBJECTIVES

CHAPTER 14: THE 
MEMORY API
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 Allocates memory on the heap

 size_t unsigned integer (must be +)

 size size of memory allocation in bytes

 Returns

 SUCCESS: A void * to a memory address

 FAIL: NULL

 sizeof() often used to ask the system how large a given 
datatype or struct is
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MALLOC

 Not safe to assume 
data type sizes using 
different compilers, 
systems

 Dynamic array of 10 ints

 Static array of 10 ints
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SIZEOF()
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 Free memory allocated with malloc()

 Provide: (void *) ptr to malloc’d memory

 Returns: nothing
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FREE()

8

#include<stdio.h>

int * set_magic_number_a()
{

int a =53247; 
return &a;

}

void set_magic_number_b() 
{

int b = 11111;
}

int main()
{

int * x = NULL;
x = set_magic_number_a();
printf("The magic number is=%d\n“,*x);
set_magic_number_b();
printf(“The magic number is=%d\n“,*x);
return 0;

}

What will this code do?
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9

#include<stdio.h>

int * set_magic_number_a()
{

int a =53247; 
return &a;

}

void set_magic_number_b() 
{

int b = 11111;
}

int main()
{

int * x = NULL;
x = set_magic_number_a();
printf("The magic number is=%d\n“,*x);
set_magic_number_b();
printf("The magic number is=%d\n“,*x);
return 0;

}

Output:
$ ./pointer_error
The magic number is=53247
The magic number is=11111

What will this code do?

We have not changed *x but 
the value has changed!!

Why?

 Dangling pointers arise when a variable referred (a) goes 
“out of scope”, and it’s memory is destroyed/overwritten
(by b) without modifying the value of the pointer (*x).

 The pointer still points to the original memory location 
of the deallocated memory (a), 
which has now been reclaimed for (b).

DANGLING POINTER (1/2)
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Fortunately in the case, a compiler warning 
is generated:

$ g++ -o pointer_error -std=c++0x pointer_error.cpp

pointer_error.cpp: In function ‘int* 
set_magic_number_a()’:

pointer_error.cpp:6:7: warning: address of local 
variable ‘a’ returned [enabled by default]

This is a common mistake - - -
accidentally referring to addresses that have 
gone “out of scope”  

DANGLING POINTER (2/2)
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 Allocate “C”lear memory on the heap

 Calloc wipes memory in advance of use…
 size_t num :  number of blocks to allocate

 size_t size :  size of each block(in bytes)

 Calloc() prevents…

November 19, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma
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CALLOC()

char *dest = malloc(20);
printf("dest string=%s\n", dest);

dest string=��F
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 Resize an existing memory allocation

 Returned pointer may be same address, or a new address
 New if memory allocation must move

 void *ptr: Pointer to memory block allocated with malloc, 
calloc, or realloc

 size_t size: New size for the memory block(in bytes)

 EXAMPLE: realloc.c
 EXAMPLE: nom.c

November 19, 2018 TCSS422: Operating Systems [Fall 2018]
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REALLOC()

 Can’t deallocate twice

 Second call  core dumps
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DOUBLE FREE
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brk(), sbrk()

 Used to change data segment size (the end of the heap)

 Don’t use these

Mmap(), munmap()

 Can be used to create an extra independent “heap” of memory 
for a user program

 See man page

November 19, 2018 TCSS422: Operating Systems [Fall 2018]
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SYSTEM CALLS

CHAPTER 15: ADDRESS
TRANSLATION

November 19, 2018
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 Address translation

 Base and bounds

 HW and OS Support

 Memory segments

 Memory fragmentation

November 19, 2018 TCSS422: Operating Systems [Fall 2018]
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OBJECTIVES

 64KB 
Address space
example

 Translation:
mapping 
vir tual to
physical

November 19, 2018 TCSS422: Operating Systems [Fall 2018]
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ADDRESS TRANSLATION

Virtual mapping

Address Space
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 Dynamic relocation

 Two registers base & bounds: on the CPU

 OS places program in memory

 Sets base register

 Bounds register
 Stores size of program address space (16KB)

 OS verifies that every address:
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BASE AND BOUNDS

0 ≤  𝑣𝑖𝑟𝑡𝑢𝑎𝑙 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 < 𝑏𝑜𝑢𝑛𝑑𝑠

 Base = 32768

 Bounds =16384

 Fetch instruction at 128 (vir t addr) ↑
 Phy addr = virt addr + base reg

 32896 = 128 + 32768 (base)

 Execute instruction
 Load from address (var x is @ 15kb=15360)

 48128 = 15360 + 32768 (base)  -- found x…

 Bounds register: terminate process if
 ACCESS VIOLATION: Virtual address > bounds reg

November 19, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma
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INSTRUCTION EXAMPLE

Int x
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 MMU
 Portion of the CPU dedicated to address translation

 Contains base & bounds registers 

 Base & Bounds Example:
 Consider address translation

 4 KB (4096 bytes) address space, loaded at 16 KB physical location

November 19, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma
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MEMORY MANAGEMENT UNIT

Virtual Address Physical Address

0 16384

1024 17408

3000 19384

4400 20784 (out of bounds)FAULT

November 19, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma
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DYNAMIC RELOCATION OF PROGRAMS

 Hardware requirements:

Requirements HW support

Privileged mode CPU modes: kernel, user

Base / bounds registers Registers to support address translation

Translate virtual addr; check if in 
bounds

Translation circuitry, check limits

Privileged instruction(s) to
update base / bounds regs

Instructions for modifying base/bound 
registers

Privileged instruction(s) 
to register exception handlers

Set code pointers to OS code to handle faults

Ability to raise exceptions For out-of-bounds memory access, or
attempts to access privileged instr.
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 For base and bounds OS support required

When process starts running
 Allocate address space in physical memory

When a process is terminated
 Reclaiming memory for use

When context switch occurs
 Saving and storing the base-bounds pair

 Exception handlers
 Function pointers set at OS boot time

November 19, 2018 TCSS422: Operating Systems [Fall 2018]
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OS SUPPORT FOR MEMORY 
VIRTUALIZATION

 OS searches for free space for new process
 Free list: data structure that tracks available memory slots

November 19, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma
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OS: WHEN PROCESS STARTS RUNNING
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 OS places memory back on the free l ist

November 19, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma
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OS: WHEN PROCESS IS TERMINATED

 OS must save base and bounds registers
 Saved to the Process Control Block PCB (task_struct in Linux)

November 19, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L14.26

OS: WHEN CONTEXT SWITCH OCCURS
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 OS can move process data when not running

1. OS deschedules process from scheduler

2. OS copies address space from current to new location

3. OS updates PCB (base and bounds registers)

4. OS reschedules process

 When process runs new base register is restored to CPU

 Process doesn’t know it  was even moved!

November 19, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma
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DYNAMIC RELOCATION

CHAPTER 16: 
SEGMENTATION

November 19, 2018
TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma L14.28
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 Address space 

 Contains significant unused memory

 Is relatively large
 Preallocates space to handle stack/heap growth

 Large address spaces
 Hard to fit in memory

 How can these issues be addressed?

November 19, 2018 TCSS422: Operating Systems [Fall 2018]
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BASE AND BOUNDS INEFFICIENCIES

Memory segmentation

Address space has (3) segments

Contiguous portions of address space 

Logically separate segments for: code, stack, heap

Each segment can placed separately

 Track base and bounds for each segment 
(registers)

November 19, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma
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MULTIPLE SEGMENTS
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 Consider 3 segments:

November 19, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma
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SEGMENTS IN MEMORY

Much smaller

Virtual Address Space Physical Address Space

 Code segment - physically star ts at 32KB (base)

 Starts at “0” in vir tual address space

November 19, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma L14.32

ADDRESS TRANSLATION: CODE SEGMENT

Bounds check:
Is virtual address within 2KB 

address space?
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 Heap starts at vir tual address 4096

 The data is at 4200

 Offset= 4200 – 4096 = 104   (vir t addr – virt heap star t)

 Physical address = 104 + 34816  (of fset + heap base)

November 19, 2018 TCSS422: Operating Systems [Fall 2018]
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ADDRESS TRANSLATION: HEAP

𝑽𝒊𝒓𝒕𝒖𝒂𝒍 𝒂𝒅𝒅𝒓𝒆𝒔𝒔 + 𝒃𝒂𝒔𝒆 is not the correct physical address.

 Access beyond the address space

 Heap starts at virtual address: 4096

 Data pointer is to 7KB (7168)

 Is data pointer valid?

 Heap starts at 4096 + 2 KB seg size = 6144

 Offset= 7168 > 4096 + 2048 (6144)

November 19, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma
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SEGMENTATION FAULT
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 Used to dereference memory during translation

 First two bits identify segment type

 Remaining bits identify memory offset 

 Example: vir tual heap address 4200 (01000001101000)

November 19, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma
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SEGMENT REGISTERS

 VIRTUAL ADDRESS = 01000001101000                     (on heap)
 SEG_MASK = 0x3000 (11000000000000)
 SEG_SHIFT = 01  heap            (mask gives us segment code)
 OFFSET_MASK = 0xFFF (00111111111111)
 OFFSET = 000001101000 = 104        (isolates segment offset)
 OFFSET < BOUNDS :  104 < 2048

November 19, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma
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SEGMENTATION DEREFERENCE
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Stack grows backwards (FILO)

Requires hardware support:

Direction bit: tracks direction segment grows

November 19, 2018 TCSS422: Operating Systems [Fall 2018]
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STACK SEGMENT

 Code sharing: enabled with HW support

 Supports storing shared libraries in memory only once

 DLL: dynamic l inked l ibrary 

 .so (l inux): shraed object in Linux (under /usr/lib)

 Many programs can access them

 Protection bits: track permissions to segment

November 19, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma
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SHARED CODE SEGMENTS
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Coarse-grained

Manage memory as large purpose
based segments:

Code segment

Heap segment

Stack segment

November 19, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma
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SEGMENTATION GRANULARITY

 Fine-grained

 Manage memory as list of segments

 Code, heap, stack segments composed
of multiple smaller segments

 Segment table

 On early systems

 Stored in memory

 Tracked large number of segments

November 19, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma
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SEGMENTATION GRANULARITY - 2
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 Consider how much free space?

 We’ll  say about 24 KB

 Request arrives to allocate a 20 KB heap
segment

 Can we fulfil  the request for 20 KB of
contiguous memory?

November 19, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma
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MEMORY FRAGMENTATION

 Supports rearranging memory

 Can we fulfil  the request for 20 KB of 
contiguous memory?

 Drawback: Compaction is slow
 Rearranging memory is time consuming

 64KB is fast

 4GB+ … slow

 Algorithms: 
 Best fit: keep list of free spaces, allocate the

most snug segment for the request

 Others: worst fit, first fit… (in future chapters)

November 19, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma
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COMPACTION
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CHAPTER 17: FREE 
SPACE MANAGEMENT

November 19, 2018
TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma L14.43

 Management of memory using

 Only fixed-sized units

 Easy: keep a list

Memory request  return first free entry
 Simple search

 With variable sized units

More challenging

 Results from variable sized malloc requests

 Leads to fragmentation

November 19, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma
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FREE SPACE MANAGEMENT
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 Consider a 30-byte heap

 Request for 15-bytes

 Free space: 20 bytes

 No available contiguous chunk  return NULL

November 19, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma
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FRAGMENTATION

 External: OS can compact

 Example: Client asks for 100 bytes:  malloc(100)

 OS: No 100 byte contiguous chunk is available:
returns NULL

Memory is externally fragmented - - Compaction can fix!

 Internal: lost space – OS can’t compact

 OS returns memory units that are too large

 Example:  Client asks for 100 bytes:  malloc(100)

 OS: Returns 125 byte chunk

 Fragmentation is *in* the allocated chunk

Memory is lost, and unaccounted for – can’t compact
November 19, 2018 TCSS422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma
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FRAGMENTATION - 2
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 Request for 1 byte of memory:  malloc(1)

 OS locates a free chunk to satisfy request

 Splits chunk into two, returns first chunk

November 19, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma
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ALLOCATION STRATEGY: SPLITTING

 Consider 30-byte heap

 Free() frees all 10 bytes segments  ( l ist of  3-free 10-byte chunks)

 Request arrives:  malloc(30)

 SPLIT DOES NOT WORK - no contiguous 30-byte chunk exists!

 Coalescing regroups chunks into contiguous chunk

 Allocation can now proceed

 Coalescing is defragmentation of the free space l ist

November 19, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma
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ALLOCATION STRATEGY: COALESCING
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 free(void *ptr): Does not require a size parameter

 How does the OS know how much memory to free?

 Header block

 Small descriptive block of memory at start of chunk

November 19, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma
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MEMORY HEADERS

 Contains size

 Pointers: for faster memory access

 Magic number: integrity checking

November 19, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma
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MEMORY HEADERS - 2
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 Size of memory chunk is:

 Header size + user malloc size

 N bytes + sizeof(header)

 Easy to determine address of header

November 19, 2018 TCSS422: Operating Systems [Fall 2018]
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MEMORY HEADERS - 3

 Simple free list struct

 Use mmap to create free l ist

 4kb heap, 4 byte header, one contiguous free chunk

November 19, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma
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THE FREE LIST
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 Create and initialize free-l ist “heap”

 Heap layout:

November 19, 2018 TCSS422: Operating Systems [Fall 2018]
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L14.53

FREE LIST - 2

 Consider a request for a 100 bytes:   malloc(100)

 Header block requires 8 bytes 
 4 bytes for size, 4 bytes for magic number

 Split  the heap – header goes with each block

November 19, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma
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FREE LIST:  MALLOC() CALL

First block
is used
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 Addresses of chunks

 Start=16384 
+ 108 (end of 1st chunk)
+ 108 (end of 2nd chunk)
+ 108 (end of 3rd chunk)
= 16708

November 19, 2018 TCSS422: Operating Systems [Fall 2018]
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FREE LIST: FREE() CALL

Free this
block

 Free(sptr)

 Our 3 chunks start at 16 KB
(@ 16,384 bytes)

 Free chunk #2 - sptr

 Sptr = 16500
 addr – sizeof(node_t)

 Actual start of chunk #2
 16492

November 19, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma
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FREE LIST: 
FREE() CHUNK #2

Block
Now Free
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 Now free remaining chunks:

 Free(16392)
 Free(16608)

 Walk back 8 bytes for  actual 
star t of chunk

 External fragmentation
 Free chunk pointers 

out of order

 Coalescing of next 
pointers is needed

November 19, 2018 TCSS422: Operating Systems [Fall 2018]
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FREE LIST- FREE ALL CHUNKS

 Start with small sized heap

 Request more memory when full

 sbrk(), brk()

November 19, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma
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GROWING THE HEAP

Segmented heap
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 Best fit

 Traverse free list

 Identify all candidate free chunks

 Note which is smallest (has best fit)

When splitting, “leftover” pieces are small 
(and potentially less useful  -- fragmented)

 Worst fit

 Traverse free list

 Identify largest free chunk

 Split largest free chunk, leaving a still large free chunk

November 19, 2018 TCSS422: Operating Systems [Fall 2018]
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MEMORY ALLOCATION STRATEGIES

 Allocation request for 15 bytes

 Result of Best Fit

 Result of Worst Fit

November 19, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma
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EXAMPLES



TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/18/2018

L14.31Slides by Wes J. Lloyd

 First fit
 Start search at beginning of free list

 Find first chunk large enough for request

 Split chunk, returning a “fit” chunk, saving the remainder

 Avoids full free list traversal of best and worst fit

 Next fit
 Similar to first fit, but start search at last search location

 Maintain a pointer that “cycles” through the list 

 Helps balance chunk distribution vs. first fit

 Find first chunk, that is large enough for the request, and split

 Avoids full free list traversal
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MEMORY ALLOCATION STRATEGIES - 2

 For popular sized requests 
e.g. for kernel objects such as locks, inodes, etc.

 Manage as segregated free lists 

 Provide object caches: stores pre-initialized objects

 How much memory should be dedicated for specialized 
requests (object caches)?

 If a given cache is low in memory, can request “slabs” of 
memory from the general allocator for caches.

 General allocator will  reclaim slabs when not used
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SEGREGATED LISTS
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 Binary buddy allocation
 Divides free space by two to find a block that is big enough to 

accommodate the request; the next split is too small…

 Consider a 7KB request
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BUDDY ALLOCATION

 Buddy allocation: suffers from internal fragmentation

 Allocated fragments, typically too large

 Coalescing is simple

 Two adjacent blocks are promoted up
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BUDDY ALLOCATION - 2
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CHAPTER 18:
INTRODUCTION TO

PAGING
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 Split  up address space of process into f ixed sized pieces
called pages

 Alternative to variable sized pieces (Segmentation) which 
suffers from significant fragmentation

 Physical memory is split up into an array of fixed-size slots 
called page frames.

 Each process has a page table which translates vir tual 
addresses to physical addresses
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PAGING
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 Flexibility

 Abstracts the process address space into pages

 No need to track direction of HEAP / STACK growth
 Just add more pages…

 No need to store unused space 
 As with segments…

 Simplicity

 Pages and page frames are the same size

 Easy to allocate and keep a free list of pages

November 19, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L14.67

ADVANTAGES OF PAGING

 Consider a 128 byte address space 
with 16-byte pages  

 Consider a 64-byte program
address space
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PAGING: EXAMPLE
Page Table:
VP0  PF3
VP1  PF7
VP2  PF5
VP3  PF2
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 PAGE: Has two address components

 VPN: Virtual Page Number

 Offset: Offset within a Page

 Example: 
Page Size: 16-bytes, Address Space: 64-bytes
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PAGING: ADDRESS TRANSLATION

Here there are
just four pages…

 Consider a 64-byte program address space (4 pages)

 Stored in 128-byte physical memory (8 frames)

 Offset is preserved

 VPN is looked up
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EXAMPLE:
PAGING ADDRESS TRANSLATION 

Page Table:
VP0  PF3
VP1  PF7
VP2  PF5
VP3  PF2
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 (1) Where are page tables stored?

 (2) What are the typical contents of the page table?

 (3) How big are page tables?

 (4) Does paging make the system too slow?
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PAGING DESIGN QUESTIONS

 Example:

 Consider a 32-bit process address space (up to 4GB)

With 4 KB pages

 20 bits for VPN (220 pages)

 12 bits for the page offset (212 unique bytes in a page)

 Page tables for each process are stored in RAM

 Support potential storage of 220 translations 
= 1,048,576 pages per process

 Each page has a page table entry size of 4 bytes
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(1) WHERE ARE PAGE TABLES STORED?
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 With 220 slots in our page table for a single process

 Each slot dereferences a VPN

 Provides physical frame number

 Each slot requires 4 bytes (32 bits)
 20 for the PFN on a 4GB system with 4KB pages
 12 for the offset which is preserved
 (note we have no status bits, so this is 

unrealistically small)

 How much memory to store page table for 1 process?
 4,194,304 bytes (or 4MB) to index one process
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PAGE TABLE EXAMPLE

VPN0

VPN1

VPN2

…

…

VPN1048576

 If 4 MB is required to store one process

 Consider how much memory is required for an entire OS?
 With for example 100 processes…

 Page table memory requirement is now 4MB x 100 = 400MB

 If computer has 4GB memory (maximum for 32-bits), 
the page table consumes 10% of memory

400 MB / 4000 GB

 Is this ef ficient?
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NOW FOR AN ENTIRE OS
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 Page table is data structure used to map virtual page 
numbers (VPN) to the physical address (Physical Frame 
Number PFN)

 Linear page table  simple array

 Page-table entry

 32 bits for capturing state
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(2) WHAT’S ACTUALLY IN THE PAGE TABLE

 P: present

 R/W: read/write bit

 U/S: supervisor

 A: accessed bit

 D: dirty bit

 PFN: the page frame number
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PAGE TABLE ENTRY
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 Common flags:

 Valid Bit : Indicating whether the particular translation is valid.

 Protection Bit: Indicating whether the page could be read 
from, written to, or executed from

 Present Bit: Indicating whether this page is in physical 
memory or on disk(swapped out)

 Dirty Bit: Indicating whether the page has been modified since 
it was brought into memory

 Reference Bit(Accessed Bit): Indicating that a page has been 
accessed
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PAGE TABLE ENTRY - 2

 Page tables are too big to store on the CPU

 Page tables are stored using physical memory

 Paging supports efficiently storing a sparsely populated 
address space

 Reduced memory requirement
Compared to base and bounds, and segments
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(3) HOW BIG ARE PAGE TABLES?
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 Translation

 Issue #1: Starting location of the page table is 
needed
HW Support: Page-table base register
 stores active process 
 Facilitates translation

 Issue #2: Each memory address translation for paging 
requires an extra memory reference
HW Support: TLBs (Chapter 19)
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(4) DOES PAGING MAKE 
THE SYSTEM TOO SLOW?

Page Table:
VP0  PF3
VP1  PF7
VP2  PF5
VP3  PF2

Stored in RAM 

1. // Extract the VPN from the virtual address 

2. VPN = (VirtualAddress & VPN_MASK) >> SHIFT 

3.

4. // Form the address of the page-table entry (PTE) 

5. PTEAddr = PTBR + (VPN * sizeof(PTE)) 

6.

7. // Fetch the PTE 

8. PTE = AccessMemory(PTEAddr) 

9.

10. // Check if process can access the page 

11. if (PTE.Valid == False) 

12. RaiseException(SEGMENTATION_FAULT) 

13. else if (CanAccess(PTE.ProtectBits) == False) 

14. RaiseException(PROTECTION_FAULT) 

15. else

16. // Access is OK: form physical address and fetch it 

17. offset = VirtualAddress & OFFSET_MASK 

18. PhysAddr = (PTE.PFN << PFN_SHIFT) | offset 

19. Register = AccessMemory(PhysAddr)
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PAGING MEMORY ACCESS
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 Example: Use this Array initialization Code

 Assembly equivalent:
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COUNTING MEMORY ACCESSES

 Locations:
 Page table

 Array

 Code

 50 accesses
for 5 loop 
iterations
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VISUALIZING MEMORY ACCESSES:
FOR THE FIRST 5 LOOP ITERATIONS
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 Consider a 4GB Computer:

 With a 4096-byte page size (4KB)

 How many pages would fit in physical memory?

 Now consider a page table:

 For the page table entry, how many bits are required for the 
VPN?

 If we assume the use of 4-byte (32 bit) page table entries, 
how many bits are available for status bits?

 How much space does this page table require?  
Page Table Entries x Number of pages

 How many page tables (for user processes) 
would fi ll  the entire 4GB of memory?
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PAGING SYSTEM EXAMPLE

CHAPTER 19:
TRANSLATION 

LOOKASIDE BUFFER 
(TLB)
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Chapter 19

TLB Algorithm

TLB Tradeoffs

TLB Context Switch
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OBJECTIVES

 Legacy name…

Better name, “Address Translation Cache”

 TLB is an on CPU cache of address translations

virtual  physical memory
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TRANSLATION LOOKASIDE BUFFER
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 Goal:
Reduce access
to the page
tables

 Example:
50 RAM accesses
for first 5 for-loop 
iterations

 Move lookups
from RAM to TLB 
by caching page
table entries
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TRANSLATION LOOKASIDE BUFFER - 2

 Part of the CPU’s Memory Management Unit (MMU)

 Address translation cache
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TRANSLATION LOOKASIDE BUFFER (TLB)
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 Part of the CPU’s Memory Management Unit (MMU)

 Address translation cache
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TRANSLATION LOOKASIDE BUFFER (TLB)

The TLB is an address translation cache
Different than L1, L2, L3 CPU memory caches

 For: array based page table

 Hardware managed TLB
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TLB BASIC ALGORITHM

Extract the virtual page numberCheck if the TLB holds the translation for the VPNExtract page frame number from TLBGenerate the physical address to access memory
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November 19, 2018 TCSS422: Operating Systems [Fall 2018]
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TLB BASIC ALGORITHM - 2

If TLB miss, access the pg table (in RAM) to find address translationUpdate the TLB with the translationRetry the instruction… (requery the TLB)

Key detail:

 For a TLB miss, we first access the page table in RAM to 
populate the TLB… we then requery the TLB

 All address translations go through the TLB
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TLB – ADDRESS TRANSLATION CACHE
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 Example:

 Program address space: 256-byte
 Addressable using 8 total bits  (28)

 4 bits for the VPN (16 total pages)

 Page size: 16 bytes
 Offset is addressable using 4-bits

 Store an array: of (10) 4-byte integers
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TLB EXAMPLE

 Consider the code above:

 Init ially the TLB does not know where a[] is

 Consider the accesses:

 a[0], a[1], a[2], a[3], a[4], a[5], a[6], a[7],
a[8], a[9]

 How many pages are accessed?

 What happens when accessing a page not 
in the TLB?
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TLB EXAMPLE - 2
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 For the accesses: a[0], a[1], a[2], a[3], a[4], 

 a[5], a[6], a[7], a[8], a[9]

 How many are hits?

 How many are misses?

 What is the hit rate? (%)
 70% (3 misses one for each VP, 7 hits)
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TLB EXAMPLE - 3

 What factors affect the hit/miss rate?

 Page size

 Data locality

 Temporal locality
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TLB EXAMPLE - 4
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QUESTIONS


