TCSS 422 A - Fall 2018
School of Engineering and Technology,

TCSS 422: OPERATING SYSTEMS
| |

Memory Virtualization,
Segmentation,
Memory Paging

Wes J. Lloyd
School of Engineering and Technology,
University of Washington - Tacoma

TCSS422: Operating Systems [Fall 2018]

il) 20 School of Engineering and Technology, University of Washington [fl Tacoma

11/18/2018

FEEDBACK FROM 11/14

= How to Kill all child threads with a
pthread_cond_broadcast() ?

= At end of the program, some threads (producers or
consumers) may be asleep waiting on a signal.

= For consumers, there are no more matrices being
produced, so there is no signal for “consumption”

= Need some way to shutdown/end the program
= Can leverage when producer threads finish their work

= Producers last “signal” can be a “broadcast” to awaken
all consumers to evaluate special “end of program” state
variable.

November 19, 2018 TCS3422: Operating Systems [Fall 2018]
School of

4.
Technology, University ington - Tacoma | L4

OBJECTIVES

= Program 2
= Program 3

= Memory Virtualization
= Chapter 14 - The Memory API

= Chapter 15 - Address Translation

= Segments
= Chapter 16 - Segmentation
= Chapter 17 - Free Space Management

= Paging
= Chapter 18 - Introduction to Paging

= Chapter 19 - Translation Lookaside Buffer

TCS5422: Operating Systems [Fall 2018]
School of Engineeri

4.
Technology, University ington - Tacoma | La3

November 19, 2018

Slides by Wes J. Lloyd

L14.1

TCSS 422 A - Fall 2018 11/18/2018
School of Engineering and Technology,

CHAPTER 14: THE

MEMORY API

TCSS422: Operating Systems [Fall 2018]

I Ty 1 20 School of Engineering and Technology, University of Washington -

MALLOC

#include <stdlib.h>

void* malloc(size t size)

= Allocates memory on the heap
= size_t unsigned integer (must be +)
= size size of memory allocation in bytes

= Returns
= SUCCESS: A void * to a memory address
= FAIL: NULL

= sizeof() often used to ask the system how large a given
datatype or struct is

November 19, 2018

TCS5422: Operating Systems [Fall 2018] as
School of Engineeri Technology, University i Tacoma i

SIZEOF()

= Not safe to assume
data type sizes using

int *x = malloc(10 * sizeof (int)):
printf (“$d\n”, sizeof(x));

different compilers, | 4 \
systems
= Dynamic array of 10 iny int x[10]; ‘
printf (“%d\n”, sizeof(x));
= Static array of 10 ints [e \

TCS5422: Operating Systems [Fall 2018] as
School of Engineeri Technology, University i Tacoma i

November 19, 2018

Slides by Wes J. Lloyd L14.2

TCSS 422 A - Fall 2018
School of Engineering and Technology,

FREE()

#include <stdlib.h>

void free(void* ptr)

= Free memory allocated with malloc()
= Provide: (void *) ptr to malloc’d memory

= Returns: nothing

11/18/2018

November 19, 2018 TCS5422: Operating Systems [Fall 2018]
School of

Technology, University i Tacoma

[s

#include<stdio.h>

int * set_magic_number_aQ)

int a =53247;
return &a;

void set_magic_number_b()

int b = 11111;

int main()

int ¥ X = NULL;

X = set_magic_number_a();

printf("The magic number is=%d\n“,*x);
set_magic_number_b();

printf(“The magic number is=%d\n“,*x);
return 0;

What will this code do?

#include<stdio.h>

int * set_magic_number_a()

int a =53247;

What will this code do?

void set_magic_number_b()

int b = 11111;

int mainQ)

int * X = NULL;
x = set_magic_number_a()

set_magic_number_b(Q);

return 0;

return &a; Output:
}

$./pointer_error
The magic number is=53247
The magic number is=11111

We have not changed *x but
the value has changed!!

Why?

printf("The magic numberlis=%d\n",*x);

printf("The magic number is=%d\n“,*x);

Slides by Wes J. Lloyd

L14.3

TCSS 422 A — Fall 2018
School of Engineering and Technology,

DANGLING POINTER (1/2)

= Dangling pointers arise when a variable referred (a) goes
“out of scope”, and it’s memory is destroyed/overwritten
(by b) without modifying the value of the pointer (*x).

= The pointer still points to the original memory location
of the deallocated memory (a),
which has now been reclaimed for (b).

TCS5422: Operating Systems [Fall 2018] 4.0

il e 2 AT o T B o e s oy Tt A T T

11/18/2018

DANGLING POINTER (2/2)

mFortunately in the case, a compiler warning
is generated:

$ g++ -o pointer_error -std=c++0x pointer_error.cpp

pointer_error.cpp: In function ‘int¥*
set_magic_number_a()’:

pointer_error.cpp:6:7: warning: address of local
variable ‘a’ returned [enabled by default]

=This is a common mistake - - -
accidentally referring to addresses that have

gone “out of scope”

TCSS422: Operating Systems [Fall 2018]
| e | e oolol Enpinearins ardlTechiolo syl e ity Ve hinetonETecoms

411

CALLOC()

#include <stdlib.h>

void *calloc(size_t num, size_t size)

= Allocate “C”lear memory on the heap

= Calloc wipes memory in advance of use...

" size_t num : number of blocks to allocate
" size_t size:size of each block(in bytes)

= Calloc() prevents...

char *dest = malloc(20);
printf("dest string=%s\n", dest);

dest string=@@F

TCSS422: Operating Systems [Fall 2018]

sl e 2 | Seoo[of Enginearing andiechiiolosylU nversity Ve hington S Tecoms a1z

Slides by Wes J. Lloyd

L14.4

TCSS 422 A — Fall 2018
School of Engineering and Technology,

REALLOC()

#include <stdlib.h>

void *realloc(void *ptr, size t size)

= Resize an existing memory allocation

= Returned pointer may be same address, or a new address
= New if memory allocation must move

" void *ptr: Pointer to memory block allocated with malloc,
calloc, or realloc
" size_t size: New size for the memory block(in bytes)

= EXAMPLE: realloc.c
= EXAMPLE: nom.c

11/18/2018

TCS5422: Operating Systems [Fall 2018]

il e 2 AT o T B o e s oy Tt A T T

114.13

DOUBLE FREE

int *x = (int *)malloc(sizeof(int)); allocate:
free(x); / 0
free (x); ree

e

= Can’t deallocate twice
= Second call core dumps

B T N 28 Fread
l Heap | | i Heap
i free(x) free (x)
(free) | — (free) —
T sack | | T Stack
_— e R e | 2KBGnvalid) %
Address Space Address Space

TCS5422: Operating Systems [Fall 2018]

14
School of Engineering and Technology, University of Washington - Tacoma L4

November 19, 2018 |

SYSTEM CALLS

= brk(), shrk()

= Used to change data segment size (the end of the heap)
= Don’t use these

=" Mmap(), munmap()

= Can be used to create an extra independent “heap” of memory
for a user program

= See man page

TCSS422: Operating Systems [Fall 2018]

sl e 2 Seoo[of Enginearing andiechiiolosylU nversity Ve hington S Tecoms

14.15

Slides by Wes J. Lloyd

L14.5

TCSS 422 A — Fall 2018

School of Engineering and Technology,

November 19, 2018

TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington -

CHAPTER 15: ADDRESS

TRANSLATION

11/18/2018

= Address translation

= Base and bounds

= HW and OS Support

= Memory segments

OBJECTIVES

= Memory fragmentation

November 19, 2018

TCS5422: Operating Systems [Fall 2018]
School of Engineeri

Technology, University

Tacoma

14.17

Virtual mappin,
= 64KB oke i
Address space Program Code | ™
example
Heap
= Translation:
mapping l
virtual to heap
physical oo
stack
Stack
16KB

Address Space ’

0KB.

16KB

32(8™

48KB..

ADDRESS TRANSLATION

Operating System

(not in use)

Code

Heap
¥

(allocated
but not in use)

Stack

(not in use)

8
Physical Memory

Relocated Process

November 19, 2018

TCS5422: Operating Systems [Fall 2018]
School of Engineeri

Technology, University

Tacoma

14.18

Slides by Wes J. Lloyd

L14.6

TCSS 422 A — Fall 2018
School of Engineering and Technology,

BASE AND BOUNDS

= Dynamic relocation

= Two registers base & bounds: on the CPU
= 0S places program in memory

= Sets base register

N

[physical address = virtual address + base

= Bounds register
= Stores size of program address space (16KB)
= OS verifies that every address:

[0 < virtual address < bounds J

11/18/2018

November 19, 2018 | TCS5422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma

14.19

INSTRUCTION EXAMPLE

128 : movl 0xO(bebx), %eax ‘

= Base = 32768
= Bounds =16384
= Fetch instruction at 128 (virt addr) 1
= Phy addr = virt addr + base reg
= 32896 = 128 + 32768 (base)
= Execute instruction
= Load from address (var x is @ 15kb=15360)
= 48128 = 15360 + 32768 (base) -- found x...
= Bounds register: terminate process if
= ACCESS VIOLATION: Virtual address > bounds reg

[physical address = virtual address + base J

OKB 128 [mova o0 (e, 32
132 Aaca 0x03, seax
1K 135 |mod Sen, 0 (tebm)
o Program Code
38 Heap
48 l

heap
(free)
stack
148
15KB [x000 Intx
Stack
16KB

| November 19, 2018 TCS5422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma

114.20 ‘

= MMU
= Portion of the CPU dedicated to address translation
= Contains base & bounds registers

= Base & Bounds Example:
= Consider address translation

MEMORY MANAGEMENT UNIT

= 4 KB (4096 bytes) address space, loaded at 16 KB physical location

Virtual Address Physlical Address

School of Engineering and Technology, University of Washington - Tacoma

0 16384
1024 17408
3000 19384
FAULT 4400 20784 (out of bounds)
November 19, 2018 TCSS422: Operating Systems [Fall 2018]

11421

Slides by Wes J. Lloyd

L14.7

TCSS 422 A — Fall 2018 11/18/2018
School of Engineering and Technology,

DYNAMIC RELOCATION OF PROGRAMS

= Hardware requirements:

Requirements | HWsupport |

Privileged mode CPU modes: kernel, user

Base / bounds registers Regi: to support addi ion
Translate virtual addr; check if in Translation circuitry, check limits

bounds

Privileged instruction(s) to Instructions for modifying base/bound
update base / bounds regs registers

Privileged instruction(s) Set code pointers to OS code to handle faults

to register exception handlers

Ability to raise exceptions For out-of-bounds memory access, or
attempts to access privileged instr.

TCS5422: Operating Systems [Fall 2018]
il e 2 AT o T B o e s oy Tt A T T

114.22

0S SUPPORT FOR MEMORY

VIRTUALIZATION

= For base and bounds OS support required

= When process starts running
Allocate address space in physical memory

=When a process is terminated
Reclaiming memory for use

= When context switch occurs
Saving and storing the base-bounds pair

= Exception handlers
Function pointers set at OS boot time

November 19, 2018 TCS5422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma L1423

0S: WHEN PROCESS STARTS RUNNING

= 0S searches for free space for new process
= Free list: data structure that tracks available memory slots

oK8
Operating System
The OS lookup the free list
16KB
Free list
(not in use)
16K8 328 o
Heap
L |(allocated but not in use))
48K 48K8 Stack
(not in use)
Physical Memory
November 19, 2018 TCS5422; Operating Systems [Fall 2018] a2

School of Engineering and Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd L14.8

TCSS 422 A — Fall 2018 11/18/2018
School of Engineering and Technology,

0S: WHEN PROCESS IS TERMINATED

= 0S places memory back on the free list

0KB Free list 0KB
l Operating System l Operating System
16K8
o Y 16€8
(not in use) (not in use)
L 328 L 3268
48K8 Process A 32KB (not in use)
48KB l 48K8
(not in use) (not in use)
64KB 48KB 64KB.
Physical Memory Physical Memory

TCS5422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma L1425

November 19, 2018

0S: WHEN CONTEXT SWITCH OCCURS

= 0S must save base and bounds registers
= Saved to the Process Control Block PCB (task_struct in Linux)

Process A PCB

kB Context Switching %8
Operating System — Operating System
16KB 16KB
(not in use) base (not in use) base
3268 - 3B 328 ~ '
i bounds Process A | bounds
Currently Running i
- 48K8 - 4] sax8
Process B Miede
CurrentlyRunning | |
64KB. 64KB. s
Physical Memory Physical Memory

TCS5422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

114.26

November 19, 2018

DYNAMIC RELOCATION

= 0S can move process data when not running

. 0S deschedules process from scheduler

0S copies address space from current to new location
. 0OS updates PCB (base and bounds registers)

. OS reschedules process

AW N PR

= When process runs new base register is restored to CPU

= Process doesn’t know it was even moved!

TCSS422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma L7

November 19, 2018

Slides by Wes J. Lloyd L14.9

TCSS 422 A - Fall 2018
School of Engineering and Technology,

CHAPTER 16:
SEGMENTATION

November 18, 2018 TCSS422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington -

11/18/2018

= Address space
= Contains significant unused memory
= |s relatively large

= Large address spaces
= Hard to fit in memory

= How can these issues be addressed?

0KB
KB
2KB
3KB
4KB
5K8B

= Preallocates space to handle stack/heap growth 6ke

14K8
158
16K8

BASE AND BOUNDS INEFFICIENCIES

Program Code

Heap

(free)

Stack

November 19, 2018 TCS3422: Operating Systems [Fall 2018]
School of

Technology, University

Tacoma

11429

=" Memory segmentation

= Address space has (3) segments

= Each segment can placed separately

(registers)

MULTIPLE SEGMENTS

=Contiguous portions of address space
=Logically separate segments for: code, stack, heap

=Track base and bounds for each segment

TCS5422: Operating Systems [Fall 2018]
0ol of Engineeri

| November 19, 2018 | o Technology, University

Tacoma

11430

Slides by Wes J. Lloyd

L14.10

TCSS 422 A - Fall 2018
School of Engineering and Technology,

SEGMENTS IN MEMORY

= Consider 3 segments:

11/18/2018

Operating System
s 4
(not in use)
t Segment Base Size
Stack Code 32K 2K
(not in use)
He 34K 2K
32KB o eap
Heap Stack 28K 2K
ot (not in use)
64KB Z
Physical Memory
TCSS422: Operating Systems [Fall 2018]
November 19, 2018 e st oy Uty " T L1431

ADDRESS TRANSLATION: CODE SEGMENT

[physical address = of fset + base }

= Code segment - physically starts at 32KB (base)
= Starts at “0” in virtual address space

Base

Bounds check: =
Is virtual address within 2KB iliiesd
address space? G

(not in use)

Virtual Address Space Physical Address Space

TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University i Tacoma

November 19, 2018 11432

ADDRESS TRANSLATION: HEAP

Virtual address + base is not the correct physical address.

= Heap starts at virtual address 4096

= The data is at 4200

= Offset= 4200 - 4096 = 104 (virt addr - virt heap start)
= Physical address = 104 + 34816 (offset + heap base)

Segment Base size

Heap 34K 2K
(not in use)
38
Code
8 kg [104+ 34K or 34920
g pen — is the desired
Hs sical address
oy efp 36 | Physical ada

(not in use)
Address Space

Physical Memory

11433

November 19, 2018 TCS422: Operating Systems [Fall 2018]
School of

Technology, University i Tacoma

Slides by Wes J. Lloyd

L14.11

TCSS 422 A — Fall 2018
School of Engineering and Technology,

SEGMENTATION FAULT

= Access beyond the address space

= Heap starts at virtual address: 4096
= Data pointer is to 7KB (7168)

= |s data pointer valid?

11/18/2018

= Heap starts at 4096 + 2 KB seg size = 6144
= Offset= 7168 > 4096 + 2048 (6144) T e
6KB 1
;E; (not in use)
Address Space

TCS5422: Operating Systems [Fall 2018]

34
School of Engineering and Technology, University of Washington - Tacoma L4

November 19, 2018

SEGMENT REGISTERS

= Used to dereference memory during translation

13 1211 10. 9 8 7 € 5 4 3 2 1 0

L A J

T T
Segment Offset

= First two bits identify segment type

= Remaining bits identify memory offset

= Example: virtual heap address 4200 (01000001101000)
Segment bits

13 12 11 10 9 8 7 6 5 4 3 2 1 0
| o[1]ofofofolof[2][2]o]2]|0]0]0 | Code 00

Heap 01
L T 1 T J Stack 10
Segment Offset B 11

TCS5422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma L1435

| November 19, 2018 |

SEGMENTATION DEREFERENCE

b ge f 14-bit va

2 Address & SEG_MASK) >> SEG_SHIFT

3 // now get offset

4 Offset = VirtualAddress & OFFSET_MASK

5 if (offset >= Bounds[Segment])

6 RaiseException (PROTECTION_FAULT)

Z o PhysAddr = Base [Segment] + Offset

9 Register = AccessMemory (PhysAddr)
= VIRTUAL ADDRESS = 01000001101000 (on heap)
= SEG_MASK = 0x3000 (11000000000000)
= SEG_SHIFT = 01 > heap (mask gives us segment code)

= OFFSET_MASK = OxFFF (00111111111111)
= OFFSET = 000001101000 = 104 (isolates segment offset)
= OFFSET < BOUNDS : 104 < 2048

TCSS422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma L1436

November 19, 2018

Slides by Wes J. Lloyd

L14.12

TCSS 422 A — Fall 2018
School of Engineering and Technology,

STACK SEGMENT

= Stack grows backwards (FILO)
= Requires hardware support:
= Direction bit: tracks direction segment grows

11/18/2018

(not in use)
26KB Segment Register(with Negative-Growth Support)
Stack
28KB Segment Base Size Grows Positive?
o Code 32K 2K 1
| Heap 34K 2K 1
Stack 28K 2K 0
Physical Memory
November 19, 2018 TCSS422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma

11437

SHARED CODE SEGMENTS

= Code sharing: enabled with HW support

= Supports storing shared libraries in memory only once
= DLL: dynamic linked library

® .s0 (linux): shraed object in Linux (under /usr/lib)

= Many programs can access them

= Protection bits: track permissions to segment

Segment Register Values(with Protection)

Segment Base Size Grows Positive? Protection

Code 32K 2K T Read-Execute
Heap 34K 2K 1 Read-Write
Stack 28K 2K 0 Read-Write

November 19, 2018 TCS5422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma

11438

SEGMENTATION GRANULARITY

= Coarse-grained

= Manage memory as large purpose
based segments:

=Code segment
=Heap segment
=Stack segment

TCSS422: Operating Systems [Fall 2018]
sl e 2 | Seoo[of Enginearing andiechiiolosylU nversity Ve hington S Tecoms

11439

Slides by Wes J. Lloyd

L14.13

TCSS 422 A - Fall 2018
School of Engineering and Technology,

= Fine-grained
= Manage memory as list of segments

= Code, heap, stack segments composed
of multiple smaller segments

= Segment table
= On early systems
= Stored in memory
= Tracked large number of segments

SEGMENTATION GRANULARITY - 2

November 19, 2018 TCS5422: Operating Systems [Fall 2018]
School of

Technology, University

Tacoma

L14.40

11/18/2018

MEMORY FRAGMENTATION

= Others: worst fit, first fit... (in future chapters)

= Consider how much free space? Not compacted
= We'll say about 24 KB K8
8KB | Operating System
= Request arrives to allocate a 20 KB heap 16K8B
segment (not in use)
24K8
Allocated
= Can we fulfil the request for 20 KB of 3B o
contiguous memory? 40KB Allgtatad
e
56KB
Allocated
64KB
November 19, 2018 ;cﬁf’:fﬁ;"’“.m‘"?5““"}:!;:'33;:‘ . Tacoma a1
= Supports rearranging memory Compacted
0KB
= Can we fulfil the request for 20 KB of 8KB | Operating System
contiguous memory?
16KB
= Drawback: Compaction is slow S4KE
= Rearranging memory is time consuming Allocated
= 64KB is fast 2260
= 4GB+ ... slow 40K8
= Algorithms: 4K
. . (not in use)
= Best fit: keep list of free spaces, allocate the 56KB
most snug segment for the request
64KB

November 19, 2018

Tacoma

TCS5422: Operating Systems [Fall 2018]
School of Engineeri Technology, University

114.42

Slides by Wes J. Lloyd

L14.14

TCSS 422 A - Fall 2018
School of Engineering and Technology,

CHAPTER 17: FREE
SPACE MANAGEMENT

TCSS422: Operating Systems [Fall 2018]

I Ty 1 20 School of Engineering and Technology, University of Washington -

11/18/2018

= Management of memory using

= Only fixed-sized units
= Easy: keep a list
= Memory request - return first free entry
= Simple search

= With variable sized units
= More challenging
= Results from variable sized malloc requests
= Leads to fragmentation

FREE SPACE MANAGEMENT

November 19, 2018 TCS3422: Operating Systems [Fall 2018]
School of

Technology, University i Tacoma

L14.44

FRAGMENTATION

= Consider a 30-byte heap
30-byte heap:
0

10 20 30
= Request for 15-bytes

addr:0 addr:20

= Free space: 20 bytes

= No available contiguous chunk - return NULL

free list. head — 101.10 — jen:10 —> NULL

November 19, 2018 TCS422: Operating Systems [Fall 2018]
School of

Technology, University i Tacoma

L14.45

Slides by Wes J. Lloyd

L14.15

TCSS 422 A — Fall 2018
School of Engineering and Technology,

FRAGMENTATION - 2

= External: OS can compact
= Example: Client asks for 100 bytes: malloc(100)

= 0S: No 100 byte contiguous chunk is available:
returns NULL

= Memory is externally fragmented - - Compaction can fix!

= Internal: /ost space - OS can’t compact
= 0S returns memory units that are too large
= Example: Client asks for 100 bytes: malloc(100)
= 0S: Returns 125 byte chunk
= Fragmentation is *in* the allocated chunk
= Memory is lost, and unaccounted for - can’t compact

11/18/2018

November 19, 2018 TCS5422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma L1446

ALLOCATION STRATEGY: SPLITTING

= Request for 1 byte of memory: malloc(1)

30-byte heap: [free [Tused | free |
0 10 20 30

addr:0 addr:20

free list: head —> 1.,.10 Tent 10

— NULL

= 0S locates a free chunk to satisfy request
= Splits chunk into two, returns first chunk

30-byte heap: [free [Tused [free |
0

10 20 21 30

addr:0 addr:21
— NULL

free list. head —» 1.,.10 i

TCS5422: Operating Systems [Fall 2018]
e e oolol Enpinearins ardlTechiolo syl e ity Ve hinetonETecoms

L14.47

ALLOCATION STRATEGY: COALESCING

= Consider 30-byte heap
= Free() frees all 10 bytes segments (list of 3-free 10-byte chunks)

addr:10 addr:0 addr:20

head —> 1on:10 > Len:10 len:10

— NULL

= Request arrives: malloc(30)
= SPLIT DOES NOT WORK - no contiguous 30-byte chunk exists!
= Coalescing regroups chunks into contiguous chunk

addr:0

head > len:30

— NULL

= Allocation can now proceed
= Coalescing is defragmentation of the free space list

TCSS422: Operating Systems [Fall 2018]
sl e 2 Seoo[of Enginearing andiechiiolosylU nversity Ve hington S Tecoms

L14.48

Slides by Wes J. Lloyd

L14.16

TCSS 422 A — Fall 2018

School of Engineering and Technology,

= Header block
= Small descriptive block of memory

:|» The header

ptr —>

An Allocated Region Plus Header

MEMORY HEADERS

= free(void *ptr): Does not require a size parameter

= How does the OS know how much memory to free?

at start of chunk

used by malloc library

The 20 bytes returned to caller

11/18/2018

November 19, 2018 TCS5422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma

L14.49

MEMORY HEADE

E—
bptr size: 20

RS -2

magic: 1234567
ptr —>

The 20 bytes

__header t {
size;

int magic;
} header_t;

returned to caller

Specific Contents Of The Header

= Contains size
= Pointers: for faster memory access
= Magic number: integrity checking

A Simple Header

November 19, 2018 TCS5422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma

11450

MEMORY HEADE

= Size of memory chunk is:
= Header size + user malloc size
= N bytes + sizeof(header)

= Easy to determine address of header

RS -3

void free(void *ptr) {

header_t *hptr = (void *)ptr - s

November 19, 2018 TCSS422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma

11451

Slides by Wes J. Lloyd

L14.17

TCSS 422 A — Fall 2018
School of Engineering and Technology,

THE FREE LIST

= Simple free list struct

ruct __node t *next;

} nodet_t;

= Use mmap to create free list
= 4kb heap, 4 byte header, one contiguous free chunk

, 4096, PROT_READ|PROT_WRITE,
MAP_ANON |MAP_PRIVATE, -1, 0)7
4096 - sizeof (node_t);

NULL;

head->size
head->next

TCS5422: Operating Systems [Fall 2018]

11/18/2018

e | e oolol Enpinearins ardlTechiolo syl e ity Ve hinetonETecoms

il e 2 AT o T B o e s oy Tt A T T L1452 ‘
= Create and initialize free-list “heap”
mmap () r s a er cl
node_t *head mmap (NULL, 409
MAP_ANON|MAP_PRIVATE, -1, 0);
head->size = - sizeof (node_t):
head->next = NU
= Heap layout:
[virtual address: 16K8]
- header: size field
size: 4088
head —>{ next: 0 header: next field(NULL is 0)
e the rest of the 4KB chunk
TCS$422: Operating Systems [Fall 2018] L1453 ‘

FREE LIST: MALLOC() CALL

= Consider a request for a 100 bytes: malloc(100)
= Header block requires 8 bytes

= 4 bytes for size, 4 bytes for magic number
= Split the heap - header goes with each block N

A 4KB Heap With One Free Chunk A Heap : After One Allocation
head —> e)
size: 4088 2t 100,

magic: 1234567

next: 0 ptr
the rest of First block
the 4KB chunk is Used
\—1 head —>
size: 3980
next: 0

the 100 bytes now allocated

the free 3980 byte chunk

TCSS422: Operating Systems [Fall 2018]

sl e 2 | Seoo[of Enginearing andiechiiolosylU nversity Ve hington S Tecoms

L1454

Slides by Wes J. Lloyd

L14.18

TCSS 422 A — Fall 2018
School of Engineering and Technology,

FREE LIST: FREE() CALL

" Addresses of chunks [virtual address: 16K8]
8 bytes header {
u Start=16384 100 bytes still allocated
+ 108 (end of 1st chunk) :007
7 S0P (e @7 2 Gl i ma:m 1::'56 100 bytes still allocated
ree this ytes still allocate:
+ 108 (end of 3 chunk) l block }(butabounobefreed)
= 16708 size: 100
magic: 1234567
100 bytes still allocated
head
The free 3764-byte chunk
Free Space With Three Chunks Allocated
November 19, 2018 TCSS422: Operating Systems [Fall 2018] L1455

School of Engineering and Technology, University of Washington - Tacoma

11/18/2018

FREE LIST:

FREE() CHUNK #2

= Free(sptr)

= Qur 3 chunks start at 16 KB
(@ 16,384 bytes)

[virtual address: 16KB]

100 bytes still allocated

head
xt: 16708
= Free chunk #2 - sptr sptr —> 02
Block | (now a free chunk of
= Sptr = 16500 Now Free memory)
= addr - sizeof(node_t) =
] 100 bytes stil allocated
= Actual start of chunk #2
= 16492
- The free 3764-byte chunk
| |
November 19, 2018 TCSS422: Operating Systems [Fall 2018] L14.56

School of Engineering and Technology, University of Washington - Tacoma

FREE LIST- FREE ALL CHUNKS

= Now free remaining chunks: (virtual address: 16K8]
00|«
= Free(16392) e ——
= Free(16608) (now free)
[size 100 |+———
= Walk back 8 bytes for actual next: 16708
start of chunk
(now free)
head —»i T
= External fragmentation Fnext 16384 |
= Free chunk pointers
out of order (now free)
size 3764 |«
= Coalescing of next et]
pointers is needed The free 3764-byte chunk
[

TCSS422: Operating Systems [Fall 2018]
sl e 2 Seoo[of Enginearing andiechiiolosylU nversity Ve hington S Tecoms

L1457

Slides by Wes J. Lloyd

L14.19

TCSS 422 A — Fall 2018
School of Engineering and Technology,

GROWING THE HEAP

= Start with small sized heap
= Request more memory when full
= sbrk(), brk()

Segmented heap
(not in use) (not in use)
Heap Heap Heap Heap
= l break sbrik(),
break 7 (not in use)
(not in use)
Address Space Address Space Heap

Physical Memory

11/18/2018

TCS5422: Operating Systems [Fall 2018]

il e 2 | AT o T B o e s oy Tt A T T

L1458

= Best fit
=Traverse free list
= |dentify all candidate free chunks
= Note which is smallest (has best fit)

= When splitting, “leftover” pieces are small
(and potentially less useful - fragmented)

= Worst fit
= Traverse free list
= [dentify largest free chunk

MEMORY ALLOCATION STRATEGIES

= Split largest free chunk, leaving a still large free chunk

TCS5422: Operating Systems [Fall 2018]

e e oolol Enpinearins ardlTechiolo syl e ity Ve hinetonETecoms

11459

EXAMPLES

= Allocation request for 15 bytes

head —> 10 ——> 30 —> 20 —> NULL

= Result of Best Fit

head —>| 10 —> 30 —> 5 —> NULL

= Result of Worst Fit

head —> 10 ——> 15 ——> 20 —> NULL

TCSS422: Operating Systems [Fall 2018]

sl e 2 Seoo[of Enginearing andiechiiolosylU nversity Ve hington S Tecoms

114.60

Slides by Wes J. Lloyd

L14.20

TCSS 422 A — Fall 2018
School of Engineering and Technology,

MEMORY ALLOCATION STRATEGIES - 2

= First fit
= Start search at beginning of free list
= Find first chunk large enough for request
= Split chunk, returning a “fit” chunk, saving the remainder
= Avoids full free list traversal of best and worst fit

= Next fIt
= Similar to first fit, but start search at last search location
= Maintain a pointer that “cycles” through the list
= Helps balance chunk distribution vs. first fit
= Find first chunk, that is large enough for the request, and split
= Avoids full free list traversal

11/18/2018

November 19, 2018 TCS5422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma Lis1

SEGREGATED LISTS

For popular sized requests
e.g. for kernel objects such as locks, inodes, etc.
Manage as segregated free lists

Provide object caches: stores pre-initialized objects

How much memory should be dedicated for specialized
requests (object caches)?

If a given cache is low in memory, can request “slabs” of
memory from the general allocator for caches.

General allocator will reclaim slabs when not used

November 19, 2018 TCS5422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma Li62

BUDDY ALLOCATION

= Binary buddy allocation

= Divides free space by two to find a block that is big enough to
accommodate the request; the next split is too small...

= Consider a 7KB request

64KB free space for 7KB request

L1463

TCSS422: Operating Systems [Fall 2018]
sl e 2 | Seoo[of Enginearing andiechiiolosylU nversity Ve hington S Tecoms

Slides by Wes J. Lloyd

L14.21

TCSS 422 A - Fall 2018 11/18/2018
School of Engineering and Technology,

BUDDY ALLOCATION - 2

= Buddy allocation: suffers from internal fragmentation

= Allocated fragments, typically too large

= Coalescing is simple
=Two adjacent blocks are promoted up

November 19, 2018 TCS5422: Operating Systems [Fall 2018]
School of

Technology, University i Tacoma

L1464

CHAPTER 18:
INTRODUCTION TO

PAGING

TCSS422: Operating Systems [Fall 2018]

I Ty 2 School of Engineering and Technology, University of Washington -

PAGING

= Split up address space of process into fixed sized pieces
called pages

= Alternative to variable sized pieces (Segmentation) which
suffers from significant fragmentation

= Physical memory is split up into an array of fixed-size slots
called page frames.

= Each process has a page table which translates virtual
addresses to physical addresses

November 19, 2018 TCS422: Operating Systems [Fall 2018]
School of

Technology, University i Tacoma

L14.66

Slides by Wes J. Lloyd L14.22

TCSS 422 A — Fall 2018
School of Engineering and Technology,

ADVANTAGES OF PAGING

= Flexibility

Just add more pages...
= No need to store unused space
As with segments...

= Simplicity
= Pages and page frames are the same size
= Easy to allocate and keep a free list of pages

= Abstracts the process address space into pages
= No need to track direction of HEAP / STACK growth

11/18/2018

TCS5422: Operating Systems [Fall 2018]

il e 2 AT o T B o e s oy Tt A T T

L1467

PAGING: EXAMPLE

= Consider a 128 byte address space

Page Table:
VPO - PF3
VP1 > PF7
VP2 > PF5
VP3 > PF2

with 16-byte pages 0
page frame 0 of
- reserved for 0S| Chic memory
= Consider a 64-byte program (unused) | page frame 1
32
address space page 3 of AS | page frame 2
8
page 0 of AS | page frame 3
0 64
(page 0 of (unused) page frame 4
16 the address space) 80
(page 1) page 2 of AS | page frame 5
2 9%
(page 2) (unused) page frame 6
48 112
” (page 3) page 1of AS | page frame 7
128
A Simple 64-byte Address Space 64-Byte Address Space Placed In Physical Memory

TCS5422: Operating Systems [Fall 2018]

e e oolol Enpinearins ardlTechiolo syl e ity Ve hinetonETecoms

L14.68

PAGING: ADDRESS TRANSLATI

= PAGE: Has two address components
= VPN: Virtual Page Number
= Offset: Offset within a Page

VPN offset
(S N

o[
= Example:

Page Size: 16-bytes, Address Space: 64-bytes

VPN offset

0]\

Here there are

TCSS422: Operating Systems [Fall 2018]

sl e 2 | Seoo[of Enginearing andiechiiolosylU nversity Ve hington S Tecoms

114,69

Slides by Wes J. Lloyd

L14.23

TCSS 422 A — Fall 2018
School of Engineering and Technology,

EXAMPLE:

PAGING ADDRESS TRANSLATION

= Consider a 64-byte program address space (4 pages)
= Stored in 128-byte physical memory (8 frames)

. VPN ffset
= Offset is preserved e
P G—

= VPN is looked up rams [0 [2 o]a o]
Vo

11/18/2018

Page Table:

VPO - PF3 -

VP1-> PF7 Translr:t?:n

VP2 > PF5

VP3 > PF2 Vol

Zzzsr::s“l‘l‘l‘o‘l‘oll
L J L
PFN offset
November 19, 2018 TCSS422: Operating Systems [Fall 2018] 14.70

School of Engineering and Technology, University of Washington - Tacoma

PAGING DESIGN QUESTIONS

= (1) Where are page tables stored?

= (2) What are the typical contents of the page table?

= (3) How big are page tables?

= (4) Does paging make the system too slow?

November 19, 2018 TCS5422: Operating Systems [Fall 2018]

7
School of Engineering and Technology, University of Washington - Tacoma Lz

(1) WHERE ARE PAGE TABLES STORED?

= Example:
= Consider a 32-bit process address space (up to 4GB)
= With 4 KB pages
= 20 bits for VPN (22° pages)
= 12 bits for the page offset (212 unique bytes in a page)

= Page tables for each process are stored in RAM

= Support potential storage of 220 translations
= 1,048,576 pages per process

= Each page has a page table entry size of 4 bytes

November 19, 2018 TCSS422: Operating Systems [Fall 2018]

7
School of Engineering and Technology, University of Washington - Tacoma L4.72

Slides by Wes J. Lloyd

L14.24

TCSS 422 A — Fall 2018
School of Engineering and Technology,

PAGE TABLE EXAMPLE

= With 220 slots in our page table for a single process

11/18/2018

= Each slot dereferences a VPN VPN,

VPN,

= Provides physical frame number
VPN,

= Each slot requires 4 bytes (32 bits)

= 20 for the PFN on a 4GB system with 4KB pages
= 12 for the offset which is preserved

= (note we have no status bits, so this is VPNyo4576

unrealistically small)

= How much memory to store page table for 1 process?
= 4,194,304 bytes (or 4MB) to index one process

TCS5422: Operating Systems [Fall 2018]

il e 2 AT o T B o e s oy Tt A T T

11473

NOW FOR AN ENTIRE OS

= If 4 MB is required to store one process

= Consider how much memory is required for an entire 0S?
= With for example 100 processes...

= Page table memory requirement is now 4MB x 100 = 400MB

= |f computer has 4GB memory (maximum for 32-bits),
the page table consumes 10% of memory

400 MB / 4000 GB

= |s thls efflclent?

TCS5422: Operating Systems [Fall 2018]

e e oolol Enpinearins ardlTechiolo syl e ity Ve hinetonETecoms

1474

(2) WHAT’S ACTUALLY IN THE PAGE TABLE

= Page table is data structure used to map virtual page
numbers (VPN) to the physical address (Physical Frame
Number PFN)

= Linear page table > simple array

= Page-table entry
= 32 bits for capturing state

310087 XXUBLANVIBT6I5MU4131211109 87 6543210
| | EEEREEEED

An x86 Page Table Entry(PTE)

TCSS422: Operating Systems [Fall 2018]

7
School of Engineering and Technology, University of Washington - Tacoma L1475

| November 19, 2018 |

Slides by Wes J. Lloyd

L14.25

TCSS 422 A — Fall 2018 11/18/2018
School of Engineering and Technology,

PAGE TABLE ENTRY

o P: present
o R/W: read/write bit
o U/S: supervisor

o A: accessed bit
o D: dirty bit
o PFN: the page frame number

NVVBTXBAB2A019181716151413121110987 6543210
= algle
| | EERRSEEER

An x86 Page Table Entry(PTE)

TCS5422: Operating Systems [Fall 2018]

7
School of Engineering and Technology, University of Washington - Tacoma L1476

| November 19, 2018 |

PAGE TABLE ENTRY - 2

= Common flags:

= Valld Bit: Indicating whether the particular translation is valid.

= Protection Bit: Indicating whether the page could be read
from, written to, or executed from

= Present Blt: Indicating whether this page is in physical
memory or on disk(swapped out)

= Dirty BIt: Indicating whether the page has been modified since
it was brought into memory

= Reference BlIt(Accessed BIt): Indicating that a page has been

accessed

TCS5422: Operating Systems [Fall 2018]

7
School of Engineering and Technology, University of Washington - Tacoma L7

November 19, 2018

(3) HOW BIG ARE PAGE TABLES?

= Page tables are too big to store on the CPU

= Page tables are stored using physical memory

= Paging supports efficiently storing a sparsely populated
address space

= Reduced memory requirement
Compared to base and bounds, and segments

TCSS422: Operating Systems [Fall 2018]

7
School of Engineering and Technology, University of Washington - Tacoma L1478

November 19, 2018

Slides by Wes J. Lloyd L14.26

TCSS 422 A — Fall 2018
School of Engineering and Technology,

(4) DOES PAGING MAKE

THE SYSTEM TOO SLOW?

= Translation

= Issue #1: Starting location of the page table is

needed
=HW Support: Page-table base register Page Table:
stores active process VPO > PF3
Facilitates translation VP12 PFT
. VP2 > PF5
Stored in RAM > VP3 > PF2

requires an extra memory reference
=HW Support: TLBs (Chapter 19)

= Issue #2: Each memory address translation for paging

TCS5422: Operating Systems [Fall 2018]

il e 2 | AT o T B o e s oy Tt A T T

114.79

11/18/2018

PAGING MEMORY ACCESS

1 // Extract the VPN from the virtual address

2 VPN = (virtualAddress & VPN_MASK) >> SHIFT

3

4 // Form the address of the page-table entry (PTE)
5. PTEAddr = PTBR + (VPN * sizeof(PTE))

6

7 // Fetch the PTE

8. PTE = AccessMemory(PTEAddr)

9.

10. // check if process can access the page

11. if (PTE.valid == False)

12. RaiseException (SEGMENTATION_FAULT)

I else if (CanAccess(PTE.ProtectBits) == False)

14. RaiseException (PROTECTION_FAULT)

i15s else

16. // Access is ok: form physical address and fetch it
17. offset = virtualAddress & OFFSET_MASK

18. Physaddr = (PTE.PFN << PFN_SHIFT) | offset
19. Register = AccessMemory(PhysAddr)

TCS5422: Operating Systems [Fall 2018]

e e oolol Enpinearins ardlTechiolo syl e ity Ve hinetonETecoms

114.80

COUNTING MEMORY ACCESSES

= Example: Use this Array initialization Code

int array[1000];:

for (i = 0; i < 1(
array(i]

i+4)

= Assembly equivalent:

0x1024 movl $0x0, (%edi, teax, 4)
0x1028 incl $eax

0x102c cmpl $0x03e8, $eax
0x1030 jne 0x1024

TCSS422: Operating Systems [Fall 2018]

sl e 2 Seoo[of Enginearing andiechiiolosylU nversity Ve hington S Tecoms

L1481

Slides by Wes J. Lloyd

L14.27

TCSS 422 A - Fall 2018
School of Engineering and Technology,

VISUALIZING MEMORY ACCESSES:

FOR THE FIRST 5 LOOP ITERATIONS

Page Table[39]

11/18/2018

" Locations: 54
= Page table s} o o o o un g
= Array Page Table[1] 12 3§
= Code wn B

1024
= 50 accesses 2 40100 . R o
for 5 loop % 40050 % J sz %
iterations < o000 s " Ll . 2 <
g 1124 % E § 3 é F 4196 g
2 1074 5o G
B on Y LT L VT LT LT LB

o 10 20 30 40 50
Memory Access
November 19, 2018 T nton-Tacoma uas2

PAGING SYSTEM EXAMPLE

= Consider a 4GB Computer:
= With a 4096-byte page size (4KB)
= How many pages would fit in physical memory?

= Now consider a page table:

= For the page table entry, how many bits are required for the
VPN?

= |f we assume the use of 4-byte (32 bit) page table entries,
how many bits are available for status bits?

= How much space does this page table require?
Page Table Entries x Number of pages

= How many page tables (for user processes)
would fill the entire 4GB of memory?

November 19, 2018 TCS3422: Operating Systems [Fall 2018]
School of

Technology, University i Tacoma L1483

CHAPTER 19:

TRANSLATION
LOOKASIDE BUFFER
(TLB)

TCSS422: Operating Systems [Fall 2018]
ST Ty 6 20 School of Engineering and Technology, University of Washington -

Slides by Wes J. Lloyd

L14.28

TCSS 422 A — Fall 2018
School of Engineering and Technology,

OBJECTIVES

= Chapter 19

=TLB Algorithm

=TLB Tradeoffs

=TLB Context Switch

11/18/2018

TCS5422: Operating Systems [Fall 2018]
il e 2 AT o T B o e s oy Tt A T T

L14.85

ElLegacy name...

= Better name, “Address Translation Cache”

=virtual = physical memory

TRANSLATION LOOKASIDE BUFFER

=TLB is an on CPU cache of address translations

TCSS422: Operating Systems [Fall 2018]
e e oolol Enpinearins ardlTechiolo syl e ity Ve hinetonETecoms

L14.86

Page Table[39]

= Goal:
Reduce access
to the page Page Table[1]
tables

= Example:
50 RAM accesses A0
for first 5 for-loop § 40050
iterations = 40000

= Move lookups
from RAM to TLB
by caching page
table entries

Memory Access

TRANSLATION LOOKASIDE BUFFER - 2

1224
174
1124
1074
1024

7132
7282
7232

419
4146
409

Page Table(PA)

Array(PA)

Code(PA)

TCSS422: Operating Systems [Fall 2018]
sl e 2 Seoo[of Enginearing andiechiiolosylU nversity Ve hington S Tecoms

L14.87

Slides by Wes J. Lloyd

L14.29

TCSS 422 A — Fall 2018
School of Engineering and Technology,

TRANSLATION LOOKASIDE BUFFER (TLB)

= Part of the CPU’s Memory Management Unit (MMU)

= Address translation cache

e
Logical | Lookup | AN TL8 Hit -
Address TLB Address
popular v to p T
Page 0
Page Table 9
all v to p entries Page 1
Page 2
[Pagen |

Address Translation with MMU "
Physical Memory

11/18/2018

TCS5422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma L1488

November 19, 2018

TRANSLATION LOOKASIDE BUFFER (TLB)

= Part of the CPU’s Memory Management Unit (MMU)
= Address translation cache

— /A .aa..] | —
The TLB is an address translation cache
Different than L1, L2, L3 CPU memory caches

P 0
Page Table 2
all v to p entries L
y 4 Page 2

[Pege n |

Physical Memory

Address Translation with MMU

TCS5422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma L1489

November 19, 2018 |

TLB BASIC ALGORITHM

= For: array based page table
= Hardware managed TLB

»
»

: VPN = (VirtualAddress & VPN_MASK) >> SHIFT
: (Success , TlbEntry) = TLB_Lookup (VEN)

if (Success == True){ // TLB Hit
Offset = VirtualAddress & OFFSET_MASK

‘PhysAddr»(leEntry.PFN << SHIFT) | Offset

AccessMemory(PhysAddr)

T

2

3

4: if (CanAccess (T1bEntry.ProtectBits) == True){
5

6

7

8

}else RaiseException(PROTECTION_ERROR)

| Generate the physical address to access memory I

TCS5422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

| November 19, 2018 L14.90

Slides by Wes J. Lloyd

L14.30

TCSS 422 A — Fall 2018
School of Engineering and Technology,

TLB BASIC ALGORITHM - 2

a0 else{ //TLB Miss
12: PTEAddr = PTBR + (VPN * sizeof (PTE))

13: PTE = AccessMemory (PTEAAr)

14: (.) // Check for, and raise exceptions..

15:

16: TLB_Insert(VPN , PTE.PFN , PTE.ProtectBits)
a7l RetryInstruction ()

18: }

19:}

| Retry the instruction... (requery the TLB)

11/18/2018

TCS5422: Operating Systems [Fall 2018]

| il e 2 et e T T e e ey e e T 7

acoma

11491

= Key detail:

populate the TLB... we then requery the TLB

= All address translatlons go through the TLB

TLB - ADDRESS TRANSLATION CACHE

= For a TLB miss, we first access the page table in RAM to

November 19, 2018 TCS5422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma

114.92

TLB EXAMPLE

0 int sum = 0 ; OFFSET.
0w o g 12 16
s for(i=0; i<10; i++){ veN =00
2 sum+=a[i]; VPN = 01
3 } VPN = 03
e - 04
= Example: o
VEN =06 00] | aly | a2
= Program address space: 256-byte N e e e
= Addressable using 8 total bits (28) VPN =08 | a7) | ai8) | aio)
= 4 bits for the VPN (16 total pages) e
Ve - 10
= Page size: 16 bytes e
ven - 12
= Offset is addressable using 4-bits ——
v
= Store an array: of (10) 4-byte integers VRN =15
TCSS422: Operating Systems [Fall 2018]
sl e 2 Seoo[of Enginearing andiechiiolosylU nversity Ve hington S Tecoms L1493

Slides by Wes J. Lloyd

L14.31

TCSS 422 A — Fall 2018 11/18/2018
School of Engineering and Technology,

TLB EXAMPLE - 2

0 int sum = 0 ; OFFSET.
w o o 1
: 3 for(i=0; 1i<10; i++){ VPN = 00
2: sum+=a[i]; VPN = 01
3) ven =03
ven - o4
= Consider the code above: e
VN - 06 o | e | a1
= |nitially the TLB does not know where a[] is VPN =07 | ap3) | ai4) | b | ale)
= Consider the accesses: = s
Ve =09
= a[0], a[1], a[2], a[3], a[4], a[5], a[6], a[7],
a[8], a[9] -
= How many pages are accessed? ::::z
= What happens when accessing a page not VPN - 14
in the TLB? VN =15

TCSS422: Operating Systems [Fall 2018]
il e 2 AT o T B o e s oy Tt A T T L1a94
0: int sum = 0 ; OFFSET.
w o o 1
s for(i=0; i<10; i++){ veN =00
2: sum+=a[i]; VPN = 01
3 } VPN = 03
ven - o4
= For the accesses: a[0], a[1], a[2], a[3], a[4], " *
VPN = 06 a0 | a1l | al2]
= a[5], a[6], a[7], a[8], a[9] ven =07 (o) | am | ais) | ale)
VPN =08 | a7) | ai8] | a9
Ve =09
= How many are hits? e
" How many are misses? VN =11
ven - 12
= What is the hit rate? (%) .
= 70% (3 misses one for each VP, 7 hits) VPN - 14
ven =15
TCSS422: Operating Systems [Fall 2018]
e e oolol Enpinearins ardlTechiolo syl e ity Ve hinetonETecoms L1495
0: int sum = 0 ; OFFSET.
w o o 1
s for(i=0; i<10; i++){ veN =00
2: sum+=a[i]; VPN = 01
3 } VPN = 03
ven - o4
. . ven =05
= What factors affect the hit/miss rate? .
=06 a[0] | ap | ap2)
= Page size ven =07 [ag) | a | aps) | ate)
. VPN =08 | ap7) | ai8] | aid]
= Data locality Ven =09
= Temporal locality VNS0
ven =11
ven - 12
ven =13
en - 14
ven =15
TCSS422: Operating Systems [Fall 2018]
sl e 2 Seoo[of Enginearing andiechiiolosylU nversity Ve hington S Tecoms L1496

Slides by Wes J. Lloyd L14.32

TCSS 422 A - Fall 2018 11/18/2018
School of Engineering and Technology,

QUESTIONS

Slides by Wes J. Lloyd L14.33

