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TCSS 422: OPERATING SYSTEMS

How can you display the thread ID for debugging 
purposes?

Can associate an unique int when creating pthread
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 Do you need multiple condition variables (in program 2) 
or can you use just one?

 Coordinating the end of program 2
 Max LOOPS is reached

 Consumer threads: run out of matrices 
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FEEDBACK - 2

 Quiz 3 – Synchronized Array

 Multi-threaded Programming

 Chapter 30 – Condition Variables

 Chapter 32 – Concurrency Problems

 Memory Virtualization

 Chapters 13, 14, 15, 16….
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CHAPTER 30 –
CONDITION VARIABLES

November 14, 2018
TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma L13.5

 There are many cases where a thread wants to 
wait for another thread before proceeding with 
execution

Consider when a precondition must be fulfilled 
before it is meaningful to proceed …
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CONDITION VARIABLES
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 Support a signaling mechanism to alert 
threads when preconditions have been satisfied

 Eliminate busy waiting

 Alert one or more threads to “consume” a result, or 
respond to state changes in the application

 Threads are placed on an explicit queue (FIFO) to wait 
for signals

 Signal: wakes one thread
broadcast wakes all (ordering by the OS)

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
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CONDITION VARIABLES - 2

 Condition variable

 Requires initialization

 Condition API calls

 wait() accepts a mutex parameter
 Releases lock, puts thread to sleep

 signal()
 Wakes up thread, awakening thread acquires lock

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L13.8

CONDITION VARIABLES - 3

pthread cond t c;
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 Why would we want to put waiting threads on a queue… why 
not use a stack?
 Queue (FIFO), Stack (LIFO)

 Using condition variables eliminates busy waiting by putting  threads 
to “sleep” and yielding the CPU.  

 Why do we want to not busily wait for the lock to become 
available?

 A program has 10-threads, where 9 threads are waiting.  The 
working thread finishes and broadcasts that the lock is 
available.  What happens next?
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CONDITION VARIABLES - QUESTIONS

Matrix generation example

Chapter 30

signal.c
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MATRIX GENERATOR
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 The main thread, and worker thread (generates matrices) 
share a single matrix pointer.

 What would happen if we don’t use a condition variable to 
coordinate exchange of the lock?

 Let’s try “nosignal.c”
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MATRIX GENERATOR

 Parent thread calls thr_join() and executes the comparison

 The context switches to the child

 The child runs thr_exit() and signals the parent, but the parent 
is not waiting yet.  

 The signal is lost

 The parent deadlocks

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma
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SUBTLE RACE CONDITION: 
WITHOUT A WHILE
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PRODUCER / CONSUMER

 Producer

 Produces items – consider the child matrix maker

 Places them in a buffer
 Example: the buffer is only 1 element (single array pointer)

 Consumer

 Grabs data out of the buffer

 Our example: parent thread receives dynamically 
generated matrices and performs an operation on them 
 Example: calculates average value of every element (integer)

 Multithreaded web server example

 Http requests placed into work queue; threads process

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma
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PRODUCER / CONSUMER
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 Producer / Consumer is also known as Bounded Buffer

 Bounded buffer

 Similar to piping output from one Linux process to another

 grep pthread signal.c | wc –l

 Synchronized access:
sends output from grep  wc as it is produced

 File stream

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma
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PRODUCER / CONSUMER - 2

 Buffer is a one element shared data structure (int)

 Producer “puts” data

 Consumer “gets” data

 Shared data structure requires synchronization

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma
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PUT/GET ROUTINES

1 int buffer;
2 int count = 0; // initially, empty
3
4 void put(int value) {
5 assert(count == 0);
6 count = 1;
7 buffer = value;
8 }
9
10 int get() {
11 assert(count == 1);
12 count = 0;
13 return buffer;
14 }
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 Producer adds data

 Consumer removes data (busy waiting)

 Will this code work (spin locks) with 2-threads?
1. Producer  2. Consumer

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
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PRODUCER / CONSUMER - 3

 The shared data structure needs synchronization!

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
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PRODUCER / CONSUMER - 3

Producer



TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/14/2018

L13.10Slides by Wes J. Lloyd

 This code as-is works with just:

(1) Producer

(1) Consumer

 If we scale to (2+) consumer’s it  fails 
 How can it be fixed ?

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
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PRODUCER/CONSUMER - 4

20 if (count == 0) // c2
21 Pthread_cond_wait(&cond, &mutex); // c3
22 int tmp = get(); // c4
23 Pthread_cond_signal(&cond); // c5
24 Pthread_mutex_unlock(&mutex); // c6
25 printf("%d\n", tmp);
26 }
27 }

Consumer

 Two threads

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma
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EXECUTION TRACE: 
NO WHILE, 1 PRODUCER, 2 CONSUMERS

Legend
c1/p1- lock
c2/p2- check var
c3/p3- wait
c4- put()
p4- get()
c5/p5- signal
c6/p6- unlock



TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/14/2018

L13.11Slides by Wes J. Lloyd

 When producer threads awake, they do not check if there is 
any data in the buffer…

 Need while, not if

 What if Tp puts a value, wakes Tc1 whom consumes the value 

 Then Tp has a value to put, but Tc1’s signal on &cond wakes Tc2

 There is nothing for Tc2 consume, so Tc2 sleeps

 Tc1, Tc2, and Tp all sleep forever

 Tc1 needs to wake Tp to Tc2

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma
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PRODUCER/CONSUMER 
SYNCHRONIZATION

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
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EXECUTION TRACE:
WHILE, 1 CONDITION, 1 PRODUCER, 2 CONSUMERS

Legend
c1/p1- lock
c2/p2- check var
c3/p3- wait
c4- put()
p4- get()
c5/p5- signal
c6/p6- unlock
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 Tc2 runs, no data to consume

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma
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EXECUTION TRACE – 2
WHILE, 1 CONDITION, 1 PRODUCER, 2 CONSUMERS

Legend
c1/p1- lock
c2/p2- check var
c3/p3- wait
c4- put()
p4- get()
c5/p5- signal
c6/p6- unlock

 Use two condition variables: empty & full

 One condition handles the producer

 the other the consumer

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma
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TWO CONDITIONS

1 cond_t empty, fill;
2 mutex_t mutex;
3
4 void *producer(void *arg) {
5 int i;
6 for (i = 0; i < loops; i++) {
7 Pthread_mutex_lock(&mutex);
8 while (count == 1)
9 Pthread_cond_wait(&empty, &mutex);
10 put(i);
11 Pthread_cond_signal(&fill);
12 Pthread_mutex_unlock(&mutex);
13 }
14 }
15

full;

&full);
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 Change buffer from int, to int buffer[MAX]

 Add indexing variables

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L13.25

FINAL PRODUCER/CONSUMER
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FINAL P/C - 2

full

(&full);

&full,



TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/14/2018

L13.14Slides by Wes J. Lloyd

 Producer: only sleeps when buffer is full

 Consumer: only sleeps if buffers are empty

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma
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FINAL P/C - 3

 A condition that covers all cases (conditions):
 Excellent use case for pthread_cond_broadcast

 Consider memory allocation:
When a program deals with huge memory 

allocation/deallocation on the heap
 Access to the heap must be managed when memory is 

scarce 

PREVENT: Out of memory:
- queue requests until memory is free

Which thread should be woken up?

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma
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COVERING CONDITIONS
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November 14, 2018 TCSS422: Operating Systems [Fall 2018]
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COVERING CONDITIONS - 2

Broadcast

Check available memory

 Broadcast awakens all blocked threads requesting 
memory

 Each thread evaluates if there’s enough memory: 
(bytesLeft < size)
 Reject: requests that cannot be fulfilled- go back to sleep
 Insufficient memory

 Run: requests which can be fulfilled
 with newly available memory!

 Overhead
Many threads may be awoken which can’t execute

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma
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COVER CONDITIONS - 3
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CHAPTER 32 –
CONCURRENCY 

PROBLEMS

November 14, 2018
TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma L13.31

 Chapter 32:
 Non-deadlock concurrency bugs

 Deadlock causes

 Deadlock prevention 

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma
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OBJECTIVES
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 “Learning from Mistakes – A Comprehensive Study on 
Real World Concurrency Bug Characteristics”

 Shan Lu et al.

 Architectural Support For Programming Languages and 
Operating Systems (ASPLOS 2008), Seattle WA

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
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CONCURRENCY BUGS IN 
OPEN SOURCE SOFTWARE

Majority of concurrency bugs

Most common:

Atomicity violation: forget to use locks

Order violation: failure to initialize lock/condition 
before use

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma
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NON-DEADLOCK BUGS
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 Two threads access the proc_info field in struct thd

 NULL is 0 in C

 Serialized access to shared memory among separate 
threads is not enforced  (e.g. non-atomic)

 Simple example:

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma
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ATOMICITY VIOLATION - MYSQL

Programmer intended
variable to be accessed
atomically… 

 Add locks for all uses of: thd->proc_info

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma
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ATOMICITY VIOLATION - SOLUTION
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Desired order between memory accesses is flipped

E.g. something is checked before it is set

Example:

What if mThread is not initialized?

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
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ORDER VIOLATION BUGS

 Use condition variable to enforce order

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
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ORDER VIOLATION - SOLUTION
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November 14, 2018 TCSS422: Operating Systems [Fall 2018]
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ORDER VIOLATION – SOLUTION 2

97% of Non-Deadlock Bugs were

Atomicity

Order violations

Consider what is involved in “spotting” these 
bugs in code

Desire for automated tool support (IDE)

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma
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NON-DEADLOCK BUGS - 1
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Atomicity
 How can we tell if a given variable is shared?
 Can search the code for uses

 How do we know if all instances of its use are shared?
 Can some non-synchronized (non-atomic) uses be legal?  

 Before threads are created, after threads exit

 Must verify the scope

Order violation
Must consider all variable accesses

Must known desired order

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma
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NON-DEADLOCK BUGS - 2

 Presence of a cycle in code

 Thread 1 acquires lock L1, waits for lock L2

 Thread 2 acquires lock L2, waits for lock L1

 Both threads can block, unless 
one manages to acquire both locks

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma
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DEADLOCK BUGS
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 Complex code
 Must avoid circular dependencies – can be hard to find…

 Encapsulation hides potential locking conflicts
 Easy-to-use APIs embed locks inside

 Programmer doesn’t know they are there

 Consider the Java Vector class:

 Vector is thread safe (synchronized) by design

 If there is a v2.AddAll(v1); call at nearly the same time 
deadlock could result

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
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REASONS FOR DEADLOCKS

 Four conditions are required for dead lock to occur
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CONDITIONS FOR DEADLOCK
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 Build wait-free data structures

 Eliminate locks altogether 

 Build structures using CompareAndSwap atomic CPU (HW) 
instruction

 C pseudo code for CompareAndSwap

 Hardware executes this code atomically

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma
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PREVENTION – MUTUAL EXCLUSION

Recall atomic increment

Compare and Swap tries over and over until 
successful

CompareAndSwap is guaranteed to be atomic

When it runs it is ALWAYS atomic (at HW level)

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma
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PREVENTION – MUTUAL EXCLUSION - 2
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Consider list insertion

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma
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MUTUAL EXCLUSION: LIST INSERTION

 Lock based implementation

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L13.48

MUTUAL EXCLUSION – LIST INSERTION - 2
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Wait free (no lock) implementation

Assign &head to n  (new node ptr)

Only when head = n->next

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma
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MUTUAL EXCLUSION – LIST INSERTION - 3

1 void insert(int value) {
2 node_t *n = malloc(sizeof(node_t));
3 assert(n != NULL);
4 n->value = value;
5 do {
6 n->next = head;
7 } while (CompareAndSwap(&head, n->next, n));
8 }

 Four conditions are required for dead lock to occur

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
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L13.50

CONDITIONS FOR DEADLOCK



TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/14/2018

L13.26Slides by Wes J. Lloyd

 Problem: acquire all  locks atomically

 Solution: use a “lock” “lock”… ( l ike a guard lock)

 Effective solution – guarantees no race conditions while 
acquiring L1, L2, etc.  

 Order doesn’t matter for L1, L2

 Prevention (GLOBAL) lock decreases concurrency of code
 Acts Lowers lock granularity 

 Encapsulation: consider the Java Vector class…
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PREVENTION LOCK – HOLD AND WAIT

 Four conditions are required for dead lock to occur
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CONDITIONS FOR DEADLOCK



TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/14/2018

L13.27Slides by Wes J. Lloyd

When acquiring locks, don’t BLOCK forever if 
unavailable…

pthread_mutex_trylock() - try once

pthread_mutex_timedlock() - try and wait awhile

Eliminates deadlocks
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PREVENTION – NO PREEMPTION

Can lead to livelock

 Two threads execute code in parallel 
always fail to obtain both locks

 Fix: add random delay

Allows one thread to win the 
livelock race!

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
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NO PREEMPTION – LIVELOCKS PROBLEM
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 Four conditions are required for dead lock to occur

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma
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CONDITIONS FOR DEADLOCK

Provide total ordering of lock acquisition 
throughout code
Always acquire locks in same order

L1, L2, L3, …

Never mix: L2, L1, L3; L2, L3, L1; L3, L1, L2….

Must carry out same ordering through entire 
program

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma
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PREVENTION – CIRCULAR WAIT
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Consider a smart scheduler

Scheduler knows which locks threads use

Consider this scenario: 

4 Threads (T1, T2, T3, T4)

2 Locks (L1, L2)

 Lock requirements of threads:

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L13.57

DEADLOCK AVOIDANCE 
VIA INTELLIGENT SCHEDULING

Scheduler produces schedule:

No deadlock can occur

Consider:

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma
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INTELLIGENT SCHEDULING - 2
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 Scheduler produces schedule

 Scheduler must be conservative and not take risks

 Slows down execution – many threads 

 There has been limited use of these approaches given the 
difficulty having intimate lock knowledge about every 
thread
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INTELLIGENT SCHEDULING - 3

 Allow deadlock to occasionally occur and then take some 
action.

 Example: When OS freezes, reboot…

 How often is this acceptable?
 Once per year

 Once per month

 Once per day

 Consider the effort tradeoff of finding every deadlock bug

 Many database systems employ deadlock detection and 
recovery techniques.
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DETECT AND RECOVER
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CHAPTER 13: 
ADDRESS SPACES

November 14, 2018
TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma L13.61

 Chapter 13
 Introduction to memory virtualization
 The address space
 Goals of OS memory virtualization

 Chapter 14
 Memory API
 Common memory errors

 Chapter 15
 Address translation
 Base and bounds
 HW and OS Support

 Chapter 16
 Memory segments, fragmentation

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
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OBJECTIVES – MEMORY VIRTUALIATION
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 What is memory virtualization?

 This is not “virtual” memory, 

 Classic use of disk space as additional RAM

When available RAM was low

 Less common recently
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MEMORY VIRTUALIZATION

 Presentation of system memory to each process

 Appears as if each process can access the entire 
machine’s address space

 Each process’s view of memory is isolated from others

 Everyone has their own sandbox

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma
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MEMORY VIRTUALIZATION - 2

Process A Process B Process C
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 Easier to program
 Programs don’t need to understand special memory models

 Abstraction enables sophisticated approaches to manage 
and share memory among processes

 Isolation
 From other processes: easier to code

 Protection
 From other processes
 From programmer error (segmentation fault)
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MOTIVATION FOR 
MEMORY VIRTUALIZATION

 Load one process at a time into memory

Poor memory utilization

 Little abstraction
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EARLY MEMORY MANAGEMENT
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 Later machines supported running multiple 
processes

 Swap out processes during I/O waits to 
increase system uti lization and ef ficiency

 Swap entire memory of a process to disk 
for context switch

 Too slow, especially for large processes

 Solution
 Leave processes in memory

 Need to protect from errant memory 
accesses in a multiprocessing environment
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MULTIPROGRAMMING 
WITH SHARED MEMORY

Easy-to-use abstraction of physical 
memory for a process

Main elements:

Program code

Stack

Heap

Example: 16KB address space
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ADDRESS SPACE
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 Code
 Program code

 Stack
 Program counter (PC)

 Local variables

 Parameter variables

 Return values (for functions)

 Heap
 Dynamic storage

 Malloc() new()
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ADDRESS SPACE - 2

 Program code
 Static size

 Heap and stack
 Dynamic size

 Grow and shrink during program execution

 Placed at opposite ends

 Addresses are vir tual
 They must be physically mapped by the OS
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ADDRESS SPACE - 3
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Every address is virtual

OS translates virtual to physical addresses

EXAMPLE: virtual.c
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VIRTUAL ADDRESSING

 Output from 64-bit Linux:
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VIRTUAL ADDRESSING - 2

location of code: 0x400686
location of heap: 0x1129420
location of stack: 0x7ffe040d77e4



TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/14/2018

L13.37Slides by Wes J. Lloyd

 Transparency

Memory shouldn’t appear virtualized to the program

 OS multiplexes memory among different jobs behind the 
scenes

 Protection

 Isolation among processes

 OS itself must be isolated

 One program should not be able to affect another 
(or the OS)
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GOALS OF 
OS MEMORY VIRTUALIZATION

Efficiency
Time
 Performance: virtualization must be fast

Space
 Virtualization must not waste space
 Consider data structures for organizing memory
 Hardware support TLB: Translation Lookaside Buffer

Goals considered when evaluating memory 
virtualization schemes
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GOALS - 2
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QUESTIONS


