
TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/14/2018

L13.1Slides by Wes J. Lloyd

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

Condition Variables,
Concurrency Problems,

Address Spaces

Wes J. Lloyd
School of Engineering and Technology,
University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

How can you display the thread ID for debugging
purposes?

Can associate an unique int when creating pthread

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L13.2

FEEDBACK FROM 11/7

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/14/2018

L13.2Slides by Wes J. Lloyd

 Do you need multiple condition variables (in program 2)
or can you use just one?

 Coordinating the end of program 2
 Max LOOPS is reached

 Consumer threads: run out of matrices

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L13.3

FEEDBACK - 2

 Quiz 3 – Synchronized Array

 Multi-threaded Programming

 Chapter 30 – Condition Variables

 Chapter 32 – Concurrency Problems

 Memory Virtualization

 Chapters 13, 14, 15, 16….

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L13.4

OBJECTIVES

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/14/2018

L13.3Slides by Wes J. Lloyd

CHAPTER 30 –
CONDITION VARIABLES

November 14, 2018
TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma L13.5

 There are many cases where a thread wants to
wait for another thread before proceeding with
execution

Consider when a precondition must be fulfilled
before it is meaningful to proceed …

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L13.6

CONDITION VARIABLES

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/14/2018

L13.4Slides by Wes J. Lloyd

 Support a signaling mechanism to alert
threads when preconditions have been satisfied

 Eliminate busy waiting

 Alert one or more threads to “consume” a result, or
respond to state changes in the application

 Threads are placed on an explicit queue (FIFO) to wait
for signals

 Signal: wakes one thread
broadcast wakes all (ordering by the OS)

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L13.7

CONDITION VARIABLES - 2

 Condition variable

 Requires initialization

 Condition API calls

 wait() accepts a mutex parameter
 Releases lock, puts thread to sleep

 signal()
 Wakes up thread, awakening thread acquires lock

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L13.8

CONDITION VARIABLES - 3

pthread cond t c;

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/14/2018

L13.5Slides by Wes J. Lloyd

 Why would we want to put waiting threads on a queue… why
not use a stack?
 Queue (FIFO), Stack (LIFO)

 Using condition variables eliminates busy waiting by putting threads
to “sleep” and yielding the CPU.

 Why do we want to not busily wait for the lock to become
available?

 A program has 10-threads, where 9 threads are waiting. The
working thread finishes and broadcasts that the lock is
available. What happens next?

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L13.9

CONDITION VARIABLES - QUESTIONS

Matrix generation example

Chapter 30

signal.c

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L13.10

MATRIX GENERATOR

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/14/2018

L13.6Slides by Wes J. Lloyd

 The main thread, and worker thread (generates matrices)
share a single matrix pointer.

 What would happen if we don’t use a condition variable to
coordinate exchange of the lock?

 Let’s try “nosignal.c”

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L13.11

MATRIX GENERATOR

 Parent thread calls thr_join() and executes the comparison

 The context switches to the child

 The child runs thr_exit() and signals the parent, but the parent
is not waiting yet.

 The signal is lost

 The parent deadlocks

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L13.12

SUBTLE RACE CONDITION:
WITHOUT A WHILE

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/14/2018

L13.7Slides by Wes J. Lloyd

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma L13.13

PRODUCER / CONSUMER

 Producer

 Produces items – consider the child matrix maker

 Places them in a buffer
 Example: the buffer is only 1 element (single array pointer)

 Consumer

 Grabs data out of the buffer

 Our example: parent thread receives dynamically
generated matrices and performs an operation on them
 Example: calculates average value of every element (integer)

 Multithreaded web server example

 Http requests placed into work queue; threads process

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L13.14

PRODUCER / CONSUMER

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/14/2018

L13.8Slides by Wes J. Lloyd

 Producer / Consumer is also known as Bounded Buffer

 Bounded buffer

 Similar to piping output from one Linux process to another

 grep pthread signal.c | wc –l

 Synchronized access:
sends output from grep  wc as it is produced

 File stream

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L13.15

PRODUCER / CONSUMER - 2

 Buffer is a one element shared data structure (int)

 Producer “puts” data

 Consumer “gets” data

 Shared data structure requires synchronization

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L13.16

PUT/GET ROUTINES

1 int buffer;
2 int count = 0; // initially, empty
3
4 void put(int value) {
5 assert(count == 0);
6 count = 1;
7 buffer = value;
8 }
9
10 int get() {
11 assert(count == 1);
12 count = 0;
13 return buffer;
14 }

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/14/2018

L13.9Slides by Wes J. Lloyd

 Producer adds data

 Consumer removes data (busy waiting)

 Will this code work (spin locks) with 2-threads?
1. Producer 2. Consumer

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L13.17

PRODUCER / CONSUMER - 3

 The shared data structure needs synchronization!

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L13.18

PRODUCER / CONSUMER - 3

Producer

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/14/2018

L13.10Slides by Wes J. Lloyd

 This code as-is works with just:

(1) Producer

(1) Consumer

 If we scale to (2+) consumer’s it fails
 How can it be fixed ?

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L13.19

PRODUCER/CONSUMER - 4

20 if (count == 0) // c2
21 Pthread_cond_wait(&cond, &mutex); // c3
22 int tmp = get(); // c4
23 Pthread_cond_signal(&cond); // c5
24 Pthread_mutex_unlock(&mutex); // c6
25 printf("%d\n", tmp);
26 }
27 }

Consumer

 Two threads

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L13.20

EXECUTION TRACE:
NO WHILE, 1 PRODUCER, 2 CONSUMERS

Legend
c1/p1- lock
c2/p2- check var
c3/p3- wait
c4- put()
p4- get()
c5/p5- signal
c6/p6- unlock

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/14/2018

L13.11Slides by Wes J. Lloyd

 When producer threads awake, they do not check if there is
any data in the buffer…

 Need while, not if

 What if Tp puts a value, wakes Tc1 whom consumes the value

 Then Tp has a value to put, but Tc1’s signal on &cond wakes Tc2

 There is nothing for Tc2 consume, so Tc2 sleeps

 Tc1, Tc2, and Tp all sleep forever

 Tc1 needs to wake Tp to Tc2

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L13.21

PRODUCER/CONSUMER
SYNCHRONIZATION

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L13.22

EXECUTION TRACE:
WHILE, 1 CONDITION, 1 PRODUCER, 2 CONSUMERS

Legend
c1/p1- lock
c2/p2- check var
c3/p3- wait
c4- put()
p4- get()
c5/p5- signal
c6/p6- unlock

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/14/2018

L13.12Slides by Wes J. Lloyd

 Tc2 runs, no data to consume

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L13.23

EXECUTION TRACE – 2
WHILE, 1 CONDITION, 1 PRODUCER, 2 CONSUMERS

Legend
c1/p1- lock
c2/p2- check var
c3/p3- wait
c4- put()
p4- get()
c5/p5- signal
c6/p6- unlock

 Use two condition variables: empty & full

 One condition handles the producer

 the other the consumer

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L13.24

TWO CONDITIONS

1 cond_t empty, fill;
2 mutex_t mutex;
3
4 void *producer(void *arg) {
5 int i;
6 for (i = 0; i < loops; i++) {
7 Pthread_mutex_lock(&mutex);
8 while (count == 1)
9 Pthread_cond_wait(&empty, &mutex);
10 put(i);
11 Pthread_cond_signal(&fill);
12 Pthread_mutex_unlock(&mutex);
13 }
14 }
15

full;

&full);

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/14/2018

L13.13Slides by Wes J. Lloyd

 Change buffer from int, to int buffer[MAX]

 Add indexing variables

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L13.25

FINAL PRODUCER/CONSUMER

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L13.26

FINAL P/C - 2

full

(&full);

&full,

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/14/2018

L13.14Slides by Wes J. Lloyd

 Producer: only sleeps when buffer is full

 Consumer: only sleeps if buffers are empty

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L13.27

FINAL P/C - 3

 A condition that covers all cases (conditions):
 Excellent use case for pthread_cond_broadcast

 Consider memory allocation:
When a program deals with huge memory

allocation/deallocation on the heap
 Access to the heap must be managed when memory is

scarce

PREVENT: Out of memory:
- queue requests until memory is free

Which thread should be woken up?

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L13.28

COVERING CONDITIONS

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/14/2018

L13.15Slides by Wes J. Lloyd

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L13.29

COVERING CONDITIONS - 2

Broadcast

Check available memory

 Broadcast awakens all blocked threads requesting
memory

 Each thread evaluates if there’s enough memory:
(bytesLeft < size)
 Reject: requests that cannot be fulfilled- go back to sleep
 Insufficient memory

 Run: requests which can be fulfilled
 with newly available memory!

 Overhead
Many threads may be awoken which can’t execute

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L13.30

COVER CONDITIONS - 3

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/14/2018

L13.16Slides by Wes J. Lloyd

CHAPTER 32 –
CONCURRENCY

PROBLEMS

November 14, 2018
TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma L13.31

 Chapter 32:
 Non-deadlock concurrency bugs

 Deadlock causes

 Deadlock prevention

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L13.32

OBJECTIVES

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/14/2018

L13.17Slides by Wes J. Lloyd

 “Learning from Mistakes – A Comprehensive Study on
Real World Concurrency Bug Characteristics”

 Shan Lu et al.

 Architectural Support For Programming Languages and
Operating Systems (ASPLOS 2008), Seattle WA

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L13.33

CONCURRENCY BUGS IN
OPEN SOURCE SOFTWARE

Majority of concurrency bugs

Most common:

Atomicity violation: forget to use locks

Order violation: failure to initialize lock/condition
before use

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L13.34

NON-DEADLOCK BUGS

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/14/2018

L13.18Slides by Wes J. Lloyd

 Two threads access the proc_info field in struct thd

 NULL is 0 in C

 Serialized access to shared memory among separate
threads is not enforced (e.g. non-atomic)

 Simple example:

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L13.35

ATOMICITY VIOLATION - MYSQL

Programmer intended
variable to be accessed
atomically…

 Add locks for all uses of: thd->proc_info

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L13.36

ATOMICITY VIOLATION - SOLUTION

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/14/2018

L13.19Slides by Wes J. Lloyd

Desired order between memory accesses is flipped

E.g. something is checked before it is set

Example:

What if mThread is not initialized?

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L13.37

ORDER VIOLATION BUGS

 Use condition variable to enforce order

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L13.38

ORDER VIOLATION - SOLUTION

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/14/2018

L13.20Slides by Wes J. Lloyd

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L13.39

ORDER VIOLATION – SOLUTION 2

97% of Non-Deadlock Bugs were

Atomicity

Order violations

Consider what is involved in “spotting” these
bugs in code

Desire for automated tool support (IDE)

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L13.40

NON-DEADLOCK BUGS - 1

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/14/2018

L13.21Slides by Wes J. Lloyd

Atomicity
 How can we tell if a given variable is shared?
 Can search the code for uses

 How do we know if all instances of its use are shared?
 Can some non-synchronized (non-atomic) uses be legal?

 Before threads are created, after threads exit

 Must verify the scope

Order violation
Must consider all variable accesses

Must known desired order

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L13.41

NON-DEADLOCK BUGS - 2

 Presence of a cycle in code

 Thread 1 acquires lock L1, waits for lock L2

 Thread 2 acquires lock L2, waits for lock L1

 Both threads can block, unless
one manages to acquire both locks

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L13.42

DEADLOCK BUGS

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/14/2018

L13.22Slides by Wes J. Lloyd

 Complex code
 Must avoid circular dependencies – can be hard to find…

 Encapsulation hides potential locking conflicts
 Easy-to-use APIs embed locks inside

 Programmer doesn’t know they are there

 Consider the Java Vector class:

 Vector is thread safe (synchronized) by design

 If there is a v2.AddAll(v1); call at nearly the same time
deadlock could result

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L13.43

REASONS FOR DEADLOCKS

 Four conditions are required for dead lock to occur

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L13.44

CONDITIONS FOR DEADLOCK

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/14/2018

L13.23Slides by Wes J. Lloyd

 Build wait-free data structures

 Eliminate locks altogether

 Build structures using CompareAndSwap atomic CPU (HW)
instruction

 C pseudo code for CompareAndSwap

 Hardware executes this code atomically

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L13.45

PREVENTION – MUTUAL EXCLUSION

Recall atomic increment

Compare and Swap tries over and over until
successful

CompareAndSwap is guaranteed to be atomic

When it runs it is ALWAYS atomic (at HW level)

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L13.46

PREVENTION – MUTUAL EXCLUSION - 2

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/14/2018

L13.24Slides by Wes J. Lloyd

Consider list insertion

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L13.47

MUTUAL EXCLUSION: LIST INSERTION

 Lock based implementation

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L13.48

MUTUAL EXCLUSION – LIST INSERTION - 2

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/14/2018

L13.25Slides by Wes J. Lloyd

Wait free (no lock) implementation

Assign &head to n (new node ptr)

Only when head = n->next

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L13.49

MUTUAL EXCLUSION – LIST INSERTION - 3

1 void insert(int value) {
2 node_t *n = malloc(sizeof(node_t));
3 assert(n != NULL);
4 n->value = value;
5 do {
6 n->next = head;
7 } while (CompareAndSwap(&head, n->next, n));
8 }

 Four conditions are required for dead lock to occur

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L13.50

CONDITIONS FOR DEADLOCK

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/14/2018

L13.26Slides by Wes J. Lloyd

 Problem: acquire all locks atomically

 Solution: use a “lock” “lock”… (l ike a guard lock)

 Effective solution – guarantees no race conditions while
acquiring L1, L2, etc.

 Order doesn’t matter for L1, L2

 Prevention (GLOBAL) lock decreases concurrency of code
 Acts Lowers lock granularity

 Encapsulation: consider the Java Vector class…

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L13.51

PREVENTION LOCK – HOLD AND WAIT

 Four conditions are required for dead lock to occur

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L13.52

CONDITIONS FOR DEADLOCK

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/14/2018

L13.27Slides by Wes J. Lloyd

When acquiring locks, don’t BLOCK forever if
unavailable…

pthread_mutex_trylock() - try once

pthread_mutex_timedlock() - try and wait awhile

Eliminates deadlocks

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L13.53

PREVENTION – NO PREEMPTION

Can lead to livelock

 Two threads execute code in parallel 
always fail to obtain both locks

 Fix: add random delay

Allows one thread to win the
livelock race!

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L13.54

NO PREEMPTION – LIVELOCKS PROBLEM

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/14/2018

L13.28Slides by Wes J. Lloyd

 Four conditions are required for dead lock to occur

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L13.55

CONDITIONS FOR DEADLOCK

Provide total ordering of lock acquisition
throughout code
Always acquire locks in same order

L1, L2, L3, …

Never mix: L2, L1, L3; L2, L3, L1; L3, L1, L2….

Must carry out same ordering through entire
program

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L13.56

PREVENTION – CIRCULAR WAIT

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/14/2018

L13.29Slides by Wes J. Lloyd

Consider a smart scheduler

Scheduler knows which locks threads use

Consider this scenario:

4 Threads (T1, T2, T3, T4)

2 Locks (L1, L2)

 Lock requirements of threads:

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L13.57

DEADLOCK AVOIDANCE
VIA INTELLIGENT SCHEDULING

Scheduler produces schedule:

No deadlock can occur

Consider:

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L13.58

INTELLIGENT SCHEDULING - 2

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/14/2018

L13.30Slides by Wes J. Lloyd

 Scheduler produces schedule

 Scheduler must be conservative and not take risks

 Slows down execution – many threads

 There has been limited use of these approaches given the
difficulty having intimate lock knowledge about every
thread

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L13.59

INTELLIGENT SCHEDULING - 3

 Allow deadlock to occasionally occur and then take some
action.

 Example: When OS freezes, reboot…

 How often is this acceptable?
 Once per year

 Once per month

 Once per day

 Consider the effort tradeoff of finding every deadlock bug

 Many database systems employ deadlock detection and
recovery techniques.

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L13.60

DETECT AND RECOVER

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/14/2018

L13.31Slides by Wes J. Lloyd

CHAPTER 13:
ADDRESS SPACES

November 14, 2018
TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma L13.61

 Chapter 13
 Introduction to memory virtualization
 The address space
 Goals of OS memory virtualization

 Chapter 14
 Memory API
 Common memory errors

 Chapter 15
 Address translation
 Base and bounds
 HW and OS Support

 Chapter 16
 Memory segments, fragmentation

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L13.62

OBJECTIVES – MEMORY VIRTUALIATION

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/14/2018

L13.32Slides by Wes J. Lloyd

 What is memory virtualization?

 This is not “virtual” memory,

 Classic use of disk space as additional RAM

When available RAM was low

 Less common recently

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L13.63

MEMORY VIRTUALIZATION

 Presentation of system memory to each process

 Appears as if each process can access the entire
machine’s address space

 Each process’s view of memory is isolated from others

 Everyone has their own sandbox

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L13.64

MEMORY VIRTUALIZATION - 2

Process A Process B Process C

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/14/2018

L13.33Slides by Wes J. Lloyd

 Easier to program
 Programs don’t need to understand special memory models

 Abstraction enables sophisticated approaches to manage
and share memory among processes

 Isolation
 From other processes: easier to code

 Protection
 From other processes
 From programmer error (segmentation fault)

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L13.65

MOTIVATION FOR
MEMORY VIRTUALIZATION

 Load one process at a time into memory

Poor memory utilization

 Little abstraction

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L13.66

EARLY MEMORY MANAGEMENT

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/14/2018

L13.34Slides by Wes J. Lloyd

 Later machines supported running multiple
processes

 Swap out processes during I/O waits to
increase system uti lization and ef ficiency

 Swap entire memory of a process to disk
for context switch

 Too slow, especially for large processes

 Solution
 Leave processes in memory

 Need to protect from errant memory
accesses in a multiprocessing environment

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L13.67

MULTIPROGRAMMING
WITH SHARED MEMORY

Easy-to-use abstraction of physical
memory for a process

Main elements:

Program code

Stack

Heap

Example: 16KB address space

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L13.68

ADDRESS SPACE

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/14/2018

L13.35Slides by Wes J. Lloyd

 Code
 Program code

 Stack
 Program counter (PC)

 Local variables

 Parameter variables

 Return values (for functions)

 Heap
 Dynamic storage

 Malloc() new()

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L13.69

ADDRESS SPACE - 2

 Program code
 Static size

 Heap and stack
 Dynamic size

 Grow and shrink during program execution

 Placed at opposite ends

 Addresses are vir tual
 They must be physically mapped by the OS

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L13.70

ADDRESS SPACE - 3

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/14/2018

L13.36Slides by Wes J. Lloyd

Every address is virtual

OS translates virtual to physical addresses

EXAMPLE: virtual.c

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L13.71

VIRTUAL ADDRESSING

 Output from 64-bit Linux:

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L13.72

VIRTUAL ADDRESSING - 2

location of code: 0x400686
location of heap: 0x1129420
location of stack: 0x7ffe040d77e4

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/14/2018

L13.37Slides by Wes J. Lloyd

 Transparency

Memory shouldn’t appear virtualized to the program

 OS multiplexes memory among different jobs behind the
scenes

 Protection

 Isolation among processes

 OS itself must be isolated

 One program should not be able to affect another
(or the OS)

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L13.73

GOALS OF
OS MEMORY VIRTUALIZATION

Efficiency
Time
 Performance: virtualization must be fast

Space
 Virtualization must not waste space
 Consider data structures for organizing memory
 Hardware support TLB: Translation Lookaside Buffer

Goals considered when evaluating memory
virtualization schemes

November 14, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L13.74

GOALS - 2

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/14/2018

L13.38Slides by Wes J. Lloyd

QUESTIONS

