TCSS 422 A - Fall 2018
School of Engineering and Technology,

TCSS 422: OPERATING SYSTEMS
| |

Condition Variables,

Concurrency Problems,
Address Spaces

Wes J. Lloyd
School of Engineering and Technology,
University of Washington - Tacoma

TCSS422: Operating Systems [Fall 2018]

il b, 20 School of Engineering and Technology, University of Washington [fl Tacoma

11/14/2018

FEEDBACK FROM 11/7

= How can you display the thread ID for debugging
purposes?

mCan associate an unique int when creating pthread

November 14, 2018 TCS3422: Operating Systems [Fall 2018]
School of

Technology, University ington - Tacoma

132

FEEDBACK - 2

= Do you need multiple condition variables (In program 2)
or can you use just one?

= Coordinating the end of program 2
= Max LOOPS is reached
= Consumer threads: run out of matrices

November 14, 2018 TCS422: Operating Systems [Fall 2018]
School of

Technology, University ington - Tacoma

133

Slides by Wes J. Lloyd

L13.1

TCSS 422 A - Fall 2018 11/14/2018
School of Engineering and Technology,

OBJECTIVES

= Qulz 3 - Synchronized Array

= Multi-threaded Programming
= Chapter 30 - Condition Variables

= Chapter 32 - Concurrency Problems

= Memory Virtualization
= Chapters 13, 14, 15, 16....

November 14, 2018 ;crs‘sﬁilzz' Operating Systems [Fall 2018]

Technology, University ington - Tacoma

usa

CHAPTER 30 -
CONDITION VARIABLES

TCSS422: Operating Systems [Fall 2018]

ISR T 1, 2 School of Engineering and Technology, University of Washington -

CONDITION VARIABLES

=There are many cases where a thread wants to
wait for another thread before proceeding with
execution

= Consider when a precondition must be fulfilled
before it is meaningful to proceed ...

November 14, 2018 ;crs‘sﬁilzz' Operating Systems [Fall 2018]

Technology, University i Tacoma

u3ss

Slides by Wes J. Lloyd L13.2

TCSS 422 A — Fall 2018 11/14/2018
School of Engineering and Technology,

CONDITION VARIABLES - 2

= Support a signaling mechanism to alert
threads when preconditions have been satisfied

= Eliminate busy waiting

= Alert one or more threads to “consume” a result, or
respond to state changes in the application

= Threads are placed on an expllclt queue (FIFO) to wait
for signals

= Signal: wakes one thread
broadcast wakes all (ordering by the 0S)

TCS5422: Operating Systems [Fall 2018]

s 20 2 AT o T B o e s oy Tt A T T

| us7

CONDITION VARIABLES - 3

= Condition variable

pthread cond t c;

= Requires initialization

= Condition API calls

‘ pthread_cond_wait (pthread cond t *c, pthread mutex_t *m); wait ()

pthread_cond_signal (pthread_cond_t *c): signal ()

= wait() accepts a mutex parameter
= Releases lock, puts thread to sleep

= signal()
= Wakes up thread, awakening thread acquires lock

TCS5422: Operating Systems [Fall 2018]

W 2 2 e oolol Enpinearins ardlTechiolo syl e ity Ve hinetonETecoms

| ussg

CONDITION VARIABLES - QUESTIONS

= Why would we want to put walting threads on a queue... why
not use a stack?

= Queue (FIFO), Stack (LIFO)

= Using condition variables eliminates busy waiting by putting threads
to “sleep” and yielding the CPU.

= Why do we want to not buslly walt for the lock to become
available?

= A program has 10-threads, where 9 threads are waiting. The
working thread finishes and broadcasts that the lock is
available. What happens next?

TCSS422: Operating Systems [Fall 2018]

W 20 Z Seoo[of Enginearing andiechiiolosylU nversity Ve hington S Tecoms

| 139

Slides by Wes J. Lloyd L13.3

TCSS 422 A — Fall 2018
School of Engineering and Technology,

MATRIX GENERATOR

Matrix generation example

Chapter 30
signal.c

11/14/2018

TCS5422: Operating Systems [Fall 2018]

s 20 2 AT o T B o e s oy Tt A T T

113.10

MATRIX GENERATOR

= The main thread, and worker thread (generates matrices)
share a single matrix pointer.

= What would happen if we don’t use a condition variable to
coordinate exchange of the lock?

= Let’s try “nosignal.c”

TCS5422: Operating Systems [Fall 2018]

W 2 2 e oolol Enpinearins ardlTechiolo syl e ity Ve hinetonETecoms

u3.11

SUBTLE RACE CONDITION:

WITHOUT A WHILE

void thr_exit() {
done = 1;
pthread_cond_signal (sc);

}

void thr_join() {
if (done == 0)
Pthread_cond_wait (sc) ;

Lo e WwN

Jj

= Parent thread calls thr_join() and executes the comparison
= The context switches to the child

= The child runs thr_exit() and signals the parent, but the parent
is not waiting yet.

= The signal is lost
= The parent deadlocks

TCSS422: Operating Systems [Fall 2018]

W 20 Z Seoo[of Enginearing andiechiiolosylU nversity Ve hington S Tecoms

u3.12

Slides by Wes J. Lloyd

L13.4

TCSS 422 A — Fall 2018
School of Engineering and Technology,

PRODUCER / CONSUMER

Work Queue

11/14/2018

TCSS422: Operating Systems [Fall 2018]

petembe RO School of Engineering and Technology, University of Washington - Tacoma

113.13

PRODUCER / CONSUMER

= Producer
= Produces items - consider the child matrix maker
= Places them in a buffer
Example: the buffer is only 1 element (single array pointer)
= Consumer
= Grabs data out of the buffer
= Our example: parent thread receives dynamically
generated matrices and performs an operation on them
Example: calculates average value of every element (integer)
= Multithreaded web server example
= Http requests placed into work queue; threads process

TCS5422: Operating Systems [Fall 2018]

W 2 2 e oolol Enpinearins ardlTechiolo syl e ity Ve hinetonETecoms

314

PRODUCER / CONSUMER - 2

= Producer / Consumer is also known as Bounded Buffer

= Bounded buffer
= Similar to piping output from one Linux process to another
= grep pthread signal.c | wc -1

=Synchronized access:
sends output from grep > wc as it is produced

= File stream

TCSS422: Operating Systems [Fall 2018]

W 20 Z Seoo[of Enginearing andiechiiolosylU nversity Ve hington S Tecoms

113.15

Slides by Wes J. Lloyd

L13.5

TCSS 422 A — Fall 2018
School of Engineering and Technology,

PUT/GET ROUTINES

= Buffer is a one element shared data structure (int)
= Producer “puts” data

= Consumer “gets” data

= Shared data structure requires synchronization

11/14/2018

1 int buffer;
2 int count =
3
4 void put(int value) {
5 assert (count == 0);
6 count = 1;
7 buffer = value;
8 }
9
10 int get() {
11 assert (count == 1);
12 count = 0;
13 buffer;
14 }
November 14, 2018 TCS5422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma

13.16

PRODUCER / CONSUMER - 3

= Producer adds data
= Consumer removes data (busy waiting)

= Will this code work (spin locks) with 2-threads?
1. Producer 2. Consumer

2 *arg) (
2
3 = (int) arg;
4 = 0; i < loops; i++) (
5 put(i);
6)
2)
8
9 void *consumer(void *arg) {
10 int i7
a1 while (1) {
12 int tmp = get();
13 printf("sd\n", tmp);
14)
15)
November 14, 2018 TCS5422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma

113.17

= The shared data structure needs synchronization!
1 cond_t cond;
2 mutex_t mutex;
3
4 *producer (void *arg) {
5 € 11
6 (i =0; i< loops; i++) { Producer
Z Pthread mutex_lock(amutex);
g if (count == I)
9 Pthread_cond wait(&cond, smutex);
10 put (i) D
11 Pthread_cond_signal (&cond) ;
12 Pthread_mutex_unlock (smutex) ;
13 }
14)
15
16 *consumer (void *arg) {
17 t iy
18 (i =0; i< loops; i++) {
19 9 Pthread_mutex_lock (&mutex) ; c1
TCSS422: Operating Systems [Fall 2018]
W 20 Z | School of Engineering and Tec[hnology,luniversi(y orWazhingtonaTacoma 318

Slides by Wes J. Lloyd

L13.6

TCSS 422 A — Fall 2018
School of Engineering and Technology,

PRODUCER/CONSUMER - 4

20 (count == 0)

21 Pthread cond wait (&cond, &mutex);

22 int tmp = get();

23 Pthread cond_signal (&cond) ;

24 Pthread mutex unlock (&mutex);

25 printf("sd\n", tmp);

26 } Consumer
27 i

= This code as-is works with just:
(1) Producer
(1) Consumer

= |f we scale to (2+) consumer’s it fails
= How can it be fixed ?

11/14/2018

TCS5422: Operating Systems [Fall 2018]

s 20 2 AT o T B o e s oy Tt A T T

113.19

EXECUTION TRACE:

NO WHILE, 1 PRODUCER, 2 CONSUMERS

T, | State |T,| State |7, | State |Count| Comment
= Two threads ¢l | Running Ready Ready 0
2 | Running Ready Ready 0
» =) Sleep Ready Ready 0 Nothing to get
Legend Sleep Ready | pl 0
c1/p1-lock Sleep Ready | p2 0
c2/p2- check var Sleep Read p4 | Running 1 Buffer now full
c3/p3- wait Ready Ready pS | Running 1 7, awoken
c4- put() :ea:y Ready | p6 | Ruming 1
eady Ready pl | Running 1
p4- get() Ready Ready | p2 | Running 1
c5/p5- signal Ready Ready» p3 | Sleep 1 Buffer full: sleep
c6/p6- unlock Readylcl | Running Sleep 1 7,y sneaks in ...
Ready | c2 | Running Sleep 1
ReacylPc4 | Running Sleep 0 ...and grabs data
Ready | <5 | Running Ready 0 7, awoken
Reacy[lP<6 | Running Ready 0
‘ c4 | Running Ready Ready 0 Oh oh! No data

TCS5422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma L1320

November 14, 2018 |

PRODUCER/CONSUMER

SYNCHRONIZATION

= When producer threads awake, they do not check if there is
any data in the buffer...

= Need while, not if
= What if T, puts a value, wakes T,; whom consumes the value
® Then T, has a value to put, but T.,’s signal on &cond wakes T,
= There is nothing for T, consume, so T, sleeps

" T4, Teo, and T, all sleep forever

= T., needs to wake T, to T,

TCSS422: Operating Systems [Fall 2018]

W 20 Z Seoo[of Enginearing andiechiiolosylU nversity Ve hington S Tecoms

1321

Slides by Wes J. Lloyd

L13.7

TCSS 422 A — Fall 2018
School of Engineering and Technology,

11/14/2018

EXECUTION TRACE:
WHILE, 1 CONDITION, 1 PRODUCER, 2 CONSUMERS
T, | State |To| State |7, | state |Count| Comment
<1 | Running Ready Ready 0
2 | Running Ready Ready 0
=) Sleep Ready Ready 0 Nothing to get
Legend Sleep | c1 | Running Ready 0
C1/p1— lock Sleep <2 | Runmning Ready 0
c2/p2- check var Sleep | 3 Sleep Ready o Nothing to get
c3/p3- wait Sleep Sleep pl | Running 0
c4- put() Sleep Sleep | p2 | Ruming | O
P Sleep Sleep p4 | Running | Buffer now full
p4- get()l * Ready Sleep | p5 | Running 1 T, awoken
¢5/p5- signal Ready Sleep | p6 | Running 1
c6/p6- unlock Ready Sleep | pl | Running 1
Ready Sleep 02 | Running 1
Ready Sleep | p3 | Sleep 1 Must sleep (ful)
» 2 | Running Sleep Sleep 1 Recheck condition
¢4 | Running Sleep Sleep 0 T,y grabs data
* 5 | Running Ready Sleep o Oops! Woke T,
D b e e — usae |

EXECUTION TRACE - 2

= T, runs, no data to consume

WHILE, 1 CONDITION, 1 PRODUCER, 2 CONSUMERS

School of Engineering and Technology, University of Washington - Tacoma

Ta| state |r,| state |7, | state |cCount| Comment
Legend P [TTO P R i R : cont

c1/p1-lock 6 | Running Ready Sleep 0
c2/p2- check var cl | Running Ready Sleep 0
c3/p3- wait 2 | Running Ready Sleep 0
c4- put() =) Sleep Ready Sleep 0 Nothing to get
p4- get() Sleep| <2 | Running Sleep 0
05/p5— signal Sleep| =) Sleep Sleep 0 Everyone asleep ...
c6/p6- unlock

November 14, 2018 TCSS422: Operating Systems [Fall 2018] 1323

TWO CONDITIONS

= Use two condition variables: empty & full
= One condition handles the producer
= the other the consumer

School of Engineering and Technology, University of Washington - Tacoma

1
2 mutex_t mutex;
3
4 void *producer(void *arg) {
5 int i;
6 (i = 0; i < loops; i++) {
7 Pthread_mutex_lock (smutex) ;
8 count == 1)
9 ead_cond_wait (éempty, smutex);
10
11 _cond_signal(, &full);
12 Pth _mutex_unlock (smutex) ;
13 }
14 }
15
November 14, 2018 TCSS422: Operating Systems [Fall 2018] 1324

Slides by Wes J. Lloyd

L13.8

TCSS 422 A — Fall 2018
School of Engineering and Technology,

FINAL PRODUCER/CONSUMER

= Change buffer from int, to int buffer[MAX]
= Add indexing variables

11/14/2018

School of Engineering and Technology, University of Washington - Tacoma

1 int buffer[MAX];
2 int £i11 = 0;
3 int use = 0;
4 int count 07
B
6 void put(int value) {
7 buffer[fill] = value;
8 £ill = (fill + 1) % MAX;
8 count++;
10 }
11
12 int get() {
13 int tmp = buffer(use];
14 use (use + 1) % MAX;
18 count--;
16 return tmp;
17)
TCSS422: Operating Systems [Fall 2018
s 20 2 School of Engineering and rec[nnology,]umversuyquashingwn—rmma L1325 ‘
X
2
3
a *arg) {
5
6 for (i = 0; i < loops; i++) {
) Pthread_mutex_lock (smutex) ;
8 while (count == MAX)
9 Pthread_cond_wait (sempty, &mutex);
10 put (i)
11 Pthread_cond_signal (&full);
12 Pthread_mutex_unlock (smutex);
13 }
14 7
15
16 *consumer (void *arg) (
gl J | o #
18 r (i =0; i< loops; i++) {
19 Pthread_mutex_lock (smutex) ; // el
20 while (count == 0) // c2
21 Pthread_cond_wait(&full, smutex); // c3
22 int tmp = get():) ca
TCSS422: Operating Systems [Fall 2018
W 2 2 School of Engineering and rec[nnology,]umversuyquashingwn—rmma L1326 ‘
(Cont.)
23 Pthread_cond_signal (sempty) ;
24 Pthread_mutex_unlock (smutex);
25 printf("$d\n", tmp);
26 }
27 }
= Producer: only sleeps when buffer is full
= Consumer: only sleeps if buffers are empty
November 14, 2018 TCS5422: Operating Systems [Fall 2018] 1327 ‘

Slides by Wes J. Lloyd

L13.9

TCSS 422 A — Fall 2018 11/14/2018
School of Engineering and Technology,

COVERING CONDITIONS

= A condition that covers all cases (conditions):
= Excellent use case for pthread_cond_broadcast

= Consider memory allocation:
=When a program deals with huge memory
allocation/deallocation on the heap

= Access to the heap must be managed when memory is
scarce

PREVENT: Out of memory:
- queue requests until memory is free

= Which thread should be woken up?

TCS5422: Operating Systems [Fall 2018]
s 20 2 AT o T B o e s oy Tt A T T

11328

COVERING CONDITIONS - 2

al / W many k es of e heap are free?
= int bytesLeft = MAX HEAP SIZE;

-

4 eed lock an iti

5 cond_t c;

6 mutex_t m;

i

= cate (int size) {

10 Pthread mutex_lock (&m) ;

11 »mn: (bytesLeft < size) Check available memory
12 Pthread_cond_wait (&c, &m);

13 void *ptr i // get mem fr.
14 bytesLeft

15 Pthread_mutex_unlock (sm) ;

16 return ptr;

17 %

18

19 void free(void *ptr, int size) {

20 Pthread_mutex_lock (&m) 7

21 bytesLeft += size;

23 Pthread_mutex_unlock (sm) ;

24 }

TCS5422: Operating Systems [Fall 2018]
W 2 2 | e oolol Enpinearins ardlTechiolo syl e ity Ve hinetonETecoms

11329

COVER CONDITIONS - 3

= Broadcast awakens all blocked threads requesting
memory

= Each thread evaluates if there’s enough memory:
(bytesLeft < size)
= Reject: requests that cannot be fulfilled- go back to sleep
Insufficient memory
= Run: requests which can be fulfilled
with newly available memory!

= Overhead
= Many threads may be awoken which can’t execute

November 14, 2018 TCSS422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma L1330

Slides by Wes J. Lloyd L13.10

TCSS 422 A — Fall 2018 11/14/2018

School of Engineering and Technology,

CHAPTER 32 -

CONCURRENCY
PROBLEMS

TCSS422: Operating Systems [Fall 2018]
S 1, 2 School of Engineering and Technology, University of Washington -

OBJECTIVES

= Chapter 32:
= Non-deadlock concurrency bugs

= Deadlock causes

= Deadlock prevention

11332

TCS5422: Operating Systems [Fall 2018]
School of Engineeri Technology, University i Tacoma

November 14, 2018

CONCURRENCY BUGS IN
OPEN SOURCE SOFTWARE

= “Learning from Mistakes - A Comprehensive Study on
Real World Concurrency Bug Characteristics”

=Shan Lu et al.
= Architectural Support For Programming Languages and
Operating Systems (ASPLOS 2008), Seattle WA

Application What it does Non-Deadlock Deadlock
MySQL Database Server 14 9
Apache Web Server 13 4
Mozilla Web Browser 41 16

Open Office Office Suite 6 2

Total 74 31

11333

TCS5422: Operating Systems [Fall 2018]
School of Engineeri

November 14, 2018 et U i Tacoma

Slides by Wes J. Lloyd L13.11

TCSS 422 A — Fall 2018 11/14/2018
School of Engineering and Technology,

NON-DEADLOCK BUGS

= Majority of concurrency bugs

= Most common:
= Atomicity violation: forget to use locks

=Qrder violation: failure to initialize lock/condition
before use

TCS5422: Operating Systems [Fall 2018]

s 20 2 AT o T B o e s oy Tt A T T

1334

ATOMICITY VIOLATION - MYSQL

= Two threads access the proc_info field in struct thd
" NULL is 0 in C

= Serialized access to shared memory among separate
threads is not enforced (e.g. non-atomic)

= Simple example:

Threadl::
(thd->proc_info) {

. fputs (thd->proc_info , ..);
Programmer intended ___p Pt
variable to be accessed

atomically...

}

e

Thread2::
thd->proc_info = NULL;

TCS5422: Operating Systems [Fall 2018]

W 2 2 e oolol Enpinearins ardlTechiolo syl e ity Ve hinetonETecoms

11335

ATOMICITY VIOLATION - SOLUTION

" Add locks for all uses of: thd->proc_info

pthread mutex_t lock = PTHREAD MUTEX_INITTALIZER;

3
2
3 Threadi::
4 pthread mutex_lock(slock);
5 if(thd->proc_info) {

6

7

fputs (thd->proc_info , ..);
9 }
10 pthread mutex_unlock (slock);
11

12 Thread2::

13 pthread mutex_lock(slock);
14 thd->proc_info = NULL;

15 pthread mutex_unlock (slock);

TCSS422: Operating Systems [Fall 2018]

W 20 Z Seoo[of Enginearing andiechiiolosylU nversity Ve hington S Tecoms

11336

Slides by Wes J. Lloyd L13.12

TCSS 422 A — Fall 2018
School of Engineering and Technology,

ORDER VIOLATION BUGS

= Desired order between memory accesses is flipped

mE.g. something is checked before it is set
= Example:

mState = mThread->State

1 Threadi::

2 d init({

3 mThread = PR CreateThread (mMain, ..);
4 }

5

6 Thread2::

7 void mMain(..) {

8

9

1

= What if mThread is not initialized?

11/14/2018

TCS5422: Operating Systems [Fall 2018]

s 20 2 AT o T B o e s oy Tt A T T

11337

ORDER VIOLATION - SOLUTION

= Use condition variable to enforce order

1 pthread mutex t mtLock = PTHREAD MUTEX INITIALIZER;
pthread cond t mtCond = PTHREAD_COND_INITIALIZER;
int mtInit = 07

2
3

4

5 Thread 1::
6 void init(){
b
8

mThread = PR_CreateThread (mMain,..);

1 that the thread ha
mutex_lock (smtLock) ;

13 pthread_cond_signal (smtCond) ;
14 pthread mutex_unlock (amtLock) ;

18 Thread2::
19 void mMain(.) {

TCS5422: Operating Systems [Fall 2018]

W 2 2 e oolol Enpinearins ardlTechiolo syl e ity Ve hinetonETecoms

11338

ORDER VIOLATION - SOLUTION 2

21 jait for the thread to be initialized
22 pthread mutex_lock (smtLock) ;

23 while (mtInit == 0)

24 pthread cond wait (smtCond, &mtLock);
25 pthread mutex_unlock(&mtLock);

26

27 mState = mThread->State;

28

29)

TCSS422: Operating Systems [Fall 2018]

W 20 Z Seoo[of Enginearing andiechiiolosylU nversity Ve hington S Tecoms

11339

Slides by Wes J. Lloyd

L13.13

TCSS 422 A — Fall 2018
School of Engineering and Technology,

NON-DEADLOCK BUGS - 1

2 97% of Non-Deadlock Bugs were
=Atomicity
=Order violations

= Consider what is involved in “spotting” these
bugs in code

= Desire for automated tool support (IDE)

11/14/2018

November 14, 2018 TCS5422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma L340

NON-DEADLOCK BUGS - 2

= Atomicity
= How can we tell if a given variable is shared?
Can search the code for uses
=How do we know if all instances of its use are shared?
Can some non-synchronized (non-atomic) uses be legal?

Before threads are created, after threads exit
Must verify the scope

= Order violation

= Must consider all variable accesses
= Must known desired order

November 14, 2018 TCS5422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma L1341

DEADLOCK BUGS

&

= Presence of a cycle in code
= Thread 1 acquires lock L1, waits for lock L2
= Thread 2 acquires lock L2, waits for lock L1

Thread 1: Thread 2:

Holds
lock (L1) ; lock (L2) L
lock (L2) ; lock(Ll);

= Both threads can block, unless
one manages to acquire both locks

Wanted by @
5
3
&
@ fapmm e

Lock L2

Holds

November 14, 2018 TCSS422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma L1342

Slides by Wes J. Lloyd

L13.14

TCSS 422 A — Fall 2018
School of Engineering and Technology,

REASONS FOR DEADLOCKS

= Complex code

= Must avoid circular dependencies - can be hard to find...
= Encapsulation hides potential locking conflicts

= Easy-to-use APls embed locks inside

= Programmer doesn’t know they are there

= Consider the Java Vector class:

X Vector v1,v2;
v1.AddA1l(v2) 7

= Vector is thread safe (synchronized) by design
= If there is a v2.AddAll(v1); call at nearly the same time
deadlock could result

TCS5422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

November 14, 2018 L1343 ‘

11/14/2018

CONDITIONS FOR DEADLOCK

= Four conditions are required for dead lock to occur

Condition Description

Mutual Exclusion | Threads claim exclusive control of resources that they require.

Threads hold resources allocated to them while waiting for additional
resources

Hold-and-wait

No preemption | Resources cannot be forcibly removed from threads that are holding them.

There exists a circular chain of threads such that each thread holds one more

Cireular wait resources that are being requested by the next thread in the chain

TCS5422: Operating Systems [Fall 2018]

”
School of Engineering and Technology, University of Washington - Tacoma L34

November 14, 2018

PREVENTION - MUTUAL EXCLUSION

= Build wait-free data structures
= Eliminate locks altogether

= Build structures using CompareAndSwap atomic CPU (HW)
instruction

= C pseudo code for CompareAndSwap
= Hardware executes this code atomically

int CompareAndswap(int *address, int expected, int new)({
if (*address == expected)

*address = new;

return 17 s

Qo e wn R

TCSS422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma L1345

November 14, 2018

Slides by Wes J. Lloyd

L13.15

TCSS 422 A — Fall 2018

School of Engineering and Technology,

= Recall atomic increment

void AtomicIncrement (int *value,

int old = *value;

o wn e

}while (CompareAndswap (value,

int amount) (

old, old+amount)==0);

successful

= Compare and Swap tries over and over until

= CompareAndSwap is guaranteed to be atomic
= When it runs it is ALWAYS atomic (at HW level)

PREVENTION - MUTUAL EXCLUSION - 2

11/14/2018

November 14, 2018 TCS5422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma

L13.46

MUTUAL EXCLUSION:

= Consider list insertion

LIST INSERTION

void insert(int value){

assert(n != NULL);
n->value = value ;
n->next = head;
head =n;

Sauewn e

node t * n = malloc(sizeof (node t));

November 14, 2018 TCS5422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma

13.47

= Lock based implementation

void insert(int value){

1

2

3 assert(n != NULL);
4 n->value = value
5 lock(1listlock) 7

6 n->next = head;
i) head =n;

8 unlock(listlock) ;
9

node t * n = malloc(sizeof (node t));

MUTUAL EXCLUSION - LIST INSERTION - 2

November 14, 2018 TCSS422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma

113.48

Slides by Wes J. Lloyd

L13.16

TCSS 422 A — Fall 2018
School of Engineering and Technology,

MUTUAL EXCLUSION - LIST INSERTION - 3

= Wait free (no lock) implementation

oid insert(int value) {
node_t *n = malloc (sizeof (node_t));
assert(n != NULL);

n->value = value;
{
n->next = head;
} (CompareAndSwap (shead, n->next, n));

@ e W

}

= Assign &head to n (new node ptr)
= 0Only when head = n->next

11/14/2018

TCS5422: Operating Systems [Fall 2018]

s 20 2 AT o T B o e s oy Tt A T T

113.49

CONDITIONS FOR DEADLOCK

= Four conditions are required for dead lock to occur

Mutual Exclusion | Threads claim exclusive control of resources that they require.

. Threads hold resources allocated to them while waiting for additional
Hold-and-wait
resources

No preemption | Resources cannot be forcibly removed from threads that are holding them.

There exists a circular chain of threads such that each thread holds one more

Cireular wait resources that are being requested by the next thread in the chain

TCS5422: Operating Systems [Fall 2018]

W 2 2 e oolol Enpinearins ardlTechiolo syl e ity Ve hinetonETecoms

11350

PREVENTION LOCK - HOLD AND WAIT

= Problem: acquire all locks atomically
= Solution: use a “lock” “lock”... (like a guard lock)

lock (prevention) ;
lock(L1);
lock(L2);

S

unlock (prevention) ;

= Effective solution - guarantees no race conditions while
acquiring L1, L2, etc.

= Order doesn’t matter for L1, L2

= Prevention (GLOBAL) lock decreases concurrency of code
= Acts Lowers lock granularity

= Encapsulation: consider the Java Vector class...

TCSS422: Operating Systems [Fall 2018]

W 20 Z Seoo[of Enginearing andiechiiolosylU nversity Ve hington S Tecoms

1351

Slides by Wes J. Lloyd

L13.17

TCSS 422 A — Fall 2018
School of Engineering and Technology,

CONDITIONS FOR DEADLOCK

= Four conditions are required for dead lock to occur

Condition Description

Mutual Exclusion | Threads claim exclusive control of resources that they require.

Threads hold resources allocated to them while waiting for additional
resources

Hold-and-wait

»No preemption | Resources cannot be forcibly removed from threads that are holding them.

There exists a circular chain of threads such that each thread holds one more

Cireular wait resources that are being requested by the next thread in the chain

November 14, 2018 TCS5422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma L1352

11/14/2018

PREVENTION - NO PREEMPTION

= When acquiring locks, don’t BLOCK forever if
unavailable...

= pthread_mutex_trylock() - try once
mpthread_mutex_timedlock() - try and wait awhile

1 top:
L T———— NO
P Emy STOPPING
ANY
= Eliminates deadlocks TIME
November 14, 2018 TCSS422: Operating Systems [Fall 2018] 1353

School of Engineering and Technology, University of Washington - Tacoma

NO PREEMPTION - LIVELOCKS PROBLEM

= Can lead to livelock

top:

lock(L1)

if (tryLock(L2) == -1){
unlock(Ll) ;
goto top;

s

}

= Two threads execute code in parallel >
always fail to obtain both locks

= Fix: add random delay

=Allows one thread to win the i
livelock race! . 7

TCSS422: Operating Systems [Fall 2018]
W 20 Z Seoo[of Enginearing andiechiiolosylU nversity Ve hington S Tecoms

1354

Slides by Wes J. Lloyd

L13.18

TCSS 422 A — Fall 2018 11/14/2018
School of Engineering and Technology,

CONDITIONS FOR DEADLOCK

= Four conditions are required for dead lock to occur

Condition Description

Mutual Exclusion | Threads claim exclusive control of resources that they require.

Threads hold resources allocated to them while waiting for additional
resources

Hold-and-wait

No preemption | Resources cannot be forcibly removed from threads that are holding them.

Cliclsvisil There exists a circular chain of threads such that each thread holds one more
resources that are being requested by the next thread in the chain

| November 1, 2018 TCS5422: Operating Systems [Fall 2018] 1355

School of Engineering and Technology, University of Washington - Tacoma

PREVENTION - CIRCULAR WAIT

=Provide total ordering of lock acquisition
throughout code
=Always acquire locks in same order
=L1,L2,L3, ..
=Never mix: L2, L1, L3; L2, L3, L1; L3, L1, L2....

®Must carry out same ordering through entire
program

School of Engineering and Technology, University of Washington - Tacoma L1356

| T | TCSS422: Operating Systems [Fall 2018]

DEADLOCK AVOIDANCE

VIA INTELLIGENT SCHEDULING

= Consider a smart scheduler

=Scheduler knows which locks threads use

= Consider this scenario:
=4 Threads (T1, T2, T3, T4)
=2 Locks (L1, L2)

= Lock requirements of threads:

L1 yes yes no no
o [v [ve | v [m]
November 14, 2018 | TCSS422: Operating Systems [Fall 2018] 1357

School of Engineering and Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd L13.19

TCSS 422 A — Fall 2018 11/14/2018
School of Engineering and Technology,

INTELLIGENT SCHEDULING - 2

mScheduler produces schedule:

Y =

cPU 2 T2 ‘

= No deadlock can occur

= Consider:

L yes yes yes no
o [e [v | ye [o |

TCS5422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma L1358

November 14, 2018 |

INTELLIGENT SCHEDULING - 3

= Scheduler produces schedule

= Scheduler must be conservative and not take risks
= Slows down execution - many threads

= There has been limited use of these approaches given the
difficulty having intimate lock knowledge about every
thread

TCS5422: Operating Systems [Fall 2018]

W 2 2 e oolol Enpinearins ardlTechiolo syl e ity Ve hinetonETecoms

11359

DETECT AND RECOVER

= Allow deadlock to occasionally occur and then take some
action.

= Example: When OS freezes, reboot...

= How often is this acceptable?
= Once per year
= Once per month
= Once per day
= Consider the effort tradeoff of finding every deadlock bug

= Many database systems employ deadlock detection and
recovery techniques.

TCSS422: Operating Systems [Fall 2018]

W 20 Z Seoo[of Enginearing andiechiiolosylU nversity Ve hington S Tecoms

113,60

Slides by Wes J. Lloyd L13.20

TCSS 422 A - Fall 2018
School of Engineering and Technology,

CHAPTER 13:
ADDRESS SPACES

TCSS422: Operating Systems [Fall 2018]

S 1, 2 School of Engineering and Technology, University of Washington -

11/14/2018

= Chapter 13
= Introduction to memory virtualization
= The address space
= Goals of O0S memory virtualization

= Chapter 14

= Memory API

= Common memory errors
= Chapter 15

= Address translation

= Base and bounds

= HW and OS Support

= Chapter 16
= Memory segments, fragmentation

OBJECTIVES - MEMORY VIRTUALIATION

November 14, 2018 TCS3422: Operating Systems [Fall 2018]
School of

Technology, University i Tacoma

11362

MEMORY VIRTUALIZATION

= What is memory virtualization?

= This is not “virtual” memory,
= Classic use of disk space as additional RAM

= When available RAM was low

= Less common recently

November 14, 2018 TCS422: Operating Systems [Fall 2018]
School of

Technology, University i Tacoma

L1363

Slides by Wes J. Lloyd

L13.21

TCSS 422 A — Fall 2018
School of Engineering and Technology,

MEMORY VIRTUALIZATION - 2

= Presentation of system memory to each process

= Appears as if each process can access the entire
machine’s address space

= Each process’s view of memory is isolated from others
= Everyone has their own sandbox

Process A Process B Process C

11/14/2018

TCS5422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

November 14, 2018 | L13.64

MOTIVATION FOR

MEMORY VIRTUALIZATION

= Easier to program
= Programs don’t need to understand special memory models

= Abstraction enables sophisticated approaches to manage
and share memory among processes

= |solation
= From other processes: easier to code

= Protection
= From other processes
= From programmer error (segmentation fault)

TCS5422: Operating Systems [Fall 2018]

W 2 2 e oolol Enpinearins ardlTechiolo syl e ity Ve hinetonETecoms

L1365

EARLY MEMORY MANAGEMENT

= Load one process at a time into memory
= Poor memory utilization oK
uLittle abstraction

Operating System
(code, data, etc.)

64KB

Current
Program
(code, data, etc)

Physical Memory

TCSS422: Operating Systems [Fall 2018]

W 20 Z Seoo[of Enginearing andiechiiolosylU nversity Ve hington S Tecoms

L1366

Slides by Wes J. Lloyd

L13.22

TCSS 422 A — Fall 2018
School of Engineering and Technology,

11/14/2018

= Later machines supported running multiple 0KkB
Operating Syst:
processes i |
= Swap out processes during 1/0 waits to Frea
increase system utilization and efficiency 128K8 e
= Swap entire memory of a process to disk 102 |(0de data,etc)
for context switch sl
N 256KB
= Too slow, especially for large processes e
3208 o e
. rocess
= Solution> (code, data, etc)
384KB
= Leave processes in memory Foe
448KB
= Need to protect from errant memory — e
accesses in a multiprocessing environment Physical Memory
s 20 2 gﬁiifi g:geivr\aeﬁe"r?nsgv::\ednéc[:\:Iﬁ:;ys,luniversi(y of Washington - Tacoma L1367
= Easy-to-use abstraction of physical
0KB
memory for a process Program Code
1KB
Heap
2KB
= Main elements: l
=Program code (ree)
=Stack
"Hea T
p 15KB
Stack
16KB] 5
Address Space
=Example: 16KB address space -
W 2 2 Efﬁi:f& g:geivr\aeﬁe"r?nsgv::\ecm:c[;:lﬁggl\/s,luniversi(y of Washington - Tacoma L1368

ADDRESS SPACE - 2

= Malloc() new()

= Code
0KB
= Program code Program Code
1KB
Heap
= Stack 2B
= Program counter (PC) l
= Local variables
(free)
= Parameter variables -
= Return values (for functions) T
15k8
= Heap Stack
= Dynamic storage L6KE ‘Address Space

TCSS422: Operating Systems [Fall 2018]

W 20 Z Seoo[of Enginearing andiechiiolosylU nversity Ve hington S Tecoms

113,69

Slides by Wes J. Lloyd

L13.23

TCSS 422 A — Fall 2018
School of Engineering and Technology,

ADDRESS SPACE - 3

= Program code

. - 0KB
Static size Program Code
1KB
Heap
= Heap and stack 2B
= Dynamic size l
= Grow and shrink during program execution .
= Placed at opposite ends -
= Addresses are virtual T
158
= They must be physically mapped by the 0S Stack
16k8
Address Space

11/14/2018

TCS5422: Operating Systems [Fall 2018]
s 20 2 AT o T B o e s oy Tt A T T

113.70

VIRTUAL ADDRESSING

= Every address is virtual
=0S translates virtual to physical addresses

#include <stdio.h>
#include <stdlib.h>

int main(int arge, char *argv(l){

printf ("location of code : $p\n", (void *) main);
printf("location of heap : $p\n", (void *) malloc(l)):
int x = 3;

printf("location of stack : $p\n", (void *) &x);

return x;

}

=*EXAMPLE: virtual.c

TCSS422: Operating Systems [Fall 2018]
W 2 2 e oolol Enpinearins ardlTechiolo syl e ity Ve hinetonETecoms

1371

VIRTUAL ADDRESSING - 2

Address Space

School of Engineering and Technology, University of Washington - Tacoma

= Qutput from 64-bit Linux: (300000 Code
N 0x401000 et
location of code: 0x400686 Data
location of heap: 0x1129420 0xcf2000 Heap

location of stack: 0x7ffe040d77e4 13000 i
heap
(free)
stack
0x7fﬂ§ca28002 Stack

November 14, 2018 TCS5422: Operating Systems [Fall 2018]

| 13, 72—‘

Slides by Wes J. Lloyd

L13.24

TCSS 422 A - Fall 2018 11/14/2018
School of Engineering and Technology,

GOALS OF

0S MEMORY VIRTUALIZATION

= Transparency
= Memory shouldn’t appear virtualized to the program

= 0S multiplexes memory among different jobs behind the
scenes

= Protection
= |solation among processes
= 0S itself must be isolated

= One program should not be able to affect another
(or the 0S)

November 14, 2018 TCS5422: Operating Systems [Fall 2018]
School of

Technology, University i Tacoma

11373

= Efficiency
=Time
= Performance: virtualization must be fast

=Space
= Virtualization must not waste space
= Consider data structures for organizing memory
= Hardware support TLB: Translation Lookaside Buffer

= Goals considered when evaluating memory
virtualization schemes

November 14, 2018

TCS5422: Operating Systems [Fall 2018] 374
School of Engineeri i

Technology, University i Tacoma

QUESTIONS

Slides by Wes J. Lloyd L13.25

