
TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/14/2018

L12.1Slides by Wes J. Lloyd

November 7, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

Condition Variables,
Concurrency Problems

Wes J. Lloyd
School of Engineering and Technology,
University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

How does pthread_join() join thread values?

NAME

pthread_join - join with a terminated thread

SYNOPSIS

#include <pthread.h>

int pthread_join(pthread_t thread, void **retval);

2nd parameter provides a void ** pointer

Can return pointer to any user defined struct

November 7, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L12.2

FEEDBACK FROM 11/5

 Quiz 3 – Synchronized Array

 Multi-threaded Programming

 Chapter 30 – Condition Variables

 Chapter 32 – Concurrency Problems

 Memory Virtualization

 Chapters 13, 14, 15, 16….

November 7, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L12.3

OBJECTIVES

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/14/2018

L12.2Slides by Wes J. Lloyd

 Processes and Threads share the code segment.

 From: https://en.wikipedia.org/wiki/Copy-on-write

 When fork() is called, a copy of all parent process pages is
created, and loaded into a separate memory location by the
OS for the child process.

 But this is not needed in certain cases.

 If a child executes an "exec" call or exits very soon after the
fork(), there is no need to copy the parent process' pages.

 As an optimization, Linux uses a technique called
copy -on-write (COW).

November 7, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L12.4

FORK() COPY ON WRITE

 When the fork() occurs, parent process pages are *NOT*
copied for the child process.

 Pages are shared between the parent and child.
 When a process (parent or child) modifies a memory page, a

separate copy of the page is made for that process (parent or
child) which performed the modification.

 This process uses the newly copied page rather than the
shared one in future references.

 The other process (the one which did not modify the shared
page) continues to use the original copy of the page (which is
now no longer shared).

 This technique is called copy-on-write since the page is copied
only when some process modifies to it.

 Binary C files are unmodified, with COW they are shared

November 7, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L12.5

COPY ON WRITE - 2

CHAPTER 30 –
CONDITION VARIABLES

November 7, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma L12.6

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/14/2018

L12.3Slides by Wes J. Lloyd

 There are many cases where a thread wants to
wait for another thread before proceeding with
execution

Consider when a precondition must be fulfilled
before it is meaningful to proceed …

November 7, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L12.7

CONDITION VARIABLES

 Support a signaling mechanism to alert
threads when preconditions have been satisfied

 Eliminate busy waiting

 Alert one or more threads to “consume” a result, or
respond to state changes in the application

 Threads are placed on an explicit queue (FIFO) to wait
for signals

 Signal: wakes one thread
broadcast wakes all (ordering by the OS)

November 7, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L12.8

CONDITION VARIABLES - 2

 Condition variable

 Requires initialization

 Condition API calls

 wait() accepts a mutex parameter
 Releases lock, puts thread to sleep

 signal()
 Wakes up thread, awakening thread acquires lock

November 7, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L12.9

CONDITION VARIABLES - 3

pthread cond t c;

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/14/2018

L12.4Slides by Wes J. Lloyd

 Why would we want to put waiting threads on a queue… why
not use a stack?
 Queue (FIFO), Stack (LIFO)

 Using condition variables eliminates busy waiting by putting threads
to “sleep” and yielding the CPU.

 Why do we want to not busily wait for the lock to become
available?

 A program has 10-threads, where 9 threads are waiting. The
working thread finishes and broadcasts that the lock is
available. What happens next?

November 7, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L12.10

CONDITION VARIABLES - QUESTIONS

Matrix generation example

Chapter 30

signal.c

November 7, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L12.11

MATRIX GENERATOR

 The main thread, and worker thread (generates matrices)
share a single matrix pointer.

 What would happen if we don’t use a condition variable to
coordinate exchange of the lock?

 Let’s try “nosignal.c”

November 7, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L12.12

MATRIX GENERATOR

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/14/2018

L12.5Slides by Wes J. Lloyd

 Parent thread calls thr_join() and executes the comparison

 The context switches to the child

 The child runs thr_exit() and signals the parent, but the parent
is not waiting yet.

 The s ignal is lost

 The parent deadlocks

November 7, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L12.13

SUBTLE RACE CONDITION:
WITHOUT A WHILE

November 7, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L12.14

PRODUCER / CONSUMER

 Producer

 Produces items – consider the child matrix maker

 Places them in a buffer
 Example: the buffer is only 1 element (single array pointer)

 Consumer

 Grabs data out of the buffer

 Our example: parent thread receives dynamically
generated matrices and performs an operation on them
 Example: calculates average value of every element (integer)

 Multithreaded web server example

 Http requests placed into work queue; threads process

November 7, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L12.15

PRODUCER / CONSUMER

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/14/2018

L12.6Slides by Wes J. Lloyd

 Producer / Consumer is also known as Bounded Buffer

 Bounded buffer

 Similar to piping output from one Linux process to another

 grep pthread signal.c | wc –l

 Synchronized access:
sends output from grep  wc as it is produced

 File stream

November 7, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L12.16

PRODUCER / CONSUMER - 2

 Buffer is a one element shared data structure (int)

 Producer “puts” data

 Consumer “gets” data

 Shared data structure requires synchronization

November 7, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L12.17

PUT/GET ROUTINES

1 int buffer;
2 int count = 0; // initially, empty
3
4 void put(int value) {
5 assert(count == 0);
6 count = 1;
7 buffer = value;
8 }
9
10 int get() {
11 assert(count == 1);
12 count = 0;
13 return buffer;
14 }

 Producer adds data

 Consumer removes data (busy waiting)

 Will this code work (spin locks) with 2-threads?
1. Producer 2. Consumer

November 7, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L12.18

PRODUCER / CONSUMER - 3

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/14/2018

L12.7Slides by Wes J. Lloyd

 The shared data structure needs synchronization!

November 7, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L12.19

PRODUCER / CONSUMER - 3

Producer

QUESTIONS

