
TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/14/2018

L12.1Slides by Wes J. Lloyd

November 7, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

Condition Variables,
Concurrency Problems

Wes J. Lloyd
School of Engineering and Technology,
University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

How does pthread_join() join thread values?

NAME

pthread_join - join with a terminated thread

SYNOPSIS

#include <pthread.h>

int pthread_join(pthread_t thread, void **retval);

2nd parameter provides a void ** pointer

Can return pointer to any user defined struct

November 7, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L12.2

FEEDBACK FROM 11/5

 Quiz 3 – Synchronized Array

 Multi-threaded Programming

 Chapter 30 – Condition Variables

 Chapter 32 – Concurrency Problems

 Memory Virtualization

 Chapters 13, 14, 15, 16….

November 7, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L12.3

OBJECTIVES

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/14/2018

L12.2Slides by Wes J. Lloyd

 Processes and Threads share the code segment.

 From: https://en.wikipedia.org/wiki/Copy-on-write

 When fork() is called, a copy of all parent process pages is
created, and loaded into a separate memory location by the
OS for the child process.

 But this is not needed in certain cases.

 If a child executes an "exec" call or exits very soon after the
fork(), there is no need to copy the parent process' pages.

 As an optimization, Linux uses a technique called
copy -on-write (COW).

November 7, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L12.4

FORK() COPY ON WRITE

 When the fork() occurs, parent process pages are *NOT*
copied for the child process.

 Pages are shared between the parent and child.
 When a process (parent or child) modifies a memory page, a

separate copy of the page is made for that process (parent or
child) which performed the modification.

 This process uses the newly copied page rather than the
shared one in future references.

 The other process (the one which did not modify the shared
page) continues to use the original copy of the page (which is
now no longer shared).

 This technique is called copy-on-write since the page is copied
only when some process modifies to it.

 Binary C files are unmodified, with COW they are shared

November 7, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L12.5

COPY ON WRITE - 2

CHAPTER 30 –
CONDITION VARIABLES

November 7, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma L12.6

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/14/2018

L12.3Slides by Wes J. Lloyd

 There are many cases where a thread wants to
wait for another thread before proceeding with
execution

Consider when a precondition must be fulfilled
before it is meaningful to proceed …

November 7, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L12.7

CONDITION VARIABLES

 Support a signaling mechanism to alert
threads when preconditions have been satisfied

 Eliminate busy waiting

 Alert one or more threads to “consume” a result, or
respond to state changes in the application

 Threads are placed on an explicit queue (FIFO) to wait
for signals

 Signal: wakes one thread
broadcast wakes all (ordering by the OS)

November 7, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L12.8

CONDITION VARIABLES - 2

 Condition variable

 Requires initialization

 Condition API calls

 wait() accepts a mutex parameter
 Releases lock, puts thread to sleep

 signal()
 Wakes up thread, awakening thread acquires lock

November 7, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L12.9

CONDITION VARIABLES - 3

pthread cond t c;

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/14/2018

L12.4Slides by Wes J. Lloyd

 Why would we want to put waiting threads on a queue… why
not use a stack?
 Queue (FIFO), Stack (LIFO)

 Using condition variables eliminates busy waiting by putting threads
to “sleep” and yielding the CPU.

 Why do we want to not busily wait for the lock to become
available?

 A program has 10-threads, where 9 threads are waiting. The
working thread finishes and broadcasts that the lock is
available. What happens next?

November 7, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L12.10

CONDITION VARIABLES - QUESTIONS

Matrix generation example

Chapter 30

signal.c

November 7, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L12.11

MATRIX GENERATOR

 The main thread, and worker thread (generates matrices)
share a single matrix pointer.

 What would happen if we don’t use a condition variable to
coordinate exchange of the lock?

 Let’s try “nosignal.c”

November 7, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L12.12

MATRIX GENERATOR

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/14/2018

L12.5Slides by Wes J. Lloyd

 Parent thread calls thr_join() and executes the comparison

 The context switches to the child

 The child runs thr_exit() and signals the parent, but the parent
is not waiting yet.

 The s ignal is lost

 The parent deadlocks

November 7, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L12.13

SUBTLE RACE CONDITION:
WITHOUT A WHILE

November 7, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L12.14

PRODUCER / CONSUMER

 Producer

 Produces items – consider the child matrix maker

 Places them in a buffer
 Example: the buffer is only 1 element (single array pointer)

 Consumer

 Grabs data out of the buffer

 Our example: parent thread receives dynamically
generated matrices and performs an operation on them
 Example: calculates average value of every element (integer)

 Multithreaded web server example

 Http requests placed into work queue; threads process

November 7, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L12.15

PRODUCER / CONSUMER

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/14/2018

L12.6Slides by Wes J. Lloyd

 Producer / Consumer is also known as Bounded Buffer

 Bounded buffer

 Similar to piping output from one Linux process to another

 grep pthread signal.c | wc –l

 Synchronized access:
sends output from grep wc as it is produced

 File stream

November 7, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L12.16

PRODUCER / CONSUMER - 2

 Buffer is a one element shared data structure (int)

 Producer “puts” data

 Consumer “gets” data

 Shared data structure requires synchronization

November 7, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L12.17

PUT/GET ROUTINES

1 int buffer;
2 int count = 0; // initially, empty
3
4 void put(int value) {
5 assert(count == 0);
6 count = 1;
7 buffer = value;
8 }
9
10 int get() {
11 assert(count == 1);
12 count = 0;
13 return buffer;
14 }

 Producer adds data

 Consumer removes data (busy waiting)

 Will this code work (spin locks) with 2-threads?
1. Producer 2. Consumer

November 7, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L12.18

PRODUCER / CONSUMER - 3

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/14/2018

L12.7Slides by Wes J. Lloyd

 The shared data structure needs synchronization!

November 7, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L12.19

PRODUCER / CONSUMER - 3

Producer

QUESTIONS

