TCSS 422 A - Fall 2018
School of Engineering and Technology,

Slides by Wes J.

TCSS 422: OPERATING SYSTEMS

Condition Variables,
Concurrency Problems

Wes J. Lloyd
School of Engineering and Technology,
University of Washington - Tacoma

TCSS422: Operating Systems [Fall 2018]

Bovemberb2013 School of Engineering and Technology, University of Washington il Tacoma

FEEDBACK FROM 10/29

= Not clear on sloppy counter,
code example was covered quickly...

TCSS422: Operating Systems [Fall 2018]

November 5, 2013 School of Engineering and Technology, University of Washington - Tacoma

L11.2

Lioyd

11/4/2018

L11.1

TCSS 422 A — Fall 2018

School of Engineering and Technology,

SLOPPY COUNTER

® Provides single logical shared counter
* Implemented using local counters for each ~CPU core
4 CPU cores = 4 local counters & 1 global counter
Local counters are synchronized via local locks

= Global counter is updated periodically
Global counter has lock to protect global counter value

Sloppiness threshold (S):

Update interval for when local values are pushed to global counter

Small (S): more updates, more overhead
Large (S): fewer updates, more performant, less synchronized
® Local counters (threads) are not necessarily “pinned” to
specific CPU Cores

TCSS422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma L11.3

November 5, 2018

SLOPPY COUNTER - 2

® Update threshold (S) = 5
®m Separate threads update local CPU counters
® Threads push updates to global counter

Time L, Ly Lg Ly G
0 0 0 0 0 0
1 0 0 1 1 0
2 il 0 2 1 0
3 2 0 3 1 0
4 3 0 3 2 0
5 4 1 3 3 0
6 520 1 3 4 5 (from L)
7 0 2 4 530 10 (from L)

TCSS422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma L4

November 5, 2018

Slides by Wes J. Lloyd

11/4/2018

L11.2

TCSS 422 A — Fall 2018

School of Engineering and Technology,

THRESHOLD VALUE S

®m Consider 4 threads increment a counter 1000000 times each

" Low S > What is the consequence?
® High S > What is the consequence?

159
B 101
{ =
Q
]
Q
A,
o)
E 5+
-

0 T T T T T T T T i T
1 2 4 8 16 32 64 128 256 5121024
Sloppiness
TCSS422: Operating Systems [Fall 2018]
November 5, 2018 School of Engineering and Technology, University of Washington - Tacoma LiL5

SLOPPY COUNTER - EXAMPLE

Example implementation

Also with CPU affinity

TCSS422: Operating Systems [Fall 2018]
November 5, 2013 School of Engineering and Technology, University of Washington - Tacoma

L11.6

Slides by Wes J. Lloyd

11/4/2018

L11.3

TCSS 422 A - Fall 2018
School of Engineering and Technology,

OBJECTIVES

= Program 2
® Midterm Review

® Multi-threaded Programming
® Chapter 30 - Condition Variables
= Chapter 32 - Concurrency Problems

® Memory Virtualization
® Chapters 13, 14, 15, 16....

TCSS422: Operating Systems [Fall 2018]

fovemberoy2018 School of Engineering and Technology, University of Washington - Tacoma

L11.8

CHAPTER 30 -

CONDITION VARIABLES

TCSS422: Operating Systems [Fall 2018]

RlovembeBlanie School of Engineering and Technology, University of Washington -

Slides by Wes J. Lloyd

11/4/2018

L11.4

TCSS 422 A — Fall 2018
School of Engineering and Technology,

execution

CONDITION VARIABLES

®"There are many cases where a thread wants to
wait for another thread before proceeding with

®m Consider when a precondition must be fulfilled
before it is meaningful to proceed ...

November 5, 2018

TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L11.11

for signals

CONDITION VARIABLES - 2

B Support a signaling mechanism to alert «
threads when preconditions have been satisfied

® Eliminate busy waiting

® Alert one or more threads to “consume” a result, or
respond to state changes in the application

= Threads are placed on an explicit queue (FIFO) to wait

m Signal: wakes one thread
broadcast wakes all (ordering by the 0S)

November 5, 2018

TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L11.12

Slides by Wes J. Lloyd

11/4/2018

L11.5

TCSS 422 A — Fall 2018
School of Engineering and Technology,

Slides by Wes J.

CONDITION VARIABLES - 3

® Condition variable

H pthread cond t c; |

= Requires initialization

® Condition API calls

pthread cond wait (pthread cond t *c, pthread mutex t *m); // wait ()
pthread cond signal(pthread cond t *c); // signal ()

® wait() accepts a mutex parameter
= Releases lock, puts thread to sleep

® signal()
= Wakes up thread, awakening thread acquires lock

TCSS422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma L1113

November 5, 2018

CONDITION VARIABLES - QUESTIONS

= Why would we want to put waiting threads on a queue... why
hot use a stack?
= Queue (FIFO), Stack (LIFO)

= Using condition variables eliminates busy waiting by putting threads
to “sleep” and yielding the CPU.

= Why do we want to not busily wait for the lock to become
available?

®m A program has 10-threads, where 9 threads are waiting. The
working thread finishes and broadcasts that the lock is
available. What happens next?

TCSS422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma L1114

November 5, 2018

Lloyd

11/4/2018

L11.6

TCSS 422 A — Fall 2018
School of Engineering and Technology,

MATRIX GENERATOR

Matrix generation example

Chapter 30
signal.c

November 5, 2018

TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L11.15

MATRIX GENERATOR

® The main thread, and worker thread (generates matrices)
share a single matrix pointer.

® What would happen if we don’t use a condition variable to
coordinate exchange of the lock?

m Let’s try “nosignal.c”

November 5, 2018

TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L11.16

Slides by Wes J. Lloyd

11/4/2018

L11.7

TCSS 422 A — Fall 2018
School of Engineering and Technology,

SUBTLE RACE CONDITION:

WITHOUT A WHILE

void thr exit() {
done = 1;
Pthread cond_signal (&c);

}

void thr_join() {
if (done == 0)
Pthread cond wait(&c):

W=y Ul W)

}

® Parent thread calls thr_join() and executes the comparison
® The context switches to the child

is not waiting yet.
= The signal is lost
® The parent deadlocks

® The child runs thr_exit() and signals the parent, but the parent

TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

November 5, 2018

L11.17

PRODUCER / CONSUMER

Work Queue

< il

TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

November 5, 2018

L11.18

Slides by Wes J. Lloyd

11/4/2018

L11.8

TCSS 422 A — Fall 2018

School of Engineering and Technology,

PRODUCER / CONSUMER

= Producer
= Produces items - consider the child matrix maker
= Places them in a buffer
Example: the buffer is only 1 element (single array pointer)
= Consumer
= Grabs data out of the buffer
= Qur example: parent thread receives dynamically
generated matrices and performs an operation on them
Example: calculates average value of every element (integer)
® Multithreaded web server example
= Http requests placed into work queue; threads process

TCSS422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma L1119

November 5, 2018

PRODUCER / CONSUMER - 2

= Producer / Consumer is also known as Bounded Buffer

® Bounded buffer
= Similar to piping output from one Linux process to another
= grep pthread signal.c | wc -1

= Synchronized access:
sends output from grep = wc as it is produced

" File stream

TCSS422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma L11.20

November 5, 2018

Slides by Wes J. Lloyd

11/4/2018

L11.9

TCSS 422 A — Fall 2018

School of Engineering and Technology,

PUT/GET ROUTINES

m Buffer is a one element shared data structure (int)
® Producer “puts” data

® Consumer “gets” data

®m Shared data structure requires synchronization

@ oYU W N

int buffer;
int count = 0; // initially, empty

void put(int value) {
assert (count == 0);
count = 1;
buffer = value;

}

int get() {

assert (count == 1);
count = 0;
return buffer;

November 5, 2018

TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L11.21

PRODUCER / CONSUMER - 3

= Producer adds data
® Consumer removes data (busy waiting)
= Will this code work (spin locks) with 2-threads?

1. Producer 2. Consumer

[I R I N N

void *producer(void *arg) {

ot) il
int loops = (int) arg;
for (i = 0; i < loops; i++) {

put (1)
}
}

void *consumer (void *arg) {
IRE-IE
while (1) {
int tmp = get();
printf ("$d\n", tmp):

November 5, 2018

TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L11.22

Slides by Wes J. Lloyd

11/4/2018

L11.10

TCSS 422 A — Fall 2018

School of Engineering and Technology,

PRODUCER / CONSUMER - 3

® The shared data structure needs synchronization!

1 cond t cond;

2 mutex t mutex;

3

4 void *producer (void *arg) {

5 int i;

[3 for (i = 0; 1 < loops; i++) { Producer
7 » Pthread mutex lock(&mutex); // pl
8 if (count == 1) [/ p2
9 Pthread cond wait (&cond, &mutex); // p3
10 put(i): // pd
11 Pthread cond signal (sacond); // PS5
12 Pthread mutex unlock(smutex); // pé
13 }

14 }

15

16 void *consumer (void *arg) {

17 int i;

18 for (i = 0r 1 < loops; i++) {

19 » Pthread mutex lock(&amutex): 7 A ol

November 5, 2018

TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L11.23

PRODUCER/CONSUMER - 4

if (count == 0) // c2
Pthread cond wait (&cond, &mutex); // c3
int tmp = get(); // c4
Pthread cond signal (&cond) ; // c5
Pthread mutex unlock (&mutex) ; // c6
printf ("%d\n", tmp);
} Consumer

® This code as-is works with just:

(1) Producer
(1) Consumer

® |f we scale to (2+) consumer’s it fails

= How can it be fixed ?

November 5, 2018

TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L11.24

Slides by Wes J. Lloyd

11/4/2018

L11.11

TCSS 422 A — Fall 2018
School of Engineering and Technology,

Slides by Wes J.

EXECUTION TRACE:

NO WHILE, 1 PRODUCER, 2 CONSUMERS

® Two threads

Legend
c1/p1-lock

c2/p2- check var
c3/p3- wait

c4- put()

p4- get()

c5/p5- signal
c6/p6- unlock

T State Te2 State T, State Count Comment
el Running Ready Ready 0
c2 Running Ready Ready 0
» c3 Sleep Ready Ready 0 Nothing to get
Sleep Ready pl Running 0
Sleep Ready p2 Running 0
Sleep Read! p4 Running 1 Buffer now full
Ready Ready p5 Running 1 T4 awoken
Ready Ready p6 Running il
Ready Ready pl Running il
Ready Ready p2 Running 1
Ready Read! p3 Sleep 1 Buffer full; sleep
Ready o | Running Sleep 1 T, sneaks in ...
Ready £2 Running Sleep l
Ready] c4 Running Sleep 0 ... and grabs data
Ready c5 Running Ready 0 T, awoken
Ready c6 Running Ready 0
» c4 Running Ready Ready 0 Oh oh! No data

November 5, 2018

TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L11.25

PRODUCER/CONSUMER

SYNCHRONIZATION

® When producer threads awake, they do not check if there is
any data in the buffer...

= Need while, not if

= What if T, puts a value, wakes T,; whom consumes the value
= Then T, has a value to put, but T.,’s signal on &cond wakes T ,
® There is nothing for T, consume, so T, sleeps

" T.4, Tco, and T, all sleep forever

= T., needs to

wake T, to T,

November 5, 2018

TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L11.26

Lloyd

11/4/2018

L11.12

TCSS 422 A — Fall 2018 11/4/2018
School of Engineering and Technology,

EXECUTION TRACE:
WHILE, 1 CONDITION, 1 PRODUCER, 2 CONSUMERS
Ty State T State T, State Count Comment
el Running Ready Ready 0
2 Running Ready Ready 0
c3 Sleep Ready Ready 0 Nothing to get
Legend Sleep cl Running Ready 0
ci /p1 - lock Sleep c2 Running Ready 0
02/p2_ CheCk var Sleep c3 Sleep Ready 0 Nothing to get
C3/p3' Wa't Sleep Sleep pl Running 0
Sleep Sleep p2 Running 0
c4- put() by ;
eep Sleep p4 Running il Buffer now full
p4- get() * Ready Sleep p5 Running 1 T, awoken
CS/pS_ Slgnal Ready Sleep p6 Running 1
C6/p6' Un|OCk Ready Sleep pl Running al
Ready Sleep p2 Running i
Ready Sleep p3 Sleep il Must sleep (full)
» 2 Running Sleep Sleep 1 Recheck condition
el Running Sleep Sleep 0 T., grabs data
» 5 Running Ready Sleep 0 Oops! Woke T,
November 5, 2018 ggﬁiﬁfﬁf g’\)geiLa:er:’ignzy:;edm‘lf‘eg?wlzlzc?gly,s]University of Washington - Tacoma L1127

EXECUTION TRACE - 2

WHILE, 1 CONDITION, 1 PRODUCER, 2 CONSUMERS

= T., runs, no data to consume

T State [T State T, State Count Comment

Lﬁﬂ (cont)
C1/p1 - lock 6 Running Ready Sleep 0
02/p2' CheCk var cl Running Ready Sleep 0
C3/p3- Wa|t c2 Running Ready Sleep 0
04_ put() c3 Sleep Ready Sleep 0 Nothing to get
p4_ get() Sleep c2 Running Sleep 0
C5/p5' Slg nal Sleep c3 Sleep Sleep 0 Everyone asleep ...
c6/p6- unlock

TCSS422: Operating Systems [Fall 2018]

November 5, 2013 School of Engineering and Technology, University of Washington - Tacoma

L11.28

Slides by Wes J. Lloyd L11.13

TCSS 422 A — Fall 2018
School of Engineering and Technology,

TWO CONDITIONS

= Use two condition variables: empty & full
= One condition handles the producer
= the other the consumer

W oy U W N

ond t empty, full;
mutex t mutex;

void *producer (void *arg) {

int i;
for (1 = 0; i < loops; i++) {
Pthread mutex lock (&mutex) ;
while (count == 1)
Pthread cond wait (&empty, &mutex);
put (1) ;

Pthread cond signal (&full);
Pthread_mutex_unlock (&mutex) ;

November 5, 2018

TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L11.29

FINAL PRODUCER/CONSUMER

® Change buffer from int, to int buffer[MAX]
® Add indexing variables

[R R R N N N

int buffer [MAX]:

int £il11 = 0:

int use = 0;

int count = 0:

vold put (int value) ({
buffer[fill] = value;
£i11 = (fill + 1) % MAX;
count++;

int get() {
int tmp = buffer[use];
use = (use + 1) % MAX;
count--;
return tmp;

November 5, 2018

TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L11.30

Slides by Wes J. Lloyd

11/4/2018

L11.14

TCSS 422 A — Fall 2018 11/4/2018
School of Engineering and Technology,

L
2 mutex t mutex;
3
4 void *producer(void *arg) {
5 Ing d9;
6 for (i = 0; i < loops; i++) {
1 Pthread mutex lock(smutex); // pl
8 while (count == MAX) // p2
9 Pthread cond wait (sempty, &mutex); // p3
10 put (i) ; // pd
11 Pthread cond signal (&full); f/ 85
12 Pthread mutex unlock(amutex); // peé
13 }
14 1
15
16 void *consumer(void *arg) {
17 AR G
18 for (i = 0; 1 < loops; i++) {
19 Pthread mutex lock(amutex); /7 el
20 while (count == 0) ffe2
2l Pthreadﬁcondﬁwait(&full, amutex); il 3
22 int tmp = get(); ’ // cd
TCSS422: Operating Systems [Fall 2018
Nolemberii2018 School of Er’:gineerigngyand Te«EhnoIogy,]University of Washington - Tacoma L1131

FINAL P/C -3

(Cont.)

23 Pthread_cond signal (sempty): // c5
24 Pthread mutex unlock(amutex); // cé
25 printf ("$d\n", tmp);

26 }

27 }

® Producer: only sleeps when buffer is full
®m Consumer: only sleeps if buffers are empty

TCSS422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma L1132

November 5, 2018

Slides by Wes J. Lloyd L11.15

TCSS 422 A — Fall 2018
School of Engineering and Technology,

scarce

COVERING CONDITIONS

® A condition that covers all cases (conditions):
® Excellent use case for pthread_cond_broadcast

® Consider memory allocation:

= When a program deals with huge memory
allocation/deallocation on the heap

= Access to the heap must be managed when memory is

PREVENT: Out of memory:
- queue requests until memory is free

= Which thread should be woken up?

November 5, 2018

TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L11.33

COVERING CONDITIONS - 2

@~ U W N

// how many bytes of the heap are free?

int bytesLeft = MAX HEAP SIZE;

// need lock and condition too
cond_t c;
mutex t m;

void *

allocate(int size) {

Pthread _mutex_ lock (&m) ;
»while (bytesLeft < size)

Pthread_cond_wait(&c, &m):

Check available memory

void: *pEri= .ped // get mem from heap
bytesLeft -= size;

Pthread mutex unlock(am);

return ptr;

}

void free(void *ptr, int size) {
Pthread_mutex_lock(&m);

bytesLeft += size:;
< Dthread cond signal (§C)=
Pthread mutex unlock(&m);

}

November 5, 2018

TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L11.34

Slides by Wes J. Lloyd

11/4/2018

L11.16

TCSS 422 A — Fall 2018

School of Engineering and Technology,

COVER CONDITIONS - 3

®m Broadcast awakens all blocked threads requesting
memory

®= Each thread evaluates if there’s enough memory:
(bytesLeft < size)

= Reject: requests that cannot be fulfilled- go back to sleep
= Insufficient memory

= Run: requests which can be fulfilled
= with newly available memory!

= Overhead
= Many threads may be awoken which can’t execute

TCSS422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma L1135

November 5, 2018

CHAPTER 32 -

CONCURRENCY
PROBLEMS

TCSS422: Operating Systems [Fall 2018]

Sloiembeil 2l School of Engineering and Technology, University of Washington -

Slides by Wes J. Lloyd

11/4/2018

L11.17

TCSS 422 A — Fall 2018

School of Engineering and Technology,

® Chapter 32:

OBJECTIVES

= Non-deadlock concurrency bugs

= Deadlock causes

= Deadlock prevention

November 5, 2018

TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L11.37

CONCURRENCY BUGS IN

OPEN SOURCE SOFTWARE

Real World Concurrency Bug Characteristics”

=Shan Lu et al.

m “Learning from Mistakes - A Comprehensive Study on

= Architectural Support For Programming Languages and
Operating Systems (ASPLOS 2008), Seattle WA

Application What it does Non-Deadlock Deadlock
MySQL Database Server 14 9
Apache Web Server 13 4
Mozilla Web Browser 41 16

Open Office Office Suite 6 2

Total 74 31

November 5, 2018

TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L11.38

Slides by Wes J.

Lloyd

11/4/2018

L11.18

TCSS 422 A — Fall 2018
School of Engineering and Technology,

Slides by Wes J.

NON-DEADLOCK BUGS

= Majority of concurrency bugs

= Most common:
= Atomicity violation: forget to use locks

=Order violation: failure to initialize lock/condition

before use

November 5, 2018

TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L11.39

ATOMICITY VIOLATION - MYSQL

= Two threads access the proc_info field in struct thd
" NULL is0inC

m Serialized access to shared memory among separate

threads is not enforced (e.g. non-atomic)
B Simple example:

Programmer intended
variable to be accessed
atomically...

1 Threadl::

2 if (thd-»>proc info){

3

4 fputs (thd->proc_info , ..);
6 }

1

8 Thread2::

9

thd->proc_info = NULL;

November 5, 2018

TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L11.40

Lloyd

11/4/2018

L11.19

TCSS 422 A — Fall 2018

School of Engineering and Technology,

ATOMICITY VIOLATION - SOLUTION

= Add locks for all uses of: thd->proc_info

[e- T I R I UV

e N)
£ S Ry)

pthread mutex t lock = PTHREARD MUTEX INITIALIZER;

Threadl: :
pthread mutex lock(&lock);
if (thd->proc_info) {

fputs (thd->proc info , ..)i

}

pthread mutex unlock(&lock);

Thread2::

pthread mutex lock(&lock):
thd-»proc_info = NULL;
pthread mutex unlock (&lock);

November 5, 2018

TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L11.41

ORDER VIOLATION BUGS

Threadl: :
void init(){

mThread = PR_CreateThread(mMain, ..):
}

Thread2: :
vold mMain(.) {
mState = mThread->State

W @ U WM

}

®mWhat if mThread is not initialized?

®m Desired order between memory accesses is flipped
mE.g. something is checked before it is set
= Example:

November 5, 2018

TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L11.42

Slides by Wes J. Lloyd

11/4/2018

L11.20

TCSS 422 A — Fall 2018

School of Engineering and Technology,

ORDER VIOLATION - SOLUTION

® Use condition variable to enforce order

1 pthread mutex t mtLock = PTHREAD MUTEX INITIALIZER;
2 pthread cond t mtCond = PTHREAD COND INITIALIZER;
3 int mtInit = 0;

4

5 Thread 1::

3 void init () {

1

8 mThread = PR_CreateThread(mMain,..):

9

10 // signal that the thread has been created.
11 pthread mutex lock(&mtLock) ;

12 mtInit = 1;

13 pthread cond signal (&mtCond) ;

14 pthread mutex unlock(&mtLock);

15

le }

17

18 Thread2::

19 wvoid mMain{..){

20

November 5, 2018

TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L11.43

ORDER VIOLATION - SOLUTION 2

21 wait for the thread to be initialized ..
22 pthread mutex lock(&mtLock) ?

23 while (mtInit == 0)

24 pthread cond wait (amtCond, &mtLock):
25 pthread mutex unlock(&mtLock) :

26

27 mState = mThread->State;

28

29 }

November 5, 2018

TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L11.44

Slides by Wes J. Lloyd

11/4/2018

L11.21

TCSS 422 A — Fall 2018
School of Engineering and Technology,

Slides by Wes J.

NON-DEADLOCK BUGS - 1

m97% of Non-Deadlock Bugs were
= Atomicity
=Order violations

®m Consider what is involved in “spotting” these
bugs in code

m Desire for automated tool support (IDE)

TCSS422: Operating Systems [Fall 2018]

November 5, 2018 School of Engineering and Technology, University of Washington - Tacoma

L11.45

NON-DEADLOCK BUGS - 2

= Atomicity
= How can we tell if a given variable is shared?
Can search the code for uses
= How do we know if all instances of its use are shared?
Can some non-synchronized (non-atomic) uses be legal?
Before threads are created, after threads exit
Must verify the scope

®m Order violation
= Must consider all variable accesses
= Must known desired order

TCSS422: Operating Systems [Fall 2018]

November 5, 2013 School of Engineering and Technology, University of Washington - Tacoma

L11.46

Lloyd

11/4/2018

L11.22

TCSS 422 A — Fall 2018

School of Engineering and Technology,

Slides by Wes J.

DEADLOCK BUGS

® Presence of a cycle in code
® Thread 1 acquires lock L1, waits for lock L2
® Thread 2 acquires lock L2, waits for lock L1

Thread 1: Thread 2:
lock (L1); lock (L2);
lock (L2); lock(Ll);
2
m Both threads can block, unless ?g
one manages to acquire both locks 2
Lock L2

Holds
—_—

Holds

Lock L1

Aq pajuepy

November 5, 2018

TCSS422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma

L11.47

REASONS FOR DEADLOCKS

® Complex code
= Must avoid circular dependencies - can be hard to find...
® Encapsulation hides potential locking conflicts
= Easy-to-use APIs embed locks inside
= Programmer doesn’t know they are there
= Consider the Java Vector class:

aE Vector v1,v2;

2 v1.Addall (v2);

= Vector is thread safe (synchronized) by design

= If there is a v2.AddAll(v1); call at nearly the same time
deadlock could result

November 5, 2018

TCSS422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma

L11.48

Lloyd

11/4/2018

L11.23

TCSS 422 A — Fall 2018 11/4/2018
School of Engineering and Technology,

CONDITIONS FOR DEADLOCK

= Four conditions are required for dead lock to occur

Condition Description

Mutual Exclusion | Threads claim exclusive control of resources that they require.

Threads hold resources allocated to them while waiting for additional
resources

Hold-and-wait

No preemption | Resources cannot be forcibly removed from threads that are holding them.

There exists a circular chain of threads such that each thread holds one more

Circular wait resources that are being requested by the next thread in the chain

TCSS422: Operating Systems [Fall 2018]

November 5, 2018 School of Engineering and Technology, University of Washington - Tacoma

L11.49

PREVENTION - MUTUAL EXCLUSION

® Build wait-free data structures
= Eliminate locks altogether

= Build structures using CompareAndSwap atomic CPU (HW)
instruction

m C pseudo code for CompareAndSwap
® Hardware executes this code atomically

1 int CompareAndSwap(int *address, int expected, int new){
2 if(*address == expected){

3 *address = new;

4 return 1: // sHccess

3 }

4]

7

return 0;

TCSS422: Operating Systems [Fall 2018]

November 5, 2013 School of Engineering and Technology, University of Washington - Tacoma

L11.50

Slides by Wes J. Lloyd L11.24

TCSS 422 A — Fall 2018
School of Engineering and Technology,

® Recall atomic increment

void AtomicIncrement (int *value, int amount) {
do{
int old = *value:;
twhile(CompareAndsSwap(value, old, old+amount)==0);

[S =S UV SR

= Compare and Swap tries over and over until
successful

= CompareAndSwap is guaranteed to be atomic
®" When it runs it is ALWAYS atomic (at HW level)

PREVENTION - MUTUAL EXCLUSION - 2

TCSS422: Operating Systems [Fall 2018]

November 5, 2018 School of Engineering and Technology, University of Washington - Tacoma

L11.51

MUTUAL EXCLUSION: LIST INSERTION

®m Consider list insertion

1 void insert(int value){

2 node_ t * n = malloc(sizeof(node t));
3 assert(n != NULL);

4 n->value = value ;

Ly n->next = head;

6 head = n:

7

TCSS422: Operating Systems [Fall 2018]

November 5, 2013 School of Engineering and Technology, University of Washington - Tacoma

L11.52

Slides by Wes J. Lloyd

11/4/2018

L11.25

TCSS 422 A — Fall 2018
School of Engineering and Technology,

= | ock based implementation

WO - oy s W

void insert (int wvalue) {

node £t * n = malloc(sizeof(node t));
assert(n != NULL);
n->value = value ;

lock(listlock); // begin critical section
n->next = head;

head = n;

unlock(listlock) ; //end critical section

MUTUAL EXCLUSION - LIST INSERTION - 2

November 5, 2018

TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L11.53

= Wait free (no lock) implementation

O J o) Ul WM

}

void insert (int wvalue) {

node t *n = malloc(sizeof(node t));
assert (n != NULL);
n->value = value;
do {
n->next = head;
} while (CompareAndSwap (&head, n->next, n));

= Assign &head to n (nhew node ptr)
= Only when head = n->next

MUTUAL EXCLUSION - LIST INSERTION - 3

November 5, 2018

TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L11.54

Slides by Wes J. Lloyd

11/4/2018

L11.26

TCSS 422 A - Fall 2018 11/4/2018
School of Engineering and Technology,

QUESTIONS

Slides by Wes J. Lloyd L11.27

