
TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/4/2018

L11.1Slides by Wes J. Lloyd

November 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

Condition Variables,
Concurrency Problems

Wes J. Lloyd
School of Engineering and Technology,
University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

Not clear on sloppy counter,
code example was covered quickly…

November 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L11.2

FEEDBACK FROM 10/29

 Provides single logical shared counter

 Implemented using local counters for each ~CPU core
 4 CPU cores = 4 local counters & 1 global counter

 Local counters are synchronized via local locks

 Global counter is updated periodically
 Global counter has lock to protect global counter value

 Sloppiness threshold (S) :
Update interval for when local values are pushed to global counter

 Small (S): more updates, more overhead

 Large (S): fewer updates, more performant, less synchronized

 Local counters (threads) are not necessarily “pinned” to
specific CPU Cores

November 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L11.3

SLOPPY COUNTER

 Update threshold (S) = 5

 Separate threads update local CPU counters

 Threads push updates to global counter

November 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L11.4

SLOPPY COUNTER - 2

 Consider 4 threads increment a counter 1000000 times each

 Low S  What is the consequence?

 High S  What is the consequence?

November 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L11.5

THRESHOLD VALUE S

 Example implementation

 Also with CPU affinity

November 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L11.6

SLOPPY COUNTER - EXAMPLE

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/4/2018

L11.2Slides by Wes J. Lloyd

 Program 2

 Midterm Review

 Multi-threaded Programming

 Chapter 30 – Condition Variables

 Chapter 32 – Concurrency Problems

 Memory Virtualization

 Chapters 13, 14, 15, 16….

November 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L11.8

OBJECTIVES

CHAPTER 30 –
CONDITION VARIABLES

November 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma L11.10

 There are many cases where a thread wants to
wait for another thread before proceeding with
execution

Consider when a precondition must be fulfilled
before it is meaningful to proceed …

November 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L11.11

CONDITION VARIABLES

 Support a signaling mechanism to alert
threads when preconditions have been satisfied

 Eliminate busy waiting

 Alert one or more threads to “consume” a result, or
respond to state changes in the application

 Threads are placed on an explicit queue (FIFO) to wait
for signals

 Signal: wakes one thread
broadcast wakes all (ordering by the OS)

November 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L11.12

CONDITION VARIABLES - 2

 Condition variable

 Requires initialization

 Condition API calls

 wait() accepts a mutex parameter
 Releases lock, puts thread to sleep

 signal()
 Wakes up thread, awakening thread acquires lock

November 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L11.13

CONDITION VARIABLES - 3

pthread cond t c;

 Why would we want to put waiting threads on a queue… why
not use a stack?
 Queue (FIFO), Stack (LIFO)

 Using condition variables eliminates busy waiting by putting threads
to “sleep” and yielding the CPU.

 Why do we want to not busily wait for the lock to become
available?

 A program has 10-threads, where 9 threads are waiting. The
working thread finishes and broadcasts that the lock is
available. What happens next?

November 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L11.14

CONDITION VARIABLES - QUESTIONS

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/4/2018

L11.3Slides by Wes J. Lloyd

Matrix generation example

Chapter 30

signal.c

November 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L11.15

MATRIX GENERATOR

 The main thread, and worker thread (generates matrices)
share a single matrix pointer.

 What would happen if we don’t use a condition variable to
coordinate exchange of the lock?

 Let’s try “nosignal.c”

November 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L11.16

MATRIX GENERATOR

 Parent thread calls thr_join() and executes the comparison

 The context switches to the child

 The child runs thr_exit() and signals the parent, but the parent
is not waiting yet.

 The s ignal is lost

 The parent deadlocks

November 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L11.17

SUBTLE RACE CONDITION:
WITHOUT A WHILE

November 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L11.18

PRODUCER / CONSUMER

 Producer

 Produces items – consider the child matrix maker

 Places them in a buffer
 Example: the buffer is only 1 element (single array pointer)

 Consumer

 Grabs data out of the buffer

 Our example: parent thread receives dynamically
generated matrices and performs an operation on them
 Example: calculates average value of every element (integer)

 Multithreaded web server example

 Http requests placed into work queue; threads process

November 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L11.19

PRODUCER / CONSUMER

 Producer / Consumer is also known as Bounded Buffer

 Bounded buffer

 Similar to piping output from one Linux process to another

 grep pthread signal.c | wc –l

 Synchronized access:
sends output from grep  wc as it is produced

 File stream

November 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L11.20

PRODUCER / CONSUMER - 2

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/4/2018

L11.4Slides by Wes J. Lloyd

 Buffer is a one element shared data structure (int)

 Producer “puts” data

 Consumer “gets” data

 Shared data structure requires synchronization

November 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L11.21

PUT/GET ROUTINES

1 int buffer;
2 int count = 0; // initially, empty
3
4 void put(int value) {
5 assert(count == 0);
6 count = 1;
7 buffer = value;
8 }
9
10 int get() {
11 assert(count == 1);
12 count = 0;
13 return buffer;
14 }

 Producer adds data

 Consumer removes data (busy waiting)

 Will this code work (spin locks) with 2-threads?
1. Producer 2. Consumer

November 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L11.22

PRODUCER / CONSUMER - 3

 The shared data structure needs synchronization!

November 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L11.23

PRODUCER / CONSUMER - 3

Producer

 This code as-is works with just:

(1) Producer

(1) Consumer

 If we scale to (2+) consumer’s it fails
 How can it be fixed ?

November 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L11.24

PRODUCER/CONSUMER - 4

20 if (count == 0) // c2
21 Pthread_cond_wait(&cond, &mutex); // c3
22 int tmp = get(); // c4
23 Pthread_cond_signal(&cond); // c5
24 Pthread_mutex_unlock(&mutex); // c6
25 printf("%d\n", tmp);
26 }
27 }

Consumer

 Two threads

November 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L11.25

EXECUTION TRACE:
NO WHILE, 1 PRODUCER, 2 CONSUMERS

Legend
c1/p1- lock
c2/p2- check var
c3/p3- wait
c4- put()
p4- get()
c5/p5- signal
c6/p6- unlock

 When producer threads awake, they do not check if there is
any data in the buffer…

 Need while, not if

 What if Tp puts a value, wakes Tc1 whom consumes the value

 Then Tp has a value to put, but Tc1’s signal on &cond wakes Tc2

 There is nothing for Tc2 consume, so Tc2 sleeps

 Tc1, Tc2, and Tp all sleep forever

 Tc1 needs to wake Tp to Tc2

November 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L11.26

PRODUCER/CONSUMER
SYNCHRONIZATION

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/4/2018

L11.5Slides by Wes J. Lloyd

November 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L11.27

EXECUTION TRACE:
WHILE, 1 CONDITION, 1 PRODUCER, 2 CONSUMERS

Legend
c1/p1- lock
c2/p2- check var
c3/p3- wait
c4- put()
p4- get()
c5/p5- signal
c6/p6- unlock

 Tc2 runs, no data to consume

November 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L11.28

EXECUTION TRACE – 2
WHILE, 1 CONDITION, 1 PRODUCER, 2 CONSUMERS

Legend
c1/p1- lock
c2/p2- check var
c3/p3- wait
c4- put()
p4- get()
c5/p5- signal
c6/p6- unlock

 Use two condition variables: empty & full

 One condition handles the producer

 the other the consumer

November 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L11.29

TWO CONDITIONS

1 cond_t empty, fill;
2 mutex_t mutex;
3
4 void *producer(void *arg) {
5 int i;
6 for (i = 0; i < loops; i++) {
7 Pthread_mutex_lock(&mutex);
8 while (count == 1)
9 Pthread_cond_wait(&empty, &mutex);
10 put(i);
11 Pthread_cond_signal(&fill);
12 Pthread_mutex_unlock(&mutex);
13 }
14 }
15

full;

&full);

 Change buffer from int, to int buffer[MAX]

 Add indexing variables

November 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L11.30

FINAL PRODUCER/CONSUMER

November 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L11.31

FINAL P/C - 2

full

(&full);

&full,

 Producer: only sleeps when buffer is full

 Consumer: only sleeps if buffers are empty

November 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L11.32

FINAL P/C - 3

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/4/2018

L11.6Slides by Wes J. Lloyd

 A condition that covers all cases (conditions):
 Excellent use case for pthread_cond_broadcast

 Consider memory allocation:
When a program deals with huge memory

allocation/deallocation on the heap
 Access to the heap must be managed when memory is

scarce

PREVENT: Out of memory:
- queue requests until memory is free

Which thread should be woken up?

November 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L11.33

COVERING CONDITIONS

November 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L11.34

COVERING CONDITIONS - 2

Broadcast

Check available memory

 Broadcast awakens all blocked threads requesting
memory

 Each thread evaluates if there’s enough memory:
(bytesLeft < size)
 Reject: requests that cannot be fulfilled- go back to sleep
 Insufficient memory

 Run: requests which can be fulfilled
 with newly available memory!

 Overhead
Many threads may be awoken which can’t execute

November 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L11.35

COVER CONDITIONS - 3

CHAPTER 32 –
CONCURRENCY

PROBLEMS

November 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma L11.36

 Chapter 32:
 Non-deadlock concurrency bugs

 Deadlock causes

 Deadlock prevention

November 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L11.37

OBJECTIVES

 “Learning from Mistakes – A Comprehensive Study on
Real World Concurrency Bug Characteristics”

 Shan Lu et al.

 Architectural Support For Programming Languages and
Operating Systems (ASPLOS 2008), Seattle WA

November 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L11.38

CONCURRENCY BUGS IN
OPEN SOURCE SOFTWARE

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/4/2018

L11.7Slides by Wes J. Lloyd

Majority of concurrency bugs

Most common:

Atomicity violation: forget to use locks

Order violation: failure to initialize lock/condition
before use

November 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L11.39

NON-DEADLOCK BUGS

 Two threads access the proc_info field in struct thd

 NULL is 0 in C

 Serialized access to shared memory among separate
threads is not enforced (e.g. non-atomic)

 Simple example:

November 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L11.40

ATOMICITY VIOLATION - MYSQL

Programmer intended
variable to be accessed
atomically…

 Add locks for all uses of: thd->proc_info

November 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L11.41

ATOMICITY VIOLATION - SOLUTION

Desired order between memory accesses is flipped

E.g. something is checked before it is set

Example:

What if mThread is not initialized?

November 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L11.42

ORDER VIOLATION BUGS

 Use condition variable to enforce order

November 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L11.43

ORDER VIOLATION - SOLUTION

November 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L11.44

ORDER VIOLATION – SOLUTION 2

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/4/2018

L11.8Slides by Wes J. Lloyd

97% of Non-Deadlock Bugs were

Atomicity

Order violations

Consider what is involved in “spotting” these
bugs in code

Desire for automated tool support (IDE)

November 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L11.45

NON-DEADLOCK BUGS - 1

Atomicity
 How can we tell if a given variable is shared?
 Can search the code for uses

 How do we know if all instances of its use are shared?
 Can some non-synchronized (non-atomic) uses be legal?

 Before threads are created, after threads exit

 Must verify the scope

Order violation
Must consider all variable accesses

Must known desired order

November 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L11.46

NON-DEADLOCK BUGS - 2

 Presence of a cycle in code

 Thread 1 acquires lock L1, waits for lock L2

 Thread 2 acquires lock L2, waits for lock L1

 Both threads can block, unless
one manages to acquire both locks

November 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L11.47

DEADLOCK BUGS

 Complex code
 Must avoid circular dependencies – can be hard to find…

 Encapsulation hides potential locking conflicts
 Easy-to-use APIs embed locks inside

 Programmer doesn’t know they are there

 Consider the Java Vector class:

 Vector is thread safe (synchronized) by design

 If there is a v2.AddAll(v1); call at nearly the same time
deadlock could result

November 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L11.48

REASONS FOR DEADLOCKS

Four conditions are required for dead lock to occur

November 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L11.49

CONDITIONS FOR DEADLOCK

 Build wait-free data structures

 Eliminate locks altogether

 Build structures using CompareAndSwap atomic CPU (HW)
instruction

 C pseudo code for CompareAndSwap

 Hardware executes this code atomically

November 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L11.50

PREVENTION – MUTUAL EXCLUSION

TCSS 422 A – Fall 2018
School of Engineering and Technology,

11/4/2018

L11.9Slides by Wes J. Lloyd

Recall atomic increment

Compare and Swap tries over and over until
successful

CompareAndSwap is guaranteed to be atomic

When it runs it is ALWAYS atomic (at HW level)

November 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L11.51

PREVENTION – MUTUAL EXCLUSION - 2

Consider list insertion

November 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L11.52

MUTUAL EXCLUSION: LIST INSERTION

 Lock based implementation

November 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L11.53

MUTUAL EXCLUSION – LIST INSERTION - 2

Wait free (no lock) implementation

Assign &head to n (new node ptr)

Only when head = n->next

November 5, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L11.54

MUTUAL EXCLUSION – LIST INSERTION - 3

1 void insert(int value) {
2 node_t *n = malloc(sizeof(node_t));
3 assert(n != NULL);
4 n->value = value;
5 do {
6 n->next = head;
7 } while (CompareAndSwap(&head, n->next, n));
8 }

QUESTIONS

