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TCSS 422: OPERATING SYSTEMS

How long was it from when locks were first 
implemented to when they no longer stopped 
system interrupts?
Presumably when symmetric multiprocessing (SMP) 

support was added to Linux

Symmetric multiprocessing (SMP) refers to operating 
system support of computer systems having multiple CPU 
cores (in a single CPU) and even multiple physical CPUs
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 From O’Reilly Linux Device Drivers 3rd edition 
2005:
 https://www.oreilly.com/library/view/linux-device-drivers/0596005903/

 Early Linux kernels had few sources of concurrency
 Symmetric multiprocessing (SMP) systems not supported by 

the kernel (no multi-core CPU support)
 Concurrent execution only for servicing hardware interrupts
 Disabling interrupts no longer viable with multicores systems
 Linux kernel now supports running many programs 

simultaneously with far greater performance and scalabil ity
 Kernel programming is significantly more complicated
 Device driver programmers must factor concurrency into their 

designs and understand the facil it ies provided by the kernel 
for concurrency management
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FEEDBACK - 2

 How is a lock implementation considered CORRECT?  What 
must it do?

 Two threads A and B compete for a shared resource using 
locks.  How is an operating system lock implementation 
considered unfair?

 What is the use for condition variables?  For concurrent 
programming, what do condition variables provide that goes 
beyond what ordinary locks provide?
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 Program 2 – To be posted ~10/31, Discussed in class on 
11/5  

 Midterm – (Wed 10/31)

 Multi-threaded Programming

 Chapter 29 – Lock-based Data Structures

 Chapter 30 – Condition Variables
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CHAPTER 29 –
LOCK BASED

DATA STRUCTTURES
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TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma L10.7

Chapter 29
Concurrent Data Structures

Performance

 Lock Granularity
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Adding locks to data structures make them 
thread safe.

Considerations:

Correctness 

Performance

Lock granularity
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LOCK-BASED
CONCURRENT DATA STRUCTURES
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COUNTER STRUCTURE W/O LOCK

 Synchronization weary -- - not thread safe
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 Add lock to the counter

 Require lock to change data
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CONCURRENT COUNTER

 Decrease counter

 Get value
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 iMac: four core Intel 2.7 GHz i5 CPU

 Each thread increments counter 1,000,000 times
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CONCURRENT COUNTERS - PERFORMANCE

Traditional vs. sloppy counter
Sloppy Threshold (S) = 1024

Synchronized counter scales poorly.

 Achieve (N) per formance gain with (N) additional resources

 Throughput:

 Transactions per second

 1 core

 N = 100 tps

 10 core 

 N = 1000 tps
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 Provides single logical shared counter

 Implemented using local counters for each ~CPU core
 4 CPU cores = 4 local counters & 1 global counter

 Local counters are synchronized via local locks

 Global counter is updated periodically 
 Global counter has lock to protect global counter value

 Sloppiness threshold (S):
Update threshold of global counter with local values

 Small (S): more updates, more overhead

 Large (S): fewer updates, more performant, less synchronized

 Why this implementation?  
Why do we want counters local to each CPU Core?
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SLOPPY COUNTER

 Update threshold (S) = 5

 Synchronized across four CPU cores

 Threads update local CPU counters
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 Consider 4 threads increment a counter 1000000 times each

 Low S  What is the consequence?

 High S  What is the consequence?
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THRESHOLD VALUE S

 Example implementation

 Also with CPU affinity
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 Simplification - only basic l ist operations shown

 Structs and initialization:
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CONCURRENT LINKED LIST - 1

 Insert – adds item to l ist

 Everything is critical!
 There are two unlocks
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 Lookup – checks l ist for existence of item with key

 Once again everything is crit ical
 Note - there are also two unlocks 

October 29, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L10.21

CONCURRENT LINKED LIST - 3

 First Implementation:

 Lock everything inside Insert() and Lookup()

 If malloc() fails lock must be released
 Research has shown “exception-based control flow” to be error 

prone

 40% of Linux OS bugs occur in rarely taken code paths

 Unlocking in an exception handler is considered a poor coding 
practice

 There is nothing specifically wrong with this example however

 Second Implementation …
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 Init and Insert
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CCL – SECOND IMPLEMENTATION

 Lookup
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 Using a single lock for entire l ist is not very performant

 Users must “wait” in l ine for a single lock to access/modify 
any item

 Hand-over-hand-locking (lock coupling)
 Introduce a lock for each node of a list

 Traversal involves handing over previous node’s lock,
acquiring the next node’s lock…

 Improves lock granularity

 Degrades traversal performance

 Consider hybrid approach
 Fewer locks, but more than 1

 Best lock-to-node distribution?
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CONCURRENT LINKED LIST PERFORMANCE

 Improvement beyond a single master lock for a queue (FIFO)

 Two locks:
 One for the head of the queue

 One for the tail

 Synchronize enqueue and dequeue operations

 Add a dummy node
 Allocated in the queue initialization routine

 Supports separation of head and tail operations

 Items can be added and removed by separate threads at the 
same time
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 Remove from queue
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CONCURRENT QUEUE

 Add to queue
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Consider a simple hash table

Fixed (static) size

Hash maps to a bucket
 Bucket is implemented using a concurrent linked list 

 One lock per hash (bucket)

 Hash bucket is a linked lists
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CONCURRENT HASH TABLE

 Four threads – 10,000 to 50,000 inserts
 iMac with four-core Intel 2.7 GHz CPU
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INSERT PERFORMANCE –
CONCURRENT HASH TABLE

The simple concurrent hash table scales 
magnificently.
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CONCURRENT HASH TABLE

 Lock-free data structures in Java

 Java.util.concurrent.atomic package
 Classes:
 AtomicBoolean
 AtomicInteger
 AtomicIntegerArray
 AtomicIntegerFieldUpdater
 AtomicLong
 AtomicLongArray
 AtomicLongFieldUpdater
 AtomicReference

 See: https://docs.oracle.com/javase/7/docs/api/java 
/util/concurrent/atomic/package-summary.html
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QUESTIONS


