
TCSS 422 A – Fall 2018
School of Engineering and Technology,

10/29/2018

L10.1Slides by Wes J. Lloyd

October 29, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

Introduction to Locks,
Lock-Based Data Structures

Wes J. Lloyd
School of Engineering and Technology,
University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

How long was it from when locks were first
implemented to when they no longer stopped
system interrupts?
Presumably when symmetric multiprocessing (SMP)

support was added to Linux

Symmetric multiprocessing (SMP) refers to operating
system support of computer systems having multiple CPU
cores (in a single CPU) and even multiple physical CPUs

October 29, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L10.2

FEEDBACK FROM 10/24

TCSS 422 A – Fall 2018
School of Engineering and Technology,

10/29/2018

L10.2Slides by Wes J. Lloyd

 From O’Reilly Linux Device Drivers 3rd edition
2005:
 https://www.oreilly.com/library/view/linux-device-drivers/0596005903/

 Early Linux kernels had few sources of concurrency
 Symmetric multiprocessing (SMP) systems not supported by

the kernel (no multi-core CPU support)
 Concurrent execution only for servicing hardware interrupts
 Disabling interrupts no longer viable with multicores systems
 Linux kernel now supports running many programs

simultaneously with far greater performance and scalabil ity
 Kernel programming is significantly more complicated
 Device driver programmers must factor concurrency into their

designs and understand the facil it ies provided by the kernel
for concurrency management

October 29, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L10.3

FEEDBACK - 2

 How is a lock implementation considered CORRECT? What
must it do?

 Two threads A and B compete for a shared resource using
locks. How is an operating system lock implementation
considered unfair?

 What is the use for condition variables? For concurrent
programming, what do condition variables provide that goes
beyond what ordinary locks provide?

October 29, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L10.4

REVIEW

TCSS 422 A – Fall 2018
School of Engineering and Technology,

10/29/2018

L10.3Slides by Wes J. Lloyd

October 29, 2018
TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma L10.5

 Program 2 – To be posted ~10/31, Discussed in class on
11/5

 Midterm – (Wed 10/31)

 Multi-threaded Programming

 Chapter 29 – Lock-based Data Structures

 Chapter 30 – Condition Variables

October 29, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L10.6

OBJECTIVES

TCSS 422 A – Fall 2018
School of Engineering and Technology,

10/29/2018

L10.4Slides by Wes J. Lloyd

CHAPTER 29 –
LOCK BASED

DATA STRUCTTURES

October 29, 2018
TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma L10.7

Chapter 29
Concurrent Data Structures

Performance

 Lock Granularity

October 29, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L10.8

OBJECTIVES

TCSS 422 A – Fall 2018
School of Engineering and Technology,

10/29/2018

L10.5Slides by Wes J. Lloyd

Adding locks to data structures make them
thread safe.

Considerations:

Correctness

Performance

Lock granularity

October 29, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L10.9

LOCK-BASED
CONCURRENT DATA STRUCTURES

October 29, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L10.10

COUNTER STRUCTURE W/O LOCK

 Synchronization weary -- - not thread safe

TCSS 422 A – Fall 2018
School of Engineering and Technology,

10/29/2018

L10.6Slides by Wes J. Lloyd

 Add lock to the counter

 Require lock to change data

October 29, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L10.11

CONCURRENT COUNTER

 Decrease counter

 Get value

October 29, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L10.12

CONCURRENT COUNTER - 2

TCSS 422 A – Fall 2018
School of Engineering and Technology,

10/29/2018

L10.7Slides by Wes J. Lloyd

 iMac: four core Intel 2.7 GHz i5 CPU

 Each thread increments counter 1,000,000 times

October 29, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L10.13

CONCURRENT COUNTERS - PERFORMANCE

Traditional vs. sloppy counter
Sloppy Threshold (S) = 1024

Synchronized counter scales poorly.

 Achieve (N) per formance gain with (N) additional resources

 Throughput:

 Transactions per second

 1 core

 N = 100 tps

 10 core

 N = 1000 tps

October 29, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L10.14

PERFECT SCALING

TCSS 422 A – Fall 2018
School of Engineering and Technology,

10/29/2018

L10.8Slides by Wes J. Lloyd

 Provides single logical shared counter

 Implemented using local counters for each ~CPU core
 4 CPU cores = 4 local counters & 1 global counter

 Local counters are synchronized via local locks

 Global counter is updated periodically
 Global counter has lock to protect global counter value

 Sloppiness threshold (S):
Update threshold of global counter with local values

 Small (S): more updates, more overhead

 Large (S): fewer updates, more performant, less synchronized

 Why this implementation?
Why do we want counters local to each CPU Core?

October 29, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L10.15

SLOPPY COUNTER

 Update threshold (S) = 5

 Synchronized across four CPU cores

 Threads update local CPU counters

October 29, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L10.16

SLOPPY COUNTER - 2

TCSS 422 A – Fall 2018
School of Engineering and Technology,

10/29/2018

L10.9Slides by Wes J. Lloyd

 Consider 4 threads increment a counter 1000000 times each

 Low S What is the consequence?

 High S What is the consequence?

October 29, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L10.17

THRESHOLD VALUE S

 Example implementation

 Also with CPU affinity

October 29, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L10.18

SLOPPY COUNTER - EXAMPLE

TCSS 422 A – Fall 2018
School of Engineering and Technology,

10/29/2018

L10.10Slides by Wes J. Lloyd

 Simplification - only basic l ist operations shown

 Structs and initialization:

October 29, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L10.19

CONCURRENT LINKED LIST - 1

 Insert – adds item to l ist

 Everything is critical!
 There are two unlocks

October 29, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L10.20

CONCURRENT LINKED LIST - 2

TCSS 422 A – Fall 2018
School of Engineering and Technology,

10/29/2018

L10.11Slides by Wes J. Lloyd

 Lookup – checks l ist for existence of item with key

 Once again everything is crit ical
 Note - there are also two unlocks

October 29, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L10.21

CONCURRENT LINKED LIST - 3

 First Implementation:

 Lock everything inside Insert() and Lookup()

 If malloc() fails lock must be released
 Research has shown “exception-based control flow” to be error

prone

 40% of Linux OS bugs occur in rarely taken code paths

 Unlocking in an exception handler is considered a poor coding
practice

 There is nothing specifically wrong with this example however

 Second Implementation …

October 29, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L10.22

CONCURRENT LINKED LIST

TCSS 422 A – Fall 2018
School of Engineering and Technology,

10/29/2018

L10.12Slides by Wes J. Lloyd

 Init and Insert

October 29, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L10.23

CCL – SECOND IMPLEMENTATION

 Lookup

October 29, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L10.24

CCL – SECOND IMPLEMENTATION - 2

TCSS 422 A – Fall 2018
School of Engineering and Technology,

10/29/2018

L10.13Slides by Wes J. Lloyd

 Using a single lock for entire l ist is not very performant

 Users must “wait” in l ine for a single lock to access/modify
any item

 Hand-over-hand-locking (lock coupling)
 Introduce a lock for each node of a list

 Traversal involves handing over previous node’s lock,
acquiring the next node’s lock…

 Improves lock granularity

 Degrades traversal performance

 Consider hybrid approach
 Fewer locks, but more than 1

 Best lock-to-node distribution?

October 29, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma L10.25

CONCURRENT LINKED LIST PERFORMANCE

 Improvement beyond a single master lock for a queue (FIFO)

 Two locks:
 One for the head of the queue

 One for the tail

 Synchronize enqueue and dequeue operations

 Add a dummy node
 Allocated in the queue initialization routine

 Supports separation of head and tail operations

 Items can be added and removed by separate threads at the
same time

October 29, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L10.26

MICHAEL AND SCOTT CONCURRENT QUEUES

TCSS 422 A – Fall 2018
School of Engineering and Technology,

10/29/2018

L10.14Slides by Wes J. Lloyd

 Remove from queue

October 29, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L10.27

CONCURRENT QUEUE

 Add to queue

October 29, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L10.28

CONCURRENT QUEUE - 2

TCSS 422 A – Fall 2018
School of Engineering and Technology,

10/29/2018

L10.15Slides by Wes J. Lloyd

Consider a simple hash table

Fixed (static) size

Hash maps to a bucket
 Bucket is implemented using a concurrent linked list

 One lock per hash (bucket)

 Hash bucket is a linked lists

October 29, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L10.29

CONCURRENT HASH TABLE

 Four threads – 10,000 to 50,000 inserts
 iMac with four-core Intel 2.7 GHz CPU

October 29, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L10.30

INSERT PERFORMANCE –
CONCURRENT HASH TABLE

The simple concurrent hash table scales
magnificently.

TCSS 422 A – Fall 2018
School of Engineering and Technology,

10/29/2018

L10.16Slides by Wes J. Lloyd

October 29, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L10.31

CONCURRENT HASH TABLE

 Lock-free data structures in Java

 Java.util.concurrent.atomic package
 Classes:
 AtomicBoolean
 AtomicInteger
 AtomicIntegerArray
 AtomicIntegerFieldUpdater
 AtomicLong
 AtomicLongArray
 AtomicLongFieldUpdater
 AtomicReference

 See: https://docs.oracle.com/javase/7/docs/api/java
/util/concurrent/atomic/package-summary.html

October 29, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L10.32

LOCK-FREE DATA STRUCTURES

TCSS 422 A – Fall 2018
School of Engineering and Technology,

10/29/2018

L10.17Slides by Wes J. Lloyd

QUESTIONS

