TCSS 422 A — Fall 2018

School of Engineering and Technology,

Slides by Wes J.

TCSS 422: OPERATING SYSTEMS

Introduction to Locks,
Lock-Based Data Structures

Wes J. Lloyd

School of Engineering and Technology,
University of Washington - Tacoma

October 29, 2018

TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington il Tacoma

FEEDBACK FROM 10/24

®" How long was it from when locks were first

implemented to when they no longer stopped

system interrupts?

= Presumably when symmetric multiprocessing (SMP)

support was added to Linux

= Symmetric multiprocessing (SMP) refers to operating

system support of computer systems having multiple CPU

cores (in a single CPU) and even multiple physical CPUs

October 29, 2018

TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L10.2

Lioyd

10/29/2018

L10.1

TCSS 422 A — Fall 2018

School of Engineering and Technology,

FEEDBACK - 2

" From O’Reilly Linux Device Drivers 3'd edition
2005:
= https://www.oreilly.com/library/view/linux-device-drivers/0596005903/
® Early Linux kernels had few sources of concurrency

B Symmetric multiprocessing (SMP) systems not supported by
the kernel (no multi-core CPU support)

® Concurrent execution only for servicing hardware interrupts

® Disabling interrupts no longer viable with multicores systems

® Linux kernel now supports running many programs
simultaneously with far greater performance and scalability

®m Kernel programming is significantly more complicated

® Device driver programmers must factor concurrency into their
designs and understand the facilities provided by the kernel
for concurrency management

TCSS422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma L103

October 29, 2018

REVIEW

® How is a lock implementation considered CORRECT? What
must it do?

= Two threads A and B compete for a shared resource using
locks. How is an operating system lock implementation
considered unfair?

® What is the use for condition variables? For concurrent
programming, what do condition variables provide that goes
beyond what ordinary locks provide?

TCSS422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma L104

October 29, 2018

Slides by Wes J. Lloyd

10/29/2018

L10.2

TCSS 422 A — Fall 2018
School of Engineering and Technology,

W On November 7th in class, would you rather?

Have an in-class programming activity
scored as a quiz for the first hour
~3:40-4:40pm

Begin class late, go from 4:40-6:40pm,
and have no in class programming
activity (quiz)

Have an in-class programming activity
scored as a quiz from 3:40-4:40pm,
and a full lecture 4:40-6:40pm

No preference

.. Start the presentation to see live content. Still no live content? Install the app or get help at PollEv.com/app

OBJECTIVES

11/5
® Midterm - (Wed 10/31)

= Multi-threaded Programming
B Chapter 29 - Lock-based Data Structures
®m Chapter 30 - Condition Variables

® Program 2 - To be posted ~10/31, Discussed in class on

TCSS422: Operating Systems [Fall 2018]

October 29, 2018 School of Engineering and Technology, University of Washington - Tacoma

L10.6

Slides by Wes J. Lloyd

10/29/2018

L10.3

TCSS 422 A - Fall 2018
School of Engineering and Technology,

Slides by Wes J.

CHAPTER 29 -
LOCK BASED
DATA STRUCTTURES

TCSS422: Operating Systems [Fall 2018]

(O e, A School of Engineering and Technology, University of Washington - o

OBJECTIVES

® Chapter 29

= Concurrent Data Structures
= Performance
= Lock Granularity

TCSS422: Operating Systems [Fall 2018]

October 29, 2018 School of Engineering and Technology, University of Washington - Tacoma

L10.8

Lioyd

10/29/2018

L10.4

TCSS 422 A — Fall 2018

School of Engineering and Technology,

LOCK-BASED

CONCURRENT DATA STRUCTURES

= Adding locks to data structures make them
thread safe.

® Considerations:

=Correctness
= Performance
*Lock granularity

TCSS422: Operating Systems [Fall 2018]

October 29, 2013 School of Engineering and Technology, University of Washington - Tacoma

L10.9

COUNTER STRUCTURE W/0 LOCK

®m Synchronization weary --- not thread safe

1 typedef struct _ counter t |
2 int value:

3 } counter t;

4

5 void init (counter t *c) {

3 c->value = 0;

7 }

8

9 void increment(counter t *c) {
10 c->value++;

11 H

12

13 void decrement (counter t *c) {
14 c->value--;

15 1

16

15 int get({counter t *c) {

18 return c->value;

19 1

TCSS422: Operating Systems [Fall 2018]

October 29, 2018 School of Engineering and Technology, University of Washington - Tacoma

L10.10

Slides by Wes J. Lloyd

10/29/2018

L10.5

TCSS 422 A — Fall 2018
School of Engineering and Technology,

CONCURRENT COUNTER

1 struct counter t |

2 int value;

3 pthread lock t lock;

4 } counter t;

5

6 void init (counter t *c) {

7 c->value = 0;

8 Pthread mutex init (&c->lock, NULL);
9 1

10

i | void increment (counter t *c) {

12 Pthread mutex lock(&c->lock):
13 c->value++;

14 Pthread mutex unlock(&c->lock):
15 }

16

® Add lock to the counter
® Require lock to change data

October 29, 2018

TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L10.11

® Get value

CONCURRENT COUNTER - 2

® Decrease counter

(Cont.)

17 void decrement (counter t *c) {

18 Pthread mutex lock(&c->lock):
15 c->value-—;

20 Pthread mutex unlock(&c->lock):
21 }

22

23 int get(counter t *c) {

24 Pthread mutex lock(&c->lock);
25 int rc = c->»value;

26 Pthread mutex unlock(&c—>lock);
27 return rc;

28 }

October 29, 2018

TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L10.12

Slides by Wes J. Lloyd

10/29/2018

L10.6

TCSS 422 A — Fall 2018
School of Engineering and Technology,

® Each thread i

154
X Precise
© Sloppy

o
L

o
f

Time (seconds)

® Mac: four core Intel 2.7 GHz i5 CPU

ncrements counter 1,000,000 times

2 3 4 Sloppy Threshold (S) = 1024
Threads

scales poorly

Traditional vs. sloppy counter

CONCURRENT COUNTERS - PERFORMANCE

October 29, 2018

TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L10.13

® Throughput:

® 1 core

"N =100 tps

® 10 core
"N =1000 tps

PERFECT SCALING

m Achieve (N) performance gain with (N) additional resources

® Transactions per second

October 29, 2018

TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L10.14

Slides by Wes J. Lloyd

10/29/2018

L10.7

TCSS 422 A — Fall 2018

School of Engineering and Technology,

SLOPPY COUNTER

® Provides single logical shared counter
* Implemented using local counters for each ~CPU core
4 CPU cores = 4 local counters & 1 global counter
Local counters are synchronized via local locks
= Global counter is updated periodically
Global counter has lock to protect global counter value

Sloppiness threshold (S):
Update threshold of global counter with local values

Small (S): more updates, more overhead
Large (S): fewer updates, more performant, less synchronized
® Why this implementation?
Why do we want counters local to each CPU Core?

TCSS422: Operating Systems [Fall 2018]

October 29, 2013 School of Engineering and Technology, University of Washington - Tacoma

L10.15

SLOPPY COUNTER - 2

® Update threshold (S) = 5
®m Synchronized across four CPU cores
® Threads update local CPU counters

Time L, Ly Lg Ly G
0 0 0 0 0 0
1 0 0 1 1 0
2 il 0 2 1 0
3 2 0 3 1 0
4 3 0 3 2 0
5 4 1 3 3 0
6 520 1 3 4 5 (from L)
7 0 2 4 530 10 (from L)

TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

October 29, 2018

L10.16

Slides by Wes J. Lloyd

10/29/2018

L10.8

TCSS 422 A — Fall 2018

School of Engineering and Technology,

THRESHOLD VALUE S

15

—_
(=)
|

Time (seconds)

w
L

0 T T T T T T T T i T
1 2 4 8 16 32 64 128 256 5121024
Sloppiness

® Consider 4 threads increment a counter 2000000 times each
" Low S > What is the consequence?

® High S > What is the consequence?

October 29, 2018

TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L10.17

SLOPPY COUNTER - EXAMPLE

= Example implementation

= Also with CPU affinity

October 29, 2018

TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L10.18

Slides by Wes J. Lloyd

10/29/2018

L10.9

TCSS 422 A — Fall 2018

School of Engineering and Technology,

®m Simplifica
® Structs an

CONCURRENT LINKED LIST -1

tion - only basic list operations shown
d initialization:

1 // basic node structure

2 typedef struct _ node t {

3 int key;

4 struct _ node t *next;

5 } node t:

3

7 // basic list structure (one used per list)
8 typ struct = list t {

9 node t *head;

10 pthread mutex t lock;

el I 15t by

12

13 void List_Init(list t *L) {

14 L->head = NULL;

15 pthread mutex init (&L->lock, NULL);
16 1

17

(Cont.)

October 29, 2018

TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L10.19

CONCURRENT LINKED LIST - 2

® Insert - adds item to list
®m Everything is critical!
= There are two unlocks

{Cont.)
18
19
20
21
22

31
{Cont.)

int List Insert(list t *L, int key) {
pthread mutex lock(&L->lock):
node_t *new = malloc(sizeof (node_t));
if (new == NULL) {
perror("malloc");
pthread mutex unlock(&L->lock):
return -1; // fail
new->key = key;
new->next = L->head;
L->head = new;
pthread mutex unlock(&L->lock);

return 0; // success

October 29, 2018

TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L10.20

Slides by Wes J. Lloyd

10/29/2018

L10.10

TCSS 422 A — Fall 2018
School of Engineering and Technology,

CONCURRENT LINKED LIST - 3

® Lookup - checks list for existence of item with key
® Once again everything is critical
= Note - there are also two unlocks

{Cont.)

32

32 int List_Lookup(list_t *L, int key) {

33 pthread mutex lock(&L->lock) i

34 node t *curr = L->head;

35 while (curr) {

36 if (curr->key == key) {

37 pthread mutex unlock(&L->lock);
38 return 0; // success
39 1

40 curr = curr->next;

41 1

42 pthread mutex unlock(&L->lock);

43 return -1; // failure

44 }

October 29, 2018

TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L10.21

prone

CONCURRENT LINKED LIST

® First Implementation:
= Lock everything inside Insert() and Lookup()

= I[f malloc() fails lock must be released
Research has shown “exception-based control flow” to be error

40% of Linux OS bugs occur in rarely taken code paths

Unlocking in an exception handler is considered a poor coding
practice

There is nothing specifically wrong with this example however

m Second Implementation ...

October 29, 2018

TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L10.22

Slides by Wes J. Lloyd

10/29/2018

L10.11

TCSS 422 A — Fall 2018
School of Engineering and Technology,

® |nit and Insert

CCL - SECOND IMPLEMENTATION

[=- BRI AT S AV S

void List Init(list t *L) {

L->head = NULL;
pthread mutex init(&L->lock, NULL);:

void List_Imsert(list_t *L, int key) {

// synchronization not n =1
node_t *new = malloc(sizeof (node_t));
if (new == NULL) {

perror("malloc™)

return;
}

new->key = key;

// just lock critical section
pthread mutex lock(&L->lock);
new->next = L->head;

L-»head = new;

pthread mutex unlock(&L->lock):

October 29, 2018

TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L10.23

CCL - SECOND IMPLEMENTATION - 2

= Lookup
(Cont.)
22 int List Lookup(list t *L, int key) {
23 int rv = -1;
24 pthread mutex lock(&L->lock);
25 node t *curr = L->head;
26 while (curr) {
27 if (curr->key == key) {
28 rv = 0;
29 b k:
30 }
31 curr = curr->next;
32 1
33 pthread mutex unlock(&L—>lock);
34 return rv; // now both success and failure
35 1

October 29, 2018

TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L10.24

Slides by Wes J. Lloyd

10/29/2018

L10.12

TCSS 422 A — Fall 2018
School of Engineering and Technology,

Slides by Wes J.

CONCURRENT LINKED LIST PERFORMANCE

® Using a single lock for entire list is not very performant

® Users must “wait” in line for a single lock to access/modify
any item

® Hand-over-hand-locking (lock coupling)
= Introduce a lock for each node of a list

= Traversal involves handing over previous node’s lock,
acquiring the next node’s lock...

= Improves lock granularity
= Degrades traversal performance

® Consider hybrid approach
= Fewer locks, but more than 1
= Best lock-to-node distribution?

TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

October 29, 2018

MICHAEL AND SCOTT CONCURRENT QUEUES

® Improvement beyond a single master lock for a queue (FIFO)
® Two locks:

= One for the head of the queue

= One for the tail
®m Synchronize enqueue and dequeue operations

= Add a dummy node
= Allocated in the queue initialization routine
= Supports separation of head and tail operations

® |[tems can be added and removed by separate threads at the
same time

TCSS422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma L1026

October 29, 2018

Lloyd

10/29/2018

L10.13

TCSS 422 A — Fall 2018
School of Engineering and Technology,

® Remove fro

CONCURRENT QUEUE

m queue

[R R

(Cont.)

typedef struct _ node t {

int value;

struct _ node_t *next:
} node t:

struct _ queue_t {

node_t *head;

node_t *tail;

pthread mutex t headLock;
pthread mutex t taillLock;
} queue t;

i Queue Init (queue t *q) {

node t *tmp = malloc(?izecf(nodeft));
tmp->next = NULL;

q->head = g->tail = tmp;

pthread mutex init(sgq->headLock, NULL)}:
pthread mutex init(sgq->taillock, NULL):

October 29, 2018

TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L10.27

CONCURRENT QUEUE - 2

= Add to queue

(Cont.)
21

vold Queue Enqueue(queue t *g, int value) {
node t *tmp = malloc(sizeof (node t));
assert (tmp !'= NULL);

tmp->value = value;
tmp->next = NULL;

pthread mutex lock(&g->taillLock);
g->tail->next = tmp;

g->tail = tmp;

pthread mutex unlock(&gq->tailLock);

October 29, 2018

TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L10.28

Slides by Wes J. Lloyd

10/29/2018

L10.14

TCSS 422 A — Fall 2018

10/29/2018
School of Engineering and Technology,

CONCURRENT HASH TABLE

= Consider a simple hash table
="Fixed (static) size
=Hash maps to a bucket

Bucket is implemented using a concurrent linked list
One lock per hash (bucket)
Hash bucket is a linked lists

TCSS422: Operating Systems [Fall 2018]
October2912018 School of Engineering and Technology, University of Washington - Tacoma L10.29

INSERT PERFORMANCE -

CONCURRENT HASH TABLE

® Four threads - 10,000 to 50,000 inserts
= iMac with four-core Intel 2.7 GHz CPU
15

O Simple Concurrent List
X Concurrent Hash Table

0 i 3 T ke *F.
0 10 20 30 40
Inserts (Thousands)

o] [
magnificently

TCSS422: Operating Systems [Fall 2018]
October 29, 2018 School of Engineering and Technology, University of Washington - Tacoma L10.30

Slides by Wes J. Lloyd L10.15

TCSS 422 A — Fall 2018

School of Engineering and Technology,

CONCURRENT HASH TABLE

1 #define BUCKETS (101)

2

3 typedef struct _ hash t {

4 list_t 1ists[BUCKETS];

5 } hash t;

3

7 void Hash_Init (hash t *H) {

8 int i;

9 for (i = 0; i < BUCKETS; i++) {
10 List Init (&aH->1ists[i]);s
11 }

12 }

13

14 int Hash_Insert (hash t *H, int key) {

15 int bucket = key % BUCKETS;

16 return List Insert(&H->lists[bucket], key):
17 }

18

19 int Hash_Lookup (hash_t *H, int key) {

20 int bucket = key % BUCKETS;

21 return List Lookup(&H->1lists[bucket], key):
22 }

TCSS422: Operating Systems [Fall 2018]

October 29, 2013 School of Engineering and Technology, University of Washington - Tacoma

L10.31

LOCK-FREE DATA STRUCTURES

® Lock-free data structures in Java

® Java.util.concurrent.atomic package

® Classes:
= AtomicBoolean
= Atomiclnteger
= AtomiclntegerArray
= AtomiclntegerFieldUpdater
= AtomicLong
= AtomicLongArray
= AtomicLongFieldUpdater
= AtomicReference

m See: https://docs.oracle.com/javase/7/docs/api/java
/util/concurrent/atomic/package-summary.htmi

TCSS422: Operating Systems [Fall 2018]

October 29, 2018 School of Engineering and Technology, University of Washington - Tacoma

L10.32

Slides by Wes J. Lloyd

10/29/2018

L10.16

TCSS 422 A - Fall 2018 10/29/2018
School of Engineering and Technology,

QUESTIONS

Slides by Wes J. Lloyd L10.17

