
TCSS 422 A – Fall 2018
School of Engineering and Technology,

10/29/2018

L10.1Slides by Wes J. Lloyd

October 29, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

Introduction to Locks,
Lock-Based Data Structures

Wes J. Lloyd
School of Engineering and Technology,
University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

How long was it from when locks were first
implemented to when they no longer stopped
system interrupts?
Presumably when symmetric multiprocessing (SMP)

support was added to Linux

Symmetric multiprocessing (SMP) refers to operating
system support of computer systems having multiple CPU
cores (in a single CPU) and even multiple physical CPUs

October 29, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L10.2

FEEDBACK FROM 10/24

From O’Reilly Linux Device Drivers 3rd edition
2005:
 https://www.oreilly.com/library/view/linux-device-drivers/0596005903/

 Early Linux kernels had few sources of concurrency
 Symmetric multiprocessing (SMP) systems not supported by

the kernel (no multi-core CPU support)
 Concurrent execution only for servicing hardware interrupts
 Disabling interrupts no longer viable with multicores systems
 Linux kernel now supports running many programs

simultaneously with far greater performance and scalability
 Kernel programming is significantly more complicated
 Device driver programmers must factor concurrency into their

designs and understand the facilities provided by the kernel
for concurrency management

October 29, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L10.3

FEEDBACK - 2

 How is a lock implementation considered CORRECT? What
must it do?

 Two threads A and B compete for a shared resource using
locks. How is an operating system lock implementation
considered unfair?

 What is the use for condition variables? For concurrent
programming, what do condition variables provide that goes
beyond what ordinary locks provide?

October 29, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L10.4

REVIEW

October 29, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma L10.5

 Program 2 – To be posted ~10/31, Discussed in class on
11/5

 Midterm – (Wed 10/31)

 Multi-threaded Programming

 Chapter 29 – Lock-based Data Structures

 Chapter 30 – Condition Variables

October 29, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L10.6

OBJECTIVES

TCSS 422 A – Fall 2018
School of Engineering and Technology,

10/29/2018

L10.2Slides by Wes J. Lloyd

CHAPTER 29 –
LOCK BASED

DATA STRUCTTURES

October 29, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma L10.7

Chapter 29
Concurrent Data Structures

Performance

 Lock Granularity

October 29, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L10.8

OBJECTIVES

Adding locks to data structures make them
thread safe.

Considerations:

Correctness

Performance

Lock granularity

October 29, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L10.9

LOCK-BASED
CONCURRENT DATA STRUCTURES

October 29, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L10.10

COUNTER STRUCTURE W/O LOCK

 Synchronization weary -- - not thread safe

 Add lock to the counter

 Require lock to change data

October 29, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L10.11

CONCURRENT COUNTER

 Decrease counter

 Get value

October 29, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L10.12

CONCURRENT COUNTER - 2

TCSS 422 A – Fall 2018
School of Engineering and Technology,

10/29/2018

L10.3Slides by Wes J. Lloyd

 iMac: four core Intel 2.7 GHz i5 CPU

 Each thread increments counter 1,000,000 times

October 29, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L10.13

CONCURRENT COUNTERS - PERFORMANCE

Traditional vs. sloppy counter
Sloppy Threshold (S) = 1024

Synchronized counter scales poorly.

 Achieve (N) performance gain with (N) additional resources

 Throughput:

 Transactions per second

 1 core

 N = 100 tps

 10 core

 N = 1000 tps

October 29, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L10.14

PERFECT SCALING

 Provides single logical shared counter

 Implemented using local counters for each ~CPU core
 4 CPU cores = 4 local counters & 1 global counter

 Local counters are synchronized via local locks

 Global counter is updated periodically
 Global counter has lock to protect global counter value

 Sloppiness threshold (S):
Update threshold of global counter with local values

 Small (S): more updates, more overhead

 Large (S): fewer updates, more performant, less synchronized

 Why this implementation?
Why do we want counters local to each CPU Core?

October 29, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L10.15

SLOPPY COUNTER

 Update threshold (S) = 5

 Synchronized across four CPU cores

 Threads update local CPU counters

October 29, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L10.16

SLOPPY COUNTER - 2

 Consider 4 threads increment a counter 1000000 times each

 Low S  What is the consequence?

 High S  What is the consequence?

October 29, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L10.17

THRESHOLD VALUE S

 Example implementation

 Also with CPU affinity

October 29, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L10.18

SLOPPY COUNTER - EXAMPLE

TCSS 422 A – Fall 2018
School of Engineering and Technology,

10/29/2018

L10.4Slides by Wes J. Lloyd

 Simplification - only basic list operations shown

 Structs and initialization:

October 29, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L10.19

CONCURRENT LINKED LIST - 1

 Insert – adds item to list

 Everything is critical!
 There are two unlocks

October 29, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L10.20

CONCURRENT LINKED LIST - 2

 Lookup – checks list for existence of item with key

 Once again everything is critical
 Note - there are also two unlocks

October 29, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L10.21

CONCURRENT LINKED LIST - 3

 First Implementation:

 Lock everything inside Insert() and Lookup()

 If malloc() fails lock must be released
 Research has shown “exception-based control flow” to be error

prone

 40% of Linux OS bugs occur in rarely taken code paths

 Unlocking in an exception handler is considered a poor coding
practice

 There is nothing specifically wrong with this example however

 Second Implementation …

October 29, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L10.22

CONCURRENT LINKED LIST

 Init and Insert

October 29, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L10.23

CCL – SECOND IMPLEMENTATION

 Lookup

October 29, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L10.24

CCL – SECOND IMPLEMENTATION - 2

TCSS 422 A – Fall 2018
School of Engineering and Technology,

10/29/2018

L10.5Slides by Wes J. Lloyd

 Using a single lock for entire list is not very performant

 Users must “wait” in line for a single lock to access/modify
any item

 Hand-over-hand-locking (lock coupling)
 Introduce a lock for each node of a list

 Traversal involves handing over previous node’s lock,
acquiring the next node’s lock…

 Improves lock granularity

 Degrades traversal performance

 Consider hybrid approach
 Fewer locks, but more than 1

 Best lock-to-node distribution?

October 29, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma L10.25

CONCURRENT LINKED LIST PERFORMANCE

 Improvement beyond a single master lock for a queue (FIFO)

 Two locks:
 One for the head of the queue

 One for the tail

 Synchronize enqueue and dequeue operations

 Add a dummy node
 Allocated in the queue initialization routine

 Supports separation of head and tail operations

 Items can be added and removed by separate threads at the
same time

October 29, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L10.26

MICHAEL AND SCOTT CONCURRENT QUEUES

 Remove from queue

October 29, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L10.27

CONCURRENT QUEUE

 Add to queue

October 29, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L10.28

CONCURRENT QUEUE - 2

Consider a simple hash table

Fixed (static) size

Hash maps to a bucket
 Bucket is implemented using a concurrent linked list

 One lock per hash (bucket)

 Hash bucket is a linked lists

October 29, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L10.29

CONCURRENT HASH TABLE

 Four threads – 10,000 to 50,000 inserts
 iMac with four-core Intel 2.7 GHz CPU

October 29, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L10.30

INSERT PERFORMANCE –
CONCURRENT HASH TABLE

The simple concurrent hash table scales
magnificently.

TCSS 422 A – Fall 2018
School of Engineering and Technology,

10/29/2018

L10.6Slides by Wes J. Lloyd

October 29, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L10.31

CONCURRENT HASH TABLE

 Lock-free data structures in Java

 Java.util.concurrent.atomic package
 Classes:
 AtomicBoolean
 AtomicInteger
 AtomicIntegerArray
 AtomicIntegerFieldUpdater
 AtomicLong
 AtomicLongArray
 AtomicLongFieldUpdater
 AtomicReference

 See: https://docs.oracle.com/javase/7/docs/api/java
/uti l/concurrent/atomic/package-summary.html

October 29, 2018 TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

L10.32

LOCK-FREE DATA STRUCTURES

QUESTIONS

