TCSS 422 A — Fall 2018
School of Engineering and Technology,

10/29/2018

TCSS 422: OPERATING SYSTEMS
| |

Introduction to Locks,
Lock-Based Data Structures

Wes J. Lloyd
School of Engineering and Technology,
University of Washington - Tacoma

TCSS422: Operating Systems [Fall 2018]

(e s 2, 2 School of Engineering and Technology, University of Washington NN

FEEDBACK FROM 10/24

=How long was it from when locks were first
implemented to when they no longer stopped
system interrupts?
= Presumably when symmetric multiprocessing (SMP)
support was added to Linux
= Symmetric multiprocessing (SMP) refers to operating

system support of computer systems having multiple CPU
cores (in a single CPU) and even multiple physical CPUs

TCSS422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma L2

October 29, 2018

FEEDBACK - 2

= From O’Reilly Linux Device Drivers 3" edition
2005:
= https://www.oreilly.com/library/view/linux-device-drivers/0596005903,

= Early Linux kernels had few sources of concurrency

= Symmetric multiprocessing (SMP) systems not supported by
the kernel (no multi-core CPU support)

= Concurrent execution only for servicing hardware interrupts

= Disabling interrupts no longer viable with multicores systems

® Linux kernel now supports running many programs
simultaneously with far greater performance and scalability

= Kernel programming is significantly more complicated

= Device driver programmers must factor concurrency into their
designs and understand the facilities provided by the kernel
for concurrency management

REVIEW

= How is a lock implementation considered CORRECT? What
must it do?

= Two threads A and B compete for a shared resource using
locks. How is an operating system lock implementation
considered unfair?

= What is the use for condition variables? For concurrent
programming, what do condition variables provide that goes
beyond what ordinary locks provide?

| 1103

October 29, 2018 Tcsz:lzz; Operating Systems [Fall 2018]

Technology, University ington - Tacoma

TCS5422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma

October 29, 2018 1104

n November 7th in class, would you rat

Have an in-class programming activity
scored as a quiz for the first hour
~3:40-4:40pm

Begin class late, go from 4:40-6:40pm,
and have no in class programming
activity (quiz)

Have an in-class programming activity
scored as a quiz from 3:40-4:40pm,
and a full lecture 4:40-6:40pm

No preference

OBJECTIVES

= Program 2 - To be posted ~10/31, Discussed in class on
11/5
= Midterm - (Wed 10/31)

= Multl-threaded Programming
= Chapter 29 - Lock-based Data Structures
= Chapter 30 - Condition Variables

TCSS422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma Lios

October 29, 2018

Slides by Wes J. Lloyd

L10.1

TCSS 422 A - Fall 2018
School of Engineering and Technology,

CHAPTER 29 -
LOCK BASED
DATA STRUCTTURES

TCSS422: Operating Systems [Fall 2018]

(e 22 2005 School of Engineering and Technology, University of Washington -

10/29/2018

OBJECTIVES

®Chapter 29
=Concurrent Data Structures
=Performance
= Lock Granularity

October 29, 2018

TCS5422: Operating Systems [Fall 2018]
School of Engineeri Technology, Universi i Tacoma

L1108

LOCK-BASED

= Adding locks to data structures make them
thread safe.

= Considerations:
=Correctness
=Performance
=Lock granularity

CONCURRENT DATA STRUCTURES

October 29, 2018 Tcsz:lz‘f; Operating Systems [Fall 2018]

Technology, University i Tacoma

| 1109

COUNTER STRUCTURE W/0 LOCK

= Synchronization weary --- not thread safe
1 typedef struct _ counter_t {
2 int value;
3 } counter_t;
4
5 void init (counter_t *c) {
6 c->value = 0;
7 }
8
9 void increment (counter_t *c) {
10 c->value++;
11 }
12
13 d decrement (counter_t *c) {
14 c->value--;
15 }
16
17 int get(counter_t *c) {
18 return c->value;
19 }

October 29, 2018

TCS5422: Operating Systems [Fall 2018]
School of Engineeri Technology, Universi i Tacoma

| L10.10

CONCURRENT COUNTER

1 typedef struct _ counter_t {
2 int value;

3 pthread lock_t lock;

4 } counter_t;

5

6 d init(counter t *c) {

7 c->value = 0;

8 Pthread mutex_init (sc->lock, NULL):
9 ¥

10

Sl void increment(counter_t *c) {

12 Pthread_mutex_lock (sc->lock) ;

13 c->value++;

14 pthread_mutex_unlock(sc->lock)

15) - -

16

= Add lock to the counter
= Require lock to change data

October 29, 2018

TCS5422: Operating Systems [Fall 2018]
0ol of Engineeri Technology, University i Tacoma

110.11

= Decrease
= Get value

CONCURRENT COUNTER - 2

counter

(Cont.)

17 void decrement (counter_t *c)

18 Pthread mutex_lock(sc->lock);
19 c->value--;

20 Pthread mutex_unlock (sc->lock)
21)

22

23 int get(counter_t *c) {

24 Pthread mutex_lock(&c->lock) 7
25 int rc = c->value;

26 Pthread mutex_unlock (&c->lock)
27 return rc;

28)

October 29, 2018

TCS5422: Operating Systems [Fall 2018]
School of Engineeri Technology, University of Washi Tacoma

| L0.12

Slides by Wes J. Lloyd

L10.2

TCSS 422 A — Fall 2018
School of Engineering and Technology,

CONCURRENT COUNTERS - PERFORMANCE

= iMac: four core Intel 2.7 GHz i5 CPU
= Each thread increments counter 1,000,000 times

15
X Procise
© Sioppy.

Time (seconds)
3

«

0 Traditional vs. sloppy counter
1 2 3 4 Sloppy Threshold (S) = 1024

Threads

scales poorly

10/29/2018

| T | TCS5422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma

110.13

PERFECT SCALING

= Achieve (N) performance gain with (N) additional resources

= Throughput:
= Transactions per second

= 1 core
= N =100 tps

= 10 core
= N =1000 tps

TCSS422: Operating Systems [Fall 2018]

(i 2 2T o o L e e e o e T Tec e

| L10.14

SLOPPY COUNTER

= Provides single logical shared counter
= Implemented using local counters for each ~CPU core
4 CPU cores = 4 local counters & 1 global counter
Local counters are synchronized via local locks
= Global counter is updated periodically
Global counter has lock to protect global counter value

Sloppiness threshold (S):
Update threshold of global counter with local values

Small (S): more updates, more overhead
Large (S): fewer updates, more performant, less synchronized
= Why this implementation?
Why do we want counters local to each CPU Core?

TCS5422: Operating Systems [Fall 2018]

(i 23 e oolol Enpinearins ardlTechiolo syl e ity Ve hinetonETecoms

110.15

SLOPPY COUNTER - 2

= Update threshold (S) =5
= Synchronized across four CPU cores
= Threads update local CPU counters

Time ‘ Ly ‘ L, ‘ Ls Ly G
0 [¢] 0 [¢] 0 0
1 [¢] 0 1 1 0
2 1, 0 2 1 0
3 2 0 3 1 0
4 3 0 3 2 o
5 4 1 3 3 0
6 5>0 1 3 4 5 (from L,)
7 0 2 4 530 10 (from Ly)

TCSS422: Operating Systems [Fall 2018]

@iy Ak School of Engineering and Technology, University of Washington - Tacoma

| 110.16

THRESHOLD VALUE S

= Consider 4 threads increment a counter 1000000 times each
= Low S > What is the consequence?
= High S > What is the consequence?

15

Time (seconds)

— T T T ——%
1 2 4 8 16 32 64 128 256 5121024
Sloppiness

TCSS422: Operating Systems [Fall 2018]

(S 2 20 Seoo[of Enginearing andiechiiolosylU nversity Ve hington S Tecoms

11017

SLOPPY COUNTER - EXAMPLE

= Example implementation

= Also with CPU affinity

TCSS422: Operating Systems [Fall 2018]

@iy Ak School of Engineering and Technology, University of Washington - Tacoma

| 110.18

Slides by Wes J. Lloyd

L10.3

TCSS 422 A — Fall 2018 10/29/2018
School of Engineering and Technology,

= Simplification - only basic list operations shown ® [nsert - adds item to list
= Structs and initialization: = Everything is critical!
i = There are two unlocks
2
. (Cont.)
4 struct _ node_t *next; 18 t List_Insert (list_t *L, key) {
5 } node_t; 19 “pthread mutex_lock(sL->lock)
6 20 node_t *new = malloc(sizeof (node_t));
7, s ructure (one used per list) 21 if (new == NULL) -
8 struct _ list_t { 22 perror ("malloc”) ;
9 node_t *head; 23 pthread_mutex_unlock (sL->lock) ;
10 pthread_mutex_t lock; 24 return -1; // fa
iy } Tistits 26 new->key = key;
12 27 new->next L->head;
13 void List_Init(list_t *L) { 28 L->head = new;
14 L->head = NULL; 29 pthread mutex_unlock (&L->lock);
15 pthread mutex_init (&L->lock, NULL); 30 return 0; suc
16 } 22
17 (Cont.)
(Cont.)
TCSS422: Operating Systems [Fall 2018] TCSS422: Operating Systems [Fall 2018
October 25, 2018 e P e 1010 ‘ CEEEmEREID e e AP | 120

CONCURRENT LINKED LIST - 3

CONCURRENT LINKED LIST

= Lookup - checks list for existence of item with key = First Implementation:
= Once again everything is critical = Lock everything inside Insert() and Lookup()
" Note - there are also two unlocks = If malloc() fails lock must be released
gonm Research has shown “exception-based control flow” to be error
32 List_ookup (1ist_t *I, int key) { BICHE
33 pthread mutex_lock (sL->lock) ; 9 i i
3 S 40% of Linux OS bugs occur in rarely taken code paths
35 while (curr) { Unlocking in an exception handler is considered a poor coding
36 if (curr->key == key) { tice
37 pthread mutex_unlock (sL->lock) ; Brac
gg ; eturn 0; // success There is nothing specifically wrong with this example however
40 curr = curr->next;
41 } .
a2 pthread_mutex_unlock (sL->10ckK) 7 = Second Implementation ...
43 return -1;
44 }
TCSS422: Operating Systems [Fall 2018] TCSS422: Operating Systems [Fall 2018]
October 25, 2018 School of Engineering and Technology, University of Washington - Tacoma 1021 ‘ CEEEmEREID School of Engineering and Technology, University of Washington - Tacoma | 1022

= |nit and Insert = Lookup
; void LlStLTInnit (dllSt’t :L' 1{ (cont.)
~>head = NULL; " " - -
3 pthread mutex_init (sL->lock, NULL); gi - LlSt*L?:k;‘f (:hfltrt Lo int key) {
s } 24 pthread_mutex_lock (sL->lock) 7
6 void List_Insert(list_t *L, int key) { 23 pode t fourr = L->heads
2 = el et 26 while (curr) {
8 node_t *new = malloc(sizeof (node_t)); 27 if (curr->key == key) {
9 if (mew == NULL) { 28 zy-= 03
10 perror ("malloc") ; 29 break;
1 eturn; 30 }
12 } 31 curr = curr->next;
13 new->key = key: 32
1 33 pthread_mutex_unlock (sL->lock) ;
15 / Just 1 cri n 34 return rv;: now bo an
16 pthread_mutex_lock (sL->lock) ; 35)
17 new->next = L->heads
18 L->head = new;
19 pthread mutex_unlock (&L->lock) ;
20 }
21
TCS5422; Operating Systems [Fall 2018] TC55422; Operating Systems [Fall 2015]
(S 2 20 Seoo[of Enginearing andiechiiolosylU nversity Ve hington S Tecoms Lo23 (i 2 2T ISehool of Ergineering andTect nolosy|Unversity o Washinaton S Tacoma L1024

Slides by Wes J. Lloyd L10.4

TCSS 422 A — Fall 2018
School of Engineering and Technology,

CONCURRENT LINKED LIST PERFORMANCE

= Using a single lock for entire list is not very performant

= Users must “wait” in line for a single lock to access/modify
any item

= Hand-over-hand-locking (lock coupling)
= Introduce a lock for each node of a list

= Traversal involves handing over previous node’s lock,
acquiring the next node’s lock...

= Improves lock granularity
= Degrades traversal performance

= Consider hybrid approach
= Fewer locks, but more than 1
= Best lock-to-node distribution?

10/29/2018

October 29, 2018 TCSSAZZ; Operating Systems [Fall 2018]

School of and Technology, University i Tacoma

MICHAEL AND SCOTT CONCURRENT QUEUES

= Improvement beyond a single master lock for a queue (FIFO)
= Two locks:

= One for the head of the queue

= One for the tall
= Synchronize enqueue and dequeue operations

= Add a dummy node
= Allocated in the queue initialization routine
= Supports separation of head and tail operations

= |[tems can be added and removed by separate threads at the
same time

October 29, 2018 TCSS422: Operating Systems [Fall 2018]

School of Engineering and Technology, University of Washington - Tacoma | to26

CONCURRENT QUEUE

= Remove from queue

1 ruct _node_t {
2 value;
3 uct _node t *next;
4 } node_t;
5
6 t struct _queue t {
7 node_t *head;
8 node_t *tail;
9 pthread mutex_t headLock;
10 pthread mutex_t tailLock;
11 } queue_t;
12
13 void Queue Init (queue t *q) {
14 node_t *tmp = malloc(sizeof (node_t)) 7
15 tmp->next = NULL;
16 g->head = g->tail = tmp;
17 pthread mutex_init (sg->headLock, NU
18 pthread mutex_init (sq->tailLock,
19 }
20
(cont.)

October 29, 2018 TC55422: Operating Systems [Fall2018]) 1027

00l of Technology, v Tacoma

CONCURRENT QUEUE - 2

= Add to queue

(Cont.)
21 void Queue_Enqueue (queue_t *q, int value) {
22 node_t *tmp = malloc(sizeof (node_t));
23 assert (tmp != NULL);
24
25 tmp->value = value;
26 tmp->next = NULL;
27
28 pthread mutex_lock(sq->tailLock);
29 g->tail->next = tmp;
30 g->tail = tmp;
31 pthread mutex_unlock (sq->tailLock);
32)
(Cont.)

October 29, 2018 TCS5422: Operating Systems [Fall 2018]

| 110.28

School of Engineering and Technology, University of Washington - Tacoma

CONCURRENT HASH TABLE

= Consider a simple hash table
=Fixed (static) size
=Hash maps to a bucket
Bucket is implemented using a concurrent linked list
One lock per hash (bucket)
Hash bucket is a linked lists

October 29, 2018 TCSS422: Dpe‘mﬁng Systems [Fall 2018] -)
0ol of Technology, y Tacoma

11029

INSERT PERFORMANCE -
CONCURRENT HASH TABLE

= Four threads - 10,000 to 50,000 inserts
= iMac with four-core Intel 2.7 GHz CPU
15

O Simple Concurrent List
X Concurrent Hash Table

5

Time (seconds)

ol ol
10 20 30 40
Inserts (Thousands)

scales
entl

TCSS422: Operating Systems [Fall 2018]
(i 2 2T Sehosl o Engineering and Technolosy; EtontTacoma)

Slides by Wes J. Lloyd

L10.5

TCSS 422 A - Fall 2018
School of Engineering and Technology,

10/29/2018

1 #define BUCKETS (101)

2

3 typedef struct _ hash_t {

4 list_t lists[BUCKETS]:

5 } hash_t; -

3

7 void Hash_Init(hash_t *H) {

8 int iz

9 for (i = 0; i < BUCKETS; i++) {

10 List_Init (sH->lists[i]);

11 }

12 }

13

14 int Hash_Insert (hash_t *H, int key) {

15 int bucket = key % BUCKETS;

16 return List_Insert (sH->lists[bucket], key);

17)

18

19 int Hash_Lookup (hash_t *H, int key) {

20 Tint bucket = key % BUCKETS;

21 return List_Lookup (sH->lists[bucket], key):

22)

October 29, 2018 TC55422: Operating Systems [Fall2018] 031

00l of Technology, y

LOCK-FREE DATA STRUCTURES

= Lock-free data structures in Java

= Java.util.concurrent.atomic package
= Classes:

= AtomicBoolean

= Atomiclnteger

= AtomiclntegerArray

= AtomicintegerFieldUpdater

= AtomicLong

= AtomicLongArray

= AtomicLongFieldUpdater

= AtomicReference

= See: https://docs.oracle.com/javase/7/docs/api/java
/util/concurrent/atomic/package-summary.html

October 29, 2018 TCSS422: Dpe.ri(in.g Systems [Fall 2018] o)
school of Technology, v Tacoma

| 11032

QUESTIONS

Slides by Wes J. Lloyd

L10.6

