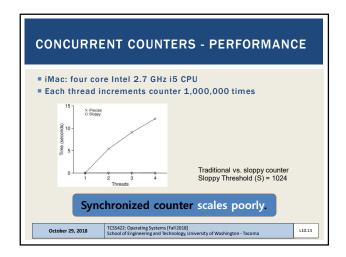


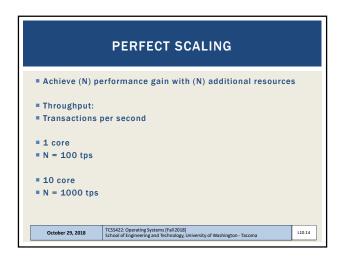

```
LOCK-BASED
CONCURRENT DATA STRUCTURES

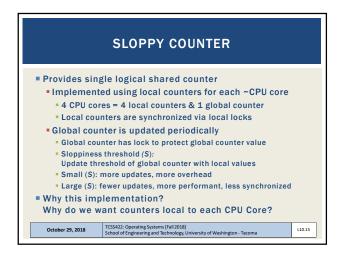
Adding locks to data structures make them thread safe.

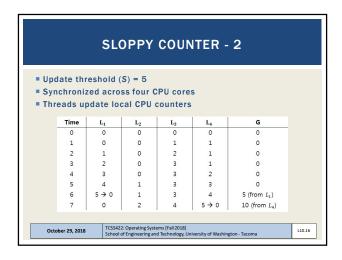
Considerations:
Correctness
Performance
Lock granularity

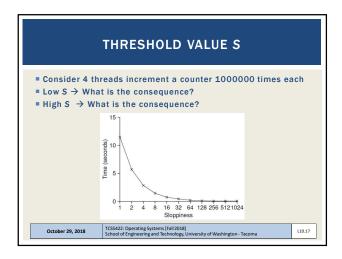
TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Tacoma
```

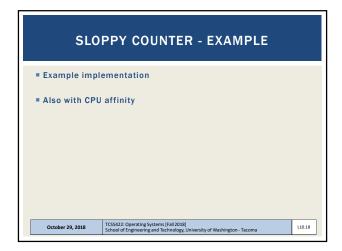

```
COUNTER STRUCTURE W/O LOCK


Synchronization weary --- not thread safe


typedef struct _counter_t {
    int value;
    } counter_t;


void int(counter_t *c) {
    c ->value = 0;
    }


void increment(counter_t *c) {
    c ->value++;
    int |
    c ->value++;
    int |
    c ->value--;
    in
```




```
CONCURRENT LINKED LIST - 3

Lookup - checks list for existence of item with key

Once again everything is critical

Note - there are also two unlocks

(cont.)

2
2
32
int List_Lookup(list_t *L, int key) {
    pthread mutex_lock(sL->lock);
    node_t *curr = L->head;
    while (curr) {
        if (curr->key == key) {
            pthread_mutex_unlock(sL->lock);
            return 0; // success
        }
        }
        yetread_mutex_unlock(sL->lock);
    return -1; // failure

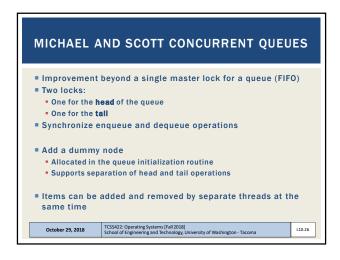
October 29, 2018

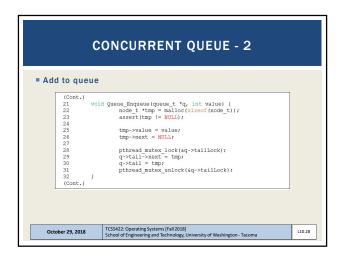
| Coctober 29, 2018
| Coctober 29, 2018
| Coctober 29, 2018
| Coctober 29, 2018
| Coctober 29, 2018
| Coctober 29, 2018
| Coctober 29, 2018
| Coctober 29, 2018
| Coctober 29, 2018
| Coctober 29, 2018
| Coctober 29, 2018
| Coctober 29, 2018
| Coctober 29, 2018
| Coctober 29, 2018
| Coctober 29, 2018
| Coctober 29, 2018
| Coctober 29, 2018
| Coctober 29, 2018
| Coctober 29, 2018
| Coctober 29, 2018
| Coctober 29, 2018
| Coctober 29, 2018
| Coctober 29, 2018
| Coctober 29, 2018
| Coctober 29, 2018
| Coctober 29, 2018
| Coctober 29, 2018
| Coctober 29, 2018
| Coctober 29, 2018
| Coctober 29, 2018
| Coctober 29, 2018
| Coctober 29, 2018
| Coctober 29, 2018
| Coctober 29, 2018
| Coctober 29, 2018
| Coctober 29, 2018
| Coctober 29, 2018
| Coctober 29, 2018
| Coctober 29, 2018
| Coctober 29, 2018
| Coctober 29, 2018
| Coctober 29, 2018
| Coctober 29, 2018
| Coctober 29, 2018
| Coctober 29, 2018
| Coctober 29, 2018
| Coctober 29, 2018
| Coctober 29, 2018
| Coctober 29, 2018
| Coctober 29, 2018
| Coctober 29, 2018
| Coctober 29, 2018
| Coctober 29, 2018
| Coctober 29, 2018
| Coctober 29, 2018
| Coctober 29, 2018
| Coctober 29, 2018
| Coctober 29, 2018
| Coctober 29, 2018
| Coctober 29, 2018
| Coctober 29, 2018
| Coctober 29, 2018
| Coctober 29, 2018
| Coctober 29, 2018
| Coctober 29, 2018
| Coctober 29, 2018
| Coctober 29, 2018
| Coctober 29, 2018
| Coctober 29, 2018
| Coctober 29, 2018
| Coctober 29, 2018
| Coctober 29, 2018
| Coctober 29, 2018
| Coctober 29, 2018
| Coctober 29, 2018
| Coctober 29, 2018
| Coctober 29, 2018
| Coct
```

```
    CONCURRENT LINKED LIST

First Implementation:
    Lock everything inside Insert() and Lookup()
    If malloc() fails lock must be released
    Research has shown "exception-based control flow" to be error prone
    40% of Linux OS bugs occur in rarely taken code paths
    Unlocking in an exception handler is considered a poor coding practice
    There is nothing specifically wrong with this example however

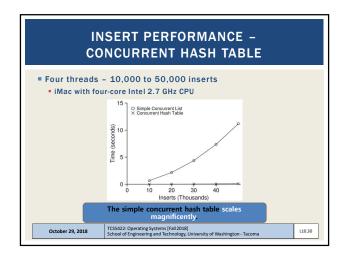
Second Implementation ...

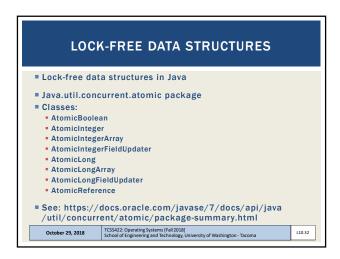

ICCSA42: Operating Systems [Fail 2018]
School of Engineering and Technology, University of Washington-Tacoma
```

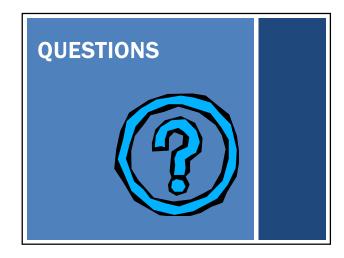

```
CCL - SECOND IMPLEMENTATION

Init and Insert

| void List_Init(list_t *!) {
| Lo-head * WULL; |
| symbol | symbol | symbol | symbol |
| symbol | symbol | symbol
```


```
CONCURRENT HASH TABLE


Consider a simple hash table
Fixed (static) size
Hash maps to a bucket
Bucket is implemented using a concurrent linked list
One lock per hash (bucket)
Hash bucket is a linked lists

Cotober 29, 2018

TCSS422: Operating Systems [Fall 2018]
School of Engineering and Technology, University of Washington - Taxoma
```