
Page 1 of 8

TCSS 422: Operating Systems School of Engineering and Technology
Fall 2018 University of Washington – Tacoma
http://faculty.washington.edu/wlloyd/courses/tcss422 Instructor: Wes Lloyd

Assignment 2
Parallel Matrix Multiplier

Due Date: Monday November 19th, 2018 @ 11:59 pm, tentative
Version: 0.11

Objective
The purpose of this assignment is to implement a multi-threaded C program that uses a shared bounded
buffer to coordinate the production of NxN matrices for consumption in matrix multiplication. For two
matrices M1 and M2 to be multiplied, the number of columns of M1 must equal the number of rows of
M2. The program will perform parallel work using multiple threads to: (1) produce NxN matrices and
place them into a shared buffer, and (2) consume NxN matrices from the bounder buffer for pairing with
another matrix for matrix multiplication having a valid number of rows and columns. Matrices
consumed from the bounded buffer with an invalid number of elements for multiplication are discarded
and the buffer is queried again to obtain a new candidate matrix for multiplication.

Producer algorithm:

One or more producer threads work together to produce “LOOPS” # of matrices and place them in the
shared bounded buffer. The producer should call Matrix * GenMatrixRandom() to generate a NxN
matrix where the number of rows and columns is random between 1 and 4.

Consumer algorithm:

One or more consumer threads work together to perform matrix multiplication. Each consumer thread
gets a matrix from the bounded buffer (M1). Then the consumer thread gets a second matrix from the
bounded buffer (M2). Calling the matrix.c routine Matrix * MatrixMultiply(Matrix * m1,
Matrix * m2) will return a pointer with a result of the matrix multiplication (M3), or a NULL if matrix
multiplication fails due to a mismatch of the number of elements. If a NULL is received, then the
consumer thread discards the matrix and memory is free’d by calling void FreeMatrix(Matrix *
mat). The consumer thread then grabs the next available matrix from the bounded buffer as M2.
When a valid matrix M2 is found that pairs with M1, the matrix multiplication operation is performed
and the result in M3 is printed using the void DisplayMatrix(Matrix * mat, FILE *stream)
routine.

Starter code is provided to help jumpstart implementing the parallel matrix multiplier with the
synchronized bounded buffer. The goal of the project is to focus on synchronization and pthreads, not
implementing matrix functions and operations as this code is already provided.

Starter code is online at:
http://faculty.washington.edu/wlloyd/courses/tcss422/assignments/pcmultiply.tar.gz

Page 2 of 8

The following modules are provided:

Module Header file Source File Description
Counter counter.h counter.c Synchronized counter data structure
Matrix matrix.h matrix.c Matrix helper routines
Prodcons prodcons.h prodcons.c Producer Consumer worker thread module
Pcmatrix pcmatrix.h pcmatrix.c Program main module with int main()

A Makefile is provided to compile the modules into a pcMatrix binary.

An initial demonstration of the random matrix generation routine, matrix multiplication, and matrix
display is provided in pcmatrix.c int main(). The matrix multiplication output format should be followed
for the actual program implementation.

The following parameters are defined in pcmatrix.h:

NUMWORK The number of producer and consumer worker threads.
OUTPUT An integer that indicates true (1) or false (0) to enable or disable debug output.

See matrix.c for example use of #if OUTPUT / #endif.
MAX The size of the bounded buffer. The bounded buffer is an array of Matrix struct

pointers.
LOOPS The total number of matrices to produce/consume.

These parameters should be consumed in program implementation to enable adjusting the program.

The following data types are provided:

Struct Defined in File Description
counter_t counter.h Synchronized shared counter
counters_t counter.h Shared structure with a producer and consumer counter.
Matrix matrix.h Matrix structure that tracks the number of rows and cols and includes a

pointer to an NxN integer matrix.
ProdConsStats prodcons.h Structure that tracks the number of matrices produced, consumed, as

well as the sum of all matrices produced and consumed, and the
number of matrices multiplied.

The program uses the ProdConsStats struct in prodcons.h to track:

sumtotal The sum of all elements of matrices produced and consumed.
multtotal The total number of matrices multiplied by consumer threads.
matrixtotal The total number of matrices produced by producer threads, and consumed by

consumer threads.

This struct is passed to each consumer and producer thread and used to track the work of the thread.
The parent is then responsible for adding up the cumulative work to print out a summary of the total
work. The total number of matrices produced and consumed must equal. The sum of all elements
produced and consumed must equal. This self-accounting ensures correctness of the program as the
number of producer and consumer threads is scaled from 1 to N.

Page 3 of 8

A suggest counter design is to have two separate counters that are shared. One counts the number of
matrices produced, and the other counts the number of matrices consumed. Inside the producer or
consumer worker method, having access to both counters is helpful.

Lock and Condition Variable Recommendations
Consider using more than one lock variable in your program implementation. Having multiple locks may
allow better parallelism. For example, one lock might only protect adding and removing data from the
shared bounded buffer inside the get() and put() routines. Other lock(s) can be combined with condition
variables to signal when the bounded buffer is full, or when the bounded buffer is empty. It is one thing
to ensure correctness of synchronization (e.g. no threads deadlock). It is another challenge to have an
optimal implementation where the maximum number of operations can proceed in parallel to achieve
the highest possible Thread Level Parallelism (TLP) for the program. On a multicore machine, when
monitoring load with “top -d .1”, the max percent CPU utilization demonstrates the highest degree
of parallelism achieved. On an 8-hyperthead computer, 800% is possible. On a 4-hyperthread
computer, 400% is possible.

Program Testing Recommendations
For testing correctness of concurrent programming, try out different sizes of the bounded buffer (MAX).
If the bounded buffer is too large, this could minimize errors, and hide possible concurrency problems.
The graders will reduce MAX to a low setting to quickly expose flaws. Similarly, only producing and
consuming a very small number of matrices (LOOPS) will hide concurrency problems. Testing your
program with a large number for matrices (LOOPS) also can help expose concurrency problems.

Page 4 of 8

Sample Output
$./pcMatrix
Producing 12 5x5 matricies.
Using a shared buffer of size=5
With 1 producer and consumer threads.

MULTIPLY (1 x 3) BY (3 x 3):
| 5 6 5|
 X
| 2 3 5|
| 4 9 8|
| 7 1 10|
 =
| 69 74 123|

MULTIPLY (2 x 2) BY (2 x 1):
| 10 10|
| 10 8|
 X
| 2|
| 5|
 =
| 70|
| 60|

MULTIPLY (2 x 3) BY (3 x 4):
| 4 1 2|
| 7 5 5|
 X
| 1 9 3 5|
| 3 6 4 10|
| 4 6 1 4|
 =
| 15 54 18 38|
| 42 123 46 105|

MULTIPLY (3 x 4) BY (4 x 2):
| 3 7 9 10|
| 1 3 4 10|
| 3 7 10 6|
 X
| 6 5|
| 6 10|
| 3 6|
| 9 5|
 =
|177 189|
|126 109|
|144 175|

Sum of Matrix elements --> Produced=421 = Consumed=421
Matrices produced=12 consumed=12 multiplied=4

Page 5 of 8

Starting Out
As a starting point for assignment 2, inspect the signal.c example from chapter 30. This provides a
working matrix generator which uses locks and conditions to synchronize generation of 1 matrix at a
time to a shared bounded buffer of 1 defined as int ** bigmatrix;. A producer thread example is
provided as the worker routine void *worker(void *arg), and the consumer thread code is
implemented inside of int main(). It has not been refactored into a separate method- this would be a
logical next step. The signal.c example program stores matrices in a bounded buffer of 1. For
assignment #2, the bounded buffer becomes an array of Matrix struct pointers: Matrix *
bigmatrix[MAX];.

The signal.c example is here:
http://faculty.washington.edu/wlloyd/courses/tcss422/examples/Chapter30/

Development Tasks
The following is a list of development tasks for assignment #2.

Task 1- Implement a bounded buffer. This will be a buffer of pointers to Matrix structs (records). The
datatype should be “Matrix * bigmatrix[MAX]”, and the bounded buffer will be limited to MAX size.

Task 2 – Implement get() and put() routines for the bounded buffer.

Task 3 – Call put() from within prod_worker() and add all necessary uses of mutex locks, condition
variables, and signals. Integrate the counters.

Task 4 – Call get() from within cons_worker() and all necessary uses of mutex locks, condition variables,
and signals. Integrate the counters. Implement the matrix multiplication by consuming matrices from
the bounded buffer as described above.

Task 5 – Create one producer pthread and one consumer pthread in pcmatrix.c to launch the parallel
matrix production and multiplication.

Tasks 6- Once a 1 producer and 1 consumer version of the program is working correctly without
deadlock, refactor pcmatrix.c to use an array of producer threads, and an array of consumer threads.
The array size is NUMWORK. (Extra credit for correct implementation of 3 or more producer/consumer
pthreads).

Points to consider:

1. A concurrent shared bounded buffer will store matrices for potential multiplication. The use of
signals is required to inform consumer threads when there are matrices available to consume,
and to signal the producer when there is available space in the bounded buffer to add more
matrices. For testing, we might change the size of the bounded buffer (MAX) to a low number,
for example 2, to ensure your program still works.

2. Put() will add a matrix to the end of the bounded buffer. Get() retrieves a matrix from the other
end. With multiple producers and consumers, multiple matrices can be added and removed for
multiplication from the shared bounded buffer simultaneously. You’ll need to ensure that no
two consumers consume the same matrix.

3. This program will require the use of both locks (mutexes) and condition variables.

Page 6 of 8

4. Memory for matrices should be freed once a matrix is consumed to prevent a memory leak.
Without releasing memory, generating millions of matrices will place severe demands on the
program’s memory heap.

Grading
This assignment will be scored out of 100* points, while 110 points are available.
Any points over 100% are extra credit.

Rubric:
110 possible points: (10 extra credit points available)

Functionality Total: 90 points
15 points Matrix multiplication support

>>> 5 points, correctly identify M1 and M2 and production of M3
>>> 5 points, discard M2 when incompatible with M1 for multiplication
>>> 5 points, free (garbage collect) M1, M2, and M3 after multiplication

15 points Display Requirements

>>> 5 points, properly show matrices multiplied as in the demonstration code
>>> 10 points, display the total number of matrices multiplied

40 points Program working correctly with 1 producer thread to produce matrices and 1 consumer

thread to consume matrices for matrix multiplication
>>> 10 points, put() and get() correctly implement bounded buffer
>>> 10 points, synchronization working correctly with mutexes, conditions, signals
>>> 10 points, matrices produced equal matrices consumed and displayed
>>> 10 points, sum of elements of matrices produced equals sum of elements of

matrices consumed and displayed

20 points Program is working with multiple producer and consumer threads to provide thread
level parallelism > 2 (CPU Utilization > 200%)
>>> 10 points, 2 producer threads, 2 consumer threads
>>> 10 points, 3+ producer threads, 3+ consumer threads

Miscellaneous Total: 20 points
5 points Program compiles without errors, makefile working with all and clean targets
5 points Coding style, formatting, and comments
5 points Program is modular. Multiple modules have been used which separate core

pieces of the program’s functionality.
5 points Global data is only used where necessary. Where possible functions are decoupled by
 passing data back from routines.

WARNING!
10 points Automatic deduction if executable binary file is not called “pcMatrix”

Page 7 of 8

What to Submit
For this assignment, submit a tar gzip archive as a single file upload to Canvas.

Tar archive files can be created by going back one directory from the source directory with “cd ..”,
then issue the command “tar cf pcmatrix.tar pcMatrix/”. Then gzip it: gzip
pcmatrix.tar. Upload this file to Canvas. Canvas automatically adds student names to uploaded
files.

Pair Programming (optional)
Optionally, this programming assignment can be completed with two person teams.

If choosing to work in pairs, only one person should submit the team’s tar gzip archive to Canvas.

Additionally, EACH member of a pair programming team must provide an effort report of team
members to quantify team contributions for the overall project. Effort reports must be submitted
INDEPENDENTLY and in confidence (i.e. not shared) by each team member to capture each person’s
overall view of the teamwork and outcome of the programming assignment. Effort reports are not used
to directly numerically weight assignment grades.

Effort reports should be submitted in confidence to Canvas as a PDF file named: “effort_report.pdf”.
Google Docs and recent versions of MS Word provide the ability to save or export a document in PDF
format.

Distribute 100 points for the categories to reflect each teammate’s contribution for: research, design,
coding, testing. Effort scores should add up to 100 for each category. Even effort 50%-50% is reported
as 50 and 50. Please do not submit 50-50 scores for all categories. This is not necessarily realistic or
possible. Ratings should reflect an honest confidential assessment of team member contributions. 50-
50 ratings and non-confidential scorings run the risk of an honor code violation.

Here is an effort report for a pair programming team (written from the point of view of Jane Smith):

1. John Doe
Research 24
Design 33
Coding 71
Testing 29

2. Jane Smith
Research 76
Design 67
Coding 29
Testing 71

Team members may not share their effort reports, but should submit them confidentially in Canvas as a
PDF file. Failure of one or both members to submit the effort report will result in both members
receiving NO GRADE on the assignment… (considered late until both are submitted)

Page 8 of 8

Disclaimer regarding pair programming:
The purpose of TCSS 422 is for everyone to gain experience programming in C while working with operating
system and parallel coding. Pair programming is provided as an opportunity to harness teamwork to tackle
programming challenges. But this does not mean that teams consist of one champion programmer, and a
second observer simply watching the champion! The tasks and challenges should be shared as equally as
possible.

Change History

Version Date Change
0.1 10/30/2018 Original Version

