
TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

10/21/2016

Slides by Wes J. Lloyd L9.1

Condition
Variables

Wes J. Lloyd

Institute of Technology
University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

� Condition variables

� Consumer/Producer

� Covering condition

October 21, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L9.2

OBJECTIVES

� There are many cases where a thread wants to

wait for another thread before proceeding with

execution

�Consider when a precondition must be fulfilled

before it is meaningful to proceed …

October 21, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L9.3

CONDITION VARIABLES

� Support a signaling mechanism to alert

thread s when preconditions have been satisfied

� Eliminate busy waiting

� Alert one or more threads to “consume” a result, or

respond to state changes in the application

� Threads are placed on an explicit queue (FIFO) to wait

for signals

� Signal: wakes one thread

broadcast wakes all (ordering by the OS)

October 21, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L9.4

CONDITION VARIABLES - 2

� Condition variable

� Requires initialization

� Condition API calls

� wait() accepts a mutex parameter

� Releases lock, puts thread to sleep

� signal()

� Wakes up thread, awakening thread acquires lock

October 21, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L9.5

CONDITION VARIABLES - 3

pthread cond t c;

� Thread A continuously generates 2-D matrices

� Thread B computes the average value of 2-D matrices

� Thread B has nothing to do before Thread A generates a

matrix

� To simplify memory management, Thread A and Thread B

share a pointer to the most recently created matrix

� Thread A can’t generate a new array with the shared

pointer before Thread B completes calculating an average

October 21, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L9.6

EXAMPLE: MATRIX GENERATOR

TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

10/21/2016

Slides by Wes J. Lloyd L9.2

�Solution ?

�Thread B could employ a spin lock to continuously

check a state variable

� Issues

�Continuously making a comparison to check a

state variable will occupy a CPU core

�And without hardware support ensuring atomicity

in critical sections can not be guaranteed

October 21, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L9.7

MATRIX GENERATOR - 2

Matrix generation example

October 21, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L9.8

MATRIX GENERATOR - 3

� Consider the importance of the state variable

� What will the code do if we remove it?

� Consider

rows = 1000

cols = 1000

� Consider

rows = 10

cols = 10

October 21, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L9.9

MATRIX GENERATOR - 4

� If the child thread is not created fast enough, or if there is a

OS context before the child obtains the lock to generate the

array, the program could deadlock…

� The program may stil l execute (no deadlock),

but shared data could be changed out of sequence leading to

errors

� Try adding printf statement to observe whether the child

thread or parent (int main) is deadlocking…

October 21, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L9.10

MATRIX GENERATOR - 5

� Parent thread calls thr_join() and executes the comparison

� The context switches to the child

� The child runs thr_exit() and signals the parent, but the parent

is not waiting yet.

� The s ignal is lost

� The parent deadlocks

October 21, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L9.11

SUBTLE RACE CONDITION

October 21, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L9.12

PRODUCER / CONSUMER

TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

10/21/2016

Slides by Wes J. Lloyd L9.3

� Producer

� Produces items – consider the child matrix maker

� Places them in a buffer

� Example: the buffer is only 1 element (single array pointer)

� Consumer

� Grabs data out of the buffer

� In our example the parent thread receives dynamically

generated matrices and performs an operation on them

� Example: calculates average value of every element (integer)

� Multithreaded web server example

� Http requests placed into work queue; threads process

October 21, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L9.13

PRODUCER / CONSUMER

� Producer / Consumer is also known as Bounded Buffer

� Bounded buffer

� Similar to piping output from one Linux process to another

� grep pthread signal.c | wc –l

� Synchronized access send output from grep to wc as it is

produced

� File stream

October 21, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L9.14

PRODUCER / CONSUMER - 2

� Buffer is a one element shared data structu re

� Producer “puts” data

� Consumer “gets” data

� Shared data structure requires synchronization

October 21, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L9.15

PUT/GET ROUTINES

1 int buffer;

2 int count = 0; // initially, empty

3

4 void put(int value) {

5 assert(count == 0);

6 count = 1;

7 buffer = value;

8 }

9

10 int get() {

11 assert(count == 1);

12 count = 0;

13 return buffer;

14 }

� Producer adds data

� Consumer removes data (busy waiting)

� Will this code work (spin locks) with 2- threads?

1. Producer 2. Consumer

October 21, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L9.16

PRODUCER / CONSUMER - 3

� The shared data structure needs synchronization!

October 21, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L9.17

PRODUCER / CONSUMER - 3

Producer

� This code as-is works with just:

(1) Producer

(1) Consumer

� If we scale to (2+) consumer’s it fails

� How can it be fixed ?

October 21, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L9.18

PRODUCER/CONSUMER - 4

20 if (count == 0) // c2

21 Pthread_cond_wait(&cond, &mutex); // c3

22 int tmp = get(); // c4

23 Pthread_cond_signal(&cond); // c5

24 Pthread_mutex_unlock(&mutex); // c6

25 printf("%d\n", tmp);

26 }

27 }

Consumer

TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

10/21/2016

Slides by Wes J. Lloyd L9.4

� Two threads

October 21, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L9.19

EXECUTION TRACE

Legend
c1/p1- lock
c2/p2- check var
c3/p3- wait
c4- put()
p4- get()
c5/p5- signal
c6/p6- unlock

� When producer threads awake, they do not check if there is

any data in the buffer…

� Need while, not if

� What if Tp puts a value, wakes Tc1 whom consumes the value

� Then Tp has a value to put, but Tc1’s signal on &cond wakes Tc2

� There is nothing for Tc2 consume, so Tc2 sleeps

� Tc1 , Tc2, and Tp all sleep forever

� Tc1 needs to wake Tp to Tc2

October 21, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L9.20

PRODUCER/CONSUMER

SYNCHRONIZATION

October 21, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L9.21

EXECUTION TRACE - 2

Legend
c1/p1- lock
c2/p2- check var
c3/p3- wait
c4- put()
p4- get()
c5/p5- signal
c6/p6- unlock

� Tc2 runs, no data to consume

October 21, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L9.22

EXECUTION TRACE - 3

Legend
c1/p1- lock
c2/p2- check var
c3/p3- wait
c4- put()
p4- get()
c5/p5- signal
c6/p6- unlock

� Add a second condition

� One condition handles the producer

� the other the consumer

October 21, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L9.23

TWO CONDITIONS

1 cond_t empty, fill;

2 mutex_t mutex;

3

4 void *producer(void *arg) {

5 int i;

6 for (i = 0; i < loops; i++) {

7 Pthread_mutex_lock(&mutex);

8 while (count == 1)

9 Pthread_cond_wait(&empty, &mutex);

10 put(i);

11 Pthread_cond_signal(&fill);

12 Pthread_mutex_unlock(&mutex);

13 }

14 }

15

� Change buffer from int, to int buffer[MAX]

� Add indexing variables

� Typo: two variables named fil l , need separate namespaces

October 21, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L9.24

FINAL PRODUCER/CONSUMER

TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

10/21/2016

Slides by Wes J. Lloyd L9.5

October 21, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L9.25

FINAL P/C - 2

� Producer: only sleeps when buffer is full

� Consumer: only sleeps if buffers are empty

October 21, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L9.26

FINAL P/C - 3

� Excellent use case for pthread_cond_broadcast

� Consider memory allocation:

� What if a program deals with huge memory

allocation/deallocation on the heap

� Access to the heap must be managed with low memory

resources

PREVENT: Out of memory- - - queue requests until memory

is free

October 21, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L9.27

COVERING CONDITIONS

October 21, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L9.28

COVERING CONDITIONS - 2

Broadcast

Check available memory

� Broad awakens all blocked threads requesting memory

� Will evaluate each request: (bytesLeft < size)

� Reject: requests which cannot be fulfilled

� Insufficient memory

� Process all requests which can be fulfilled

� with newly available memory

� Overhead

� Many threads may be awoken which take no action

October 21, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L9.29

COVER CONDITIONS - 3

QUESTIONS

October 21, 2016
TCSS422: Operating Systems [Fall 2016]
Institute of Technology, University of Washington - Tacoma L9.30

