TCSS 422: Operating Systems [Fall 2016] 10/21/2016
Institute of Technology, UW-Tacoma

TCSS 422: OPERATING SYSTEMS CONDITION VARIABLES - 2

= Support a signaling mechanism to alert -
thread s when preconditions have been satisfied

Condition
Variables

= Eliminate busy waiting

= Alert one or more threads to “consume” a result, or
respond to state changes in the application

Wes J. Lloyd

Institute of Technology = Threads are placed on an expllcit queue (FIFO) to wait
f i |

University of Washington - Tacoma ol S

= Signal: wakes one thread
broadcast wakes all (ordering by the 0S)

TCS5422: Operating Systems [Fall 2016]
October 21,2016 Institute of Technology, University of Washington - Tacoma

IEN

OBJECTIVES CONDITION VARIABLES - 3

= Condition variables = Condition variable

pthread cond t c;

= Consumer/Producer = Requires initialization

= Covering condition = Condition API calls

pthread cond_wait (pthread _cond t *c, pthread mutex_t *m); / wait()
pthread_cond_signal (pthread_cond_t *c); signal

= wait() accepts a mutex parameter
= Releases lock, puts thread to sleep

= signal()
= Wakes up thread, awakening thread acquires lock

October 21,2016 TCS5422: Operating Systems [Fall 2016]

TC55422: Operating Systems [Fall 2016]
Cctobe 22010 L2 Institute of Technology, University of Washington - Tacoma

Institute of Technology, University of Washington - Tacoma

CONDITION VARIABLES EXAMPLE: MATRIX GENERATOR
=There are many cases where a thread wants to = Thread A continuously generates 2-D matrices
wait for another thread before proceeding with
execution = Thread B computes the average value of 2-D matrices

= Thread B has nothing to do before Thread A generates a
= Consider when a precondition must be fulfilled matrix

before it is meaningful to proceed ...
= To simplify memory management, Thread A and Thread B
share a pointer to the most recently created matrix

= Thread A can'’t generate a new array with the shared
pointer before Thread B completes calculating an average

October 21, 2016 TCS5422: Operating Systems [Fall 2016] | 03 | LG C55422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma Institute of Technology, University of Washington - Tacoma ‘ e |

Slides by Wes J. Lloyd L9.1

TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

10/21/2016

MATRIX GENERATOR - 2

= Solution ?

check a state variable

= |ssues

state variable will occupy a CPU core

in critical sections can not be guaranteed

=Continuously making a comparison to check a

=Thread B could employ a spin lock to continuously

=And without hardware support ensuring atomicity

TCS5422: Operating Systems [Fall 2016]

October 21,2016 Institute of Technology, University of Washington - Tacoma

| =]

MATRIX GENERATOR - 5

= |f the child thread is not created fast enough, or if there is a
0S context before the child obtains the lock to generate the
array, the program could deadlock...

= The program may still execute (no deadlock),
but shared data could be changed out of sequence leading to
errors

= Try adding printf statement to observe whether the child
thread or parent (int main) is deadlocking...

TCSS422: Operating Systems [Fall 2016]

October 21,2016 Institute of Technology, University of Washington - Tacoma

1910

MATRIX GENERATOR - 3

Matrix generation example

TCS5422: Operating Systems [Fall 2016]

Cctobe 22010 Institute of Technology, University of Washington - Tacoma

SUBTLE RACE CONDITION

void thr_exit() (
done = 1;
Pthread_cond_signal (&c);

}

void thr_join() {
£ (done == 0)
Pthread_cond_wait (&c)

CE UG e wN e

}

= Parent thread calls thr_join() and executes the comparison
® The context switches to the child

= The child runs thr_exit() and signals the parent, but the parent
is not waiting yet.

" The signal Is lost
= The parent deadlocks

TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma o1

October 21,2016

MATRIX GENERATOR - 4

= Consider the importance of the state variable

= What will the code do if we remove it?

= Consider
rows = 1000
cols = 1000
= Consider
rows = 10
cols = 10

TCS5422: Operating Systems [Fall 2016]

October 21,2016 Institute of Technology, University of Washington - Tacoma

PRODUCER / CONSUMER

Work Queue

-l

TCS5422: Operating Systems [Fall 2016]

(i 2 Institute of Technology, University of Washington - Tacoma

1912 |

Slides by Wes J. Lloyd

L9.2

TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

PRODUCER / CONSUMER

= Producer
= Produces items - consider the child matrix maker
=Places them in a buffer
Example: the buffer is only 1 element (single array pointer)
= Consumer
= Grabs data out of the buffer

=In our example the parent thread receives dynamically
generated matrices and performs an operation on them
Example: calculates average value of every element (integer)

= Multithreaded web server example
= Http requests placed into work queue; threads process

10/21/2016

TCS5422: Operating Systems [Fall 2016]

October 21,2016 Institute of Technology, University of Washington - Tacoma

19.13

PRODUCER / CONSUMER - 3

= Producer adds data
= Consumer removes data (busy waiting)

= Will this code work (spin locks) with 2-threads?
1. Producer 2. Consumer

1 void *producer(void *arg) {
2 t 17
3 loops = (int) arg;
4 (i =07 i< loops; i++) {
5 put (i) ;
6 }
7)
8
9 void *consumer (void *arg) {
10 i
11 m {
12 int tmp = get();
13 printf("sd\n", tmp):
14 }
15)
October 21, 2016 TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma

| o]

PRODUCER / CONSUMER - 2

= Producer / Consumer is also known as Bounded Buffer

= Bounded buffer
=Similar to piping output from one Linux process to another
= grep pthread signal.c | wc -1

=Synchronized access send output from grep to wc as it is
produced

=File stream

TCS5422: Operating Systems [Fall 2016]

Cctobe 22010 Institute of Technology, University of Washington - Tacoma | Lo

PRODUCER / CONSUMER - 3

= The shared data structure needs synchronization!

1 cond_t condr
2 mutex_t mutex;
3
4 void *producer(void *arg) {
5 int i
6 s (1= 0; i< loops; i+t { Producer
7 Pthread_mutex_lock (smutex) ;
8 it (count == 1)
s Pthread_cond wait(scond, &mutex):
10 put (i)
1 Pthread_cond_signal (scond);
12 Pthread_mutex_unlock (smutex) ;
13)
14 }
15
16 void *consumer(void *arg) {
17 s
18 for (=07 i< loops; i+t (
19 9 Pthread_mutex_lock (smutex);
TC55422: Operating Systems [Fall 2016
(i 2 Institute oi?rechnofog‘, Unive[lsi!yof\l\}ashington~Tacoma ‘ 17 |

PUT/GET ROUTINES

= Buffer is a one element shared data structu re
= Producer “puts” data
= Consumer “gets” data
= Shared data structure requires synchronization

buffer;
count = 0;

2

3

1 i put (int value) {

5 assert (count == 0);
6 count = 1;

7 buffer = value;

8

10 get () {

11 assert (count == 1);
12 count = 0;

13 buffer;

TCS5422: Operating Systems [Fall 2016]

October 21,2016 Institute of Technology, University of Washington - Tacoma

1915

PRODUCER/CONSUMER - 4

20 (count == 0)

21 Pthread_cond_wait (&cond, &mutex);

22 tmp = get ();

23 Pthread_cond_signal (&cond);

24 Pthread_mutex_unlock (smutex) ;

25 printf ("sd\n", tmp);

26) Consumer
27 }

= This code as-is works with just:
(1) Producer
(1) Consumer

= |f we scale to (2+) consumer’s it fails
= How can it be fixed ?

TCSS422: Operating Systems [Fall 2016]

October 21,2016 Institute of Technology, University of Washington - Tacoma

| oa]

Slides by Wes J. Lloyd

L9.3

TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

10/21/2016

EXECUTION TRACE - 3

= T, runs, no data to consume

Legend
c1/p1- lock
c2/p2- check var
c3/p3- wait
c4- put()
p4- get()
c5/p5- signal
c6/p6- unlock

EXECUTION TRACE
T, | State |r,| state |7, | state |cCount Comment
= Two threads 1| Running Ready Ready)
<2 | Running Ready Ready 0
‘ 3 Sleep Ready Ready 0 Nothing to get
Legend Sleep Ready | pl | Running 0
c1 /p1 - lock Sleep. Ready p2 | Running 0
c2/p2- check var Sleep Read) p4 | Running 1 Buffer now full
c3/p3- wait Ready Ready | pS | Running 1 7,y awoken
c4- put() Eeady Ready p6 | Running 1
eady Ready pl | Running 1
p4- get() Ready Ready | p2 | Running 1
¢5/p5- signal Ready Ready p3 | Sleep 1 Buffer full sleep
c6/p6- unlock Ready[lPcl | Running Sleep 1 Ty sneaks in ..
Ready | c2 | Running Sleep 1
ReacylPc4 | Running Sleep 0 .. and grabs data
Ready | ¢5 | Running Ready 0 7, awoken
Ready[lPc6 | Running Ready 0
» 4 | Running Ready Ready 0 0Oh oh! No data
Oaober 21,2006 | J e warty o Washingon - Tacoma s

Tq| state [1o| state |7, | state |Count| Comment

.. - - - - (cont)

6 | Running Ready Sleep 0

1 | Running Ready Sleep 0

2 | Running Ready Sleep 0

3 Sleep Ready Sleep 0 Nothing to get
SleepP<2 | Running Sleep 0
SleepJR<3 | Sleep Sleep 0 Everyone asleep ...

October 21,2016

TCSS422: Operating Systems [Fall 2016]
Institute of Technology, University of Washington - Tacoma

[on

PRODUCER/CONSUMER

SYNCHRONIZATION

any data in the buffer...

= Need while, not if

= There is nothing for T, consume, so T, sleeps
" T.4, Tep, and T, all sleep forever

= T, needs to wake T, to T,

= When producer threads awake, they do not check if there is

= What if T, puts a value, wakes T,; whom consumes the value
= Then T, has a value to put, but T.,’s signal on &cond wakes T,

TCS5422: Operating Systems [Fall 2016]

Cctobe 22010 Institute of Technology, University of Washington - Tacoma

| 1920

TWO CONDITIONS

= Add a second condition
= One condition handles the producer
=the other the consumer

==

e S R

=S

I mutex_t mutex;

d *producer (void *arg)
i
(i=0; i< loops; i+4) I
Pthread mutex_lock (mutex) ;
(count == 1)

Pthread_cond_wait (sempty, &mutex);

put (i);
Pthread _cond_signal (4fill);
Pthread_mutex_unlock (smutex) ;

October 21,2016

TCS5422: Operating Systems [Fall 2016]
Institute of Technology, University of Washington - Tacoma

‘ 1923

FINAL PRODUCER/CONSUMER

= Change buffer from int, to int buffer[MAX]
= Add indexing variables
= Typo: two variables named fill, need separate namespaces

EXECUTION TRACE - 2
T, | State |T,| State |T, | State |Count Comment
| Running Ready Ready [}
c2 | Running Ready Ready 0
3| Sleep Ready Ready 0 Nothing to get
Legend Sleep | c1 | Running Ready 0
c1 /p1 - lock Sleep. <2 | Running Ready 0
c2/p2- check var Sleep | 3 | Sleep Ready 0 Nothing to get
c3/p3- wait Sleep Sleep pl | Running 0
c4- put() zteep Sleep p2 | Running 0
leep Sleep p4 | Running 1 Buffer now full
p4' get(). » Ready Sleep pS | Running 1 T,y awoken
¢5/p5- signal Ready Sleep 6 | Running 1
c6/p6- unlock Ready Sleep | pt | Running 1
Ready Sleep p2 | Running 1
Ready Sleep p3 | Sleep 1 Must sleep (full
» 2 | Running Sleep Sleep 1 Recheck condition
c4 | Running Sleep Sleep 0 T,y grabs data
‘ 5 | Running Ready Sleep 0 Oops! Woke T,
Otaber 21,2016 | L o Uarty f WashingtonTocoma

1 int buffer [MAX] ;
2 £ill = 07
3
4
5
6 d put(int value) {
7 buffer[fill] = value;
8 £ill = (£ill + 1) % MAX;
9 count++;
10)
11
12 int get() {
13 int tmp = buffer(usel;
14 use = (use + 1) % MAX;
15
16
17)
October 21, 2016 TCS5422: Operating Systems [Fall 2016] ‘ lo2e

Institute of Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

L9.4

TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

pé

10/21/2016

1

2 mutex € mutex

3

4 void *producer(void *arg) {

5 i

6 for (i =0; i< loops; it+) {

7 Pthread mutex_lock (smutex) ;

s while (Count == MAX)

9 Pthread_cond wait (gempty, smutex);

10 put (i) ;

1 Pthread _cond_signal (s£ill);

12 Pthread mutex_unlock(smutex);

13 }

14)

15

16 void *consumer (void *arg) (

17 int i;

18 (i=0; i< loops; i+#)

19 Pthread mutex_lock (smutex);

20 while (Count == 0)

21 Pthread_cond wait(sfill, smutex);

22 int tmp = get O

TCSS422: Operating Systems [Fall 2016]

Cibenziable Institute of Technolog Unlve[rslly of W]ashlngton ~Tacoma

1925

COVERING CONDITIONS - 2

1
2
3
4
5
[
7
8
9 allocate (int size) {
10 Pthread mutex_lock(&m)
11 ‘ shile (bytesLeft < size) check ava"ab'e memory
12 Pthread_cond_wait(&c, &m);
13 4 fptr = ...; 1/ mem from heap
14 bytesleft -= size;
15 Pthread mutex_unlock (&m);
16 return ptr;
17 }
18
19 void free(void *ptr, int size) {
20 Pthread mutex_lock(sm);
21 bytesLeft += size;
23 Pthread mutex_unlock (&m);
24 }
TCSS422: Operating Systems [Fall 2016]
October 21,2016 Institute nf‘;echno?ng:, Unlve[rsl(yof\l\}ashlngmn-'racnma ‘ Lo.28

FINAL P/C - 3

(cont.)

23 Pthread_cond_signal (sempty);
24 Pthread_mutex_unlock (smutex) ;
25 printf("sd\n", tmp);

26)

27 }

= Producer: only sleeps when buffer is full
= Consumer: only sleeps if buffers are empty

TCS5422: Operating Systems [Fall 2016]

Cctobe 22010 Institute of Technology, University of Washington - Tacoma

1926 |

COVER CONDITIONS - 3

= Broad awakens all blocked threads requesting memory

= Will evaluate each request: (bytesLeft < size)
= Reject: requests which cannot be fulfilled
Insufficient memory

= Process all requests which can be fulfilled
with newly available memory

= Overhead
= Many threads may be awoken which take no action

TCS5422: Operating Systems [Fall 2016]

Octouen2872016 Institute of Technology, University of Washington - Tacoma

‘ 1929 |

COVERING CONDITIONS

= Excellent use case for pthread_cond_broadcast

= Consider memory allocation:

=What if a program deals with huge memory
allocation/deallocation on the heap

resources

is free

= Access to the heap must be managed with low memory

PREVENT: Out of memory- - - queue requests until memory

TCS5422: Operating Systems [Fall 2016]

October 21,2016 Institute of Technology, University of Washington - Tacoma

1927

Slides by Wes J. Lloyd

QUESTIONS

TCSS422: Operating Systems [Fall 2016]
Institute of Technology, University of Washington - Tacoma

October 21,2016

L9.5

