TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

10/19/2016

Lock Based
Data Structures

Wes J. Lloyd
Institute of Technology
University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

OBJECTIVES

= Concurrent Data Structures

= Performance

= Lock Granularity

TCSS422: Operating Systems [Fall 2016]

October 19, 2016 Institute of Technology, University of Washington - Tacoma

LOCK-BASED

= Adding locks to data structures make them
thread safe.

= Considerations:
=Correctness
=Performance
=Lock granularity

CONCURRENT DATA STRUCTURES

TCS5422: Operating Systems [Fall 2016]

{October29/2016 Institute of Technology, University of Washington - Tacoma

COUNTER STRUCTURE W/0 LOCK

= Synchronization weary --- not thread safe

1 typedet ct __counter_t {
2 int value;
3 } counter_t;
4
5 void init (counter_t *c) (
6 c->value = 0;
7 1
8
9 void increment(counter t *c) {
10 c->value++;
11)
12
13 void decrement (counter t *c) {
14 c->value--;
15 }
16
17 int get(counter_t *c) {
18 eturn c->value;
19)
October19,2016 TCS5422: Operating Systems [Fall 2016] ‘ s |

Institute of Technology, University of Washington - Tacoma

CONCURRENT COUNTER

1 typedef struct _ counter_t {

2 int value;

3 pthread_lock_t lock;

4 } counter_t;

5

6 0id init (counter_t *c) {

7 c->value = 0;

8 Pthread mutex_init(sc->lock, NULL);
9)

10

11 void increment (counter_t *c) {

12 pthread_mutex_lock (sc->lock) ;
13 c->value++;

14 Pthread mutex_unlock(sc->lock);
15)

16

= Add lock to the counter
= Require lock to change data

TCS5422: Operating Systems [Fall 2016]

October 19, 2016 Institute of Technology, University of Washington - Tacoma

CONCURRENT COUNTER - 2

= Decrease counter
= Get value

(cont.)
17 void decrement (counter_t *c) {
18 Pthread_mutex_lock(&c->1ock) ;
19 c->value--;
20 Pthread_mutex_unlock (sc->lock) ;
21 }
22
23 nt get(counter_t *c) {
24 Pthread mutex_lock(sc->lock) ;
25 int rc = c->value;
26 Pthread mutex_unlock (sc->lock) ;
27 return rci
28 }

TG TCS5422: Operating Systems [Fall 2016] ‘ 56 |

Institute of Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

L8.1

TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

CONCURRENT COUNTERS - PERFORMANCE

= iMac: four core Intel 2.7 GHz i5 CPU
= Each thread increments counter 1,000,000 times

15
X Prociso
© Sioppy

Time (seconds)
3

o

0 Traditional vs. sloppy counter
4 L s 4 Sloppy Threshold (S) = 1024

Threads

scales poorly

October 19, 2016

TCS5422: Operating Systems [Fall 2016] 187
Institute of Technology, University of Washington - Tacoma

10/19/2016

PERFECT SCALING

= Achieve (N) performance gain with (N) additional resources

= Throughput:
= Transactions per second

= 1 core
= N =100 tps

= 10 core
= N = 1000 tps

October 19, 2016 TCSS422: Operating Systems [Fall 2016] ‘

Institute of Technology, University of Washington - Tacoma

SLOPPY COUNTER

= Provides single logical shared counter
= Implemented using local counters for each CPU core
4 CPU cores = 4 local counters & 1 global counter
Local counters are synchronized via local locks
= Global counter is updated periodically
Global counter has lock to protect global counter value
Sloppiness threshold (S):
Update threshold of global counter with local values
Small (S): more updates, more overhead
Large (S): fewer updates, more performant, less synchronized
= Why this implementation?
Why do we want counters local to each CPU Core?

October19, 2016 TCSS422: Operating Systems [Fall 2016] | oo |

Institute of Technology, University of Washington - Tacoma

SLOPPY COUNTER - 2

= Update threshold (S) = 5
= Synchronized across four CPU cores
= Threads update local CPU counters

time | L | L | L | L G
0 0 0 0 0 0
1 0 0 1 1 0
2 1 0 2 1 0
3 2 0 3 1 0
4 3 0 3 2 0
5 4 1 3 3 0
6 530 1 3 4 5 (from Ly)
7 0 2 4 530 10 (from L)

TCSS422: Operating Systems [Fall 2016]

(3o 1) 20D Institute of Technology, University of Washington - Tacoma

1810 |

THRESHOLD VALUE S

SLOPPY COUNTER - EXAMPLE

= Consider 4 threads increment a counter 1000000 times each
= Low S > What is the consequence?
= High S > What is the consequence?

15

Time (seconds)

1 2 4 8 16 32 64 128256 5121024
Sloppiness

TCS5422: Operating Systems [Fall 2016]

October 19, 2016 Institute of Technology, University of Washington - Tacoma

1811

= Example implementation

= No CPU affinity enforced

TCSS422: Operating Systems [Fall 2016]

October 19, 2016 Institute of Technology, University of Washington - Tacoma

1812

Slides by Wes J. Lloyd

L8.2

TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

CONCURRENT LINKED LIST -1

= Simplification - only basic list operations shown
= Structs and initialization:

1 / 10de structure

2 ru node_t {

3 int key:

4 struct _node_t *next;
5) mode_t;

6

7

8

9 |

10 pthread mutex t lock;
11) list_t;

12

13 oid List_Tnit(list_t *I) {

14 L->head = NULL;

15 pthread_mutex_init (sL->lock, NULL);:
16)

17

(Cont.)

10/19/2016

TCS5422: Operating Systems [Fall 2016]

October 19, 2016 Institute of Technology, University of Washington - Tacoma

1813

CONCURRENT LINKED LIST - 2

= Insert - adds item to list
= Everything is critical!
= There are two unlocks

(Cont.)
18 int List_Insert (list_t *I, key) {
19 Pthread mutex_lock (§L->lock) ;
20 node_t *new = malloc(sizeof (node_t));
21 if (new == NULL) {
22 perror ("malloc™) ;
23 pthread_mutex_unlock (&L->1ock) ;
24 return -1; // fail
26 new->key = key:
27 new->next L->head;
28 L->head = news
29 pthread_mutex_unlock (sL->lock) ;
30 return 07 // success
31
(cont.)
TCSS422: Operating Systems [Fall 2016]
October 19, 2016 Institute n'gechnofng‘\’/, unive[rsitvofW]ashingmn-Tacnma ‘ .14

CONCURRENT LINKED LIST - 3

= Lookup - checks list for existence of item with key
= Once again everything is critical
= Note - there are also two unlocks

(Cont.)

32

32 int List_Lookup (list_t *L, int key) {

33 pthread mutex_lock (sL->lock) 7

34 node_t *curr = L->head;

35 while (curr) {

36 if (curr->key == key) {

37 pthread mutex_unlock (sL->1ock) ;
38 eturn 0; // success
39)

40 curr = curr->next;

41)

12 pthread mutex_unlock (sL->lock) ;

43 eturn -1; // failure

m)

TCS5422: Operating Systems [Fall 2016]

{October29/2016 Institute of Technology, University of Washington - Tacoma

| 18.15

CONCURRENT LINKED

= First Implementation:
= Lock everything inside Insert() and Lookup()
= If malloc() fails lock must be released

Research has shown “exceptlon-based control flow” to be error
prone

40% of Linux OS bugs occur in rarely taken code paths

Unlocking in an exception handler is considered a poor coding
practice

There is nothing specifically wrong with this example however

= Second Implementation ...

October 19,2016

TCS5422: Operating Systems [Fall 2016] 616
Institute of Technology, University of Washington - Tacoma g

CCL - SECOND IMPLEMENTATION

= Init and Insert

1 i List_Init(list_t *L) {

2 L->head = NULL;

3 pthread mutex_init(sL->lock, NULL);
4)

5

6 void List_Insert(list_t *L, key) (
7 / synchro: on not ted
8 node_t *new = malloc(sizeof (node_t));
9 if (new == NULL) {

10 perror ("malloc”) ;

11 return;

12)

13 new->key = key:

14

15 / just lock cr al sectio
16 pthread mutex_lock (sL->lock) ;
17 new->next = L->head;

18 L->head = new

19 pthread mutex_unlock(sL->lock);
20)

21

TCS5422: Operating Systems [Fall 2016]

October 19, 2016 Institute of Technology, University of Washington - Tacoma

1817

CCL - SECOND IMPLEMENTATION - 2

= Lookup

(Cont.)
22 int List_Lookup(list_t *L, int key) {
23 int rv = -1;
24 pthread mutex_lock (sL->lock) i
25 node_t *curr = L->head;
26 while (curr) {
27 (curr->key == key) (
28 v 0
29
30 }
31 curr = curr->next;
32
33 pthread_mutex_unlock (&L->lock);
34 turn rv; // now k
35 }

October 19, 2016 TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma ‘ 1818

Slides by Wes J. Lloyd

L8.3

TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

CONCURRENT LINKED LIST PERFORMANCE

= Using a single lock for entire list is not very performant

= Users must “wait” in line for a single lock to access/modify
any item

= Hand-over-hand-locking (lock coupling)
= Introduce a lock for each node of a list

= Traversal involves handing over previous node’s lock,
acquiring the next node’s lock...

= Improves lock granularity
= Degrades traversal performance

= Consider hybrid approach
= Fewer locks, but more than 1

= Best lock-to-node distribution?

TCS5422: Operating Systems [Fall 2016]

{October29/2016 Institute of Technology, University of Washington - Tacoma

10/19/2016

MICHAEL AND SCOTT CONCURRENT QUEUES

= Improvement beyond a single master lock for a queue (FIFO)
= Two locks:

= One for the head of the queue

= One for the tall
= Synchronize enqueue and dequeue operations

= Add a dummy node
= Allocated in the queue initialization routine
= Supports separation of head and tail operations

= [tems can be added and removed by separate threads at the
same time

TCSS422: Operating Systems [Fall 2016]

October 19, 2016 Institute of Technology, University of Washington - Tacoma

=

CONCURRENT QUEUE

= Remove from queue

1 tyr __node_t {

2 alue;

3 t __node_t *next;

4) node_ti

5

6 typedef struct _queue t {

7 node_t *head;

8 node_t *tail;

) pthread mutex_t headLock;

10 pthread mutex_t tailLock;

1) queue_t;

12

13 void Queue_Init (queve_t *q) {

14 node_t *tmp = malloc(sizeof (node_t));
15 tmp->next = ;

16 g->head = g->tail = tmp;

17 pthread mutex_init (sg->headLock, NULL);
18 pthread_mutex_init (sg->taillock, NULL);
19)

20

(Cont.)

TCS5422: Operating Systems [Fall 2016]

{October29/2016 Institute of Technology, University of Washington - Tacoma

| 1821

CONCURRENT QUEUE - 2

= Add to queue

(cont.)
21 void Queue Enqueue(queue_t *q, int value) {
22 node_t *tmp = malloc (node_t)) ;
23 assert (tmp != NULL);
24
25 tmp->value = value;
26 tmp->next = NULL;
27
28 pthread mutex_lock (sq->taillock) 7
29 g->tail->next = tmp:
30 g->tail = tmp;
31 pthread mutex_unlock(sg->taillock) ;
32
(Cont.)
October19,2016 TCSS422: Operating Systems [Fall 2016] ‘ o2 |

Institute of Technology, University of Washington - Tacoma

CONCURRENT HASH TABLE

= Consider a simple hash table
=Fixed (static) size
=Hash maps to a bucket
Bucket is implemented using a concurrent linked list
One lock per hash (bucket)
Hash bucket is a linked lists

TCS5422: Operating Systems [Fall 2016]

October 19, 2016 Institute of Technology, University of Washington - Tacoma

1823

INSERT PERFORMANCE -

CONCURRENT HASH TABLE

= Four threads - 10,000 to 50,000 inserts
= iMac with four-core Intel 2.7 GHz CPU

15
O Simple Concurrent List
X Concurrent Hash Table

7

810

s

8

8

8

°

E 5

E

04 x *

*
10 20 30 40
Inserts (Thousands)

scales

Systems [Fall 2016]
ity of Washington - Tacoma

October 19, 2016

Slides by Wes J. Lloyd

L8.4

TCSS 422: Operati
Institute of Technol

ng Systems [Fall 2016]
ogy, UW-Tacoma

CONCURRENT HASH TABLE

#define BUCKETS (101)

typedef struct _ hash_t {
list_t 1ists[BUCKETS];
} hash_t;

void Hash_Init(hash_t *H) {
int is
for (i = 0; i < BUCKETS; i++) {
List_Init (&H->lists[i]);
}
}

int Hash_Insert(hash_t *H, int key) {

int bucket = key % BUCKETS;

return List_Insert(sH->lists[bucket], key);
}

int Hash_Lookup (hash_t *H, int key) (

int bucket = key % BUCKETS;

return List_Lookup (sH->lists[bucket], key);
¥

10/19/2016

October 19, 2016

TCS5422: Operating Systems [Fall 2016]
Institute of Technology, University of Washington - Tacoma

[s

Slides by Wes J. Lloyd

QUESTIONS

TCSS422: Operating Systems [Fall 2016]
O:icbegti 201 S Insitute of Technology, University of Washington - Tacoma

L8.5

