
TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

10/19/2016

Slides by Wes J. Lloyd L8.1

Lock Based
Data Structures

Wes J. Lloyd

Institute of Technology
University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

� Concurrent Data Structures

� Performance

� Lock Granularity

October 19, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L8.2

OBJECTIVES

�Adding locks to data structures make them

thread safe.

�Considerations:

�Correctness

�Performance

�Lock granularity

October 19, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L8.3

LOCK-BASED

CONCURRENT DATA STRUCTURES

October 19, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L8.4

COUNTER STRUCTURE W/O LOCK

� Synchronization weary - - - not thread safe

� Add lock to the counter

� Require lock to change data

October 19, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L8.5

CONCURRENT COUNTER

� Decrease counter

� Get value

October 19, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L8.6

CONCURRENT COUNTER - 2

TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

10/19/2016

Slides by Wes J. Lloyd L8.2

� iMac: four core Intel 2.7 GHz i5 CPU

� Each thread increments counter 1,000,000 times

October 19, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L8.7

CONCURRENT COUNTERS - PERFORMANCE

Traditional vs. sloppy counter
Sloppy Threshold (S) = 1024

Synchronized counter scales poorly.

� Achieve (N) performance gain with (N) additional resources

� Throughput:

� Transactions per second

� 1 core

� N = 100 tps

� 10 core

� N = 1000 tps

October 19, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L8.8

PERFECT SCALING

� Provides single logical shared counter

� Implemented using local counters for each CPU core

� 4 CPU cores = 4 local counters & 1 global counter

� Local counters are synchronized via local locks

� Global counter is updated periodically

� Global counter has lock to protect global counter value

� Sloppiness threshold (S):

Update threshold of global counter with local values

� Small (S): more updates, more overhead

� Large (S): fewer updates, more performant, less synchronized

� Why this implementation?

Why do we want counters local to each CPU Core?

October 19, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L8.9

SLOPPY COUNTER

� Update threshold (S) = 5

� Synchronized across four CPU cores

� Threads update local CPU counters

October 19, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L8.10

SLOPPY COUNTER - 2

� Consider 4 threads increment a counter 1000000 times each

� Low S � What is the consequence?

� High S � What is the consequence?

October 19, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L8.11

THRESHOLD VALUE S

� Example implementation

� No CPU affinity enforced

October 19, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L8.12

SLOPPY COUNTER - EXAMPLE

TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

10/19/2016

Slides by Wes J. Lloyd L8.3

� Simplification - only basic l ist operations shown

� Structs and initialization:

October 19, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L8.13

CONCURRENT LINKED LIST - 1

� Insert – adds item to l ist

� Everything is critical!

� There are two unlocks

October 19, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L8.14

CONCURRENT LINKED LIST - 2

� Lookup – checks list for existence of item with key

� Once again everything is critical

� Note - there are also two unlocks

October 19, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L8.15

CONCURRENT LINKED LIST - 3

� First Implementation:

� Lock everything inside Insert() and Lookup()

� If malloc() fails lock must be released

� Research has shown “exception-based control f low” to be error

prone

� 40% of Linux OS bugs occur in rarely taken code paths

� Unlocking in an exception handler is considered a poor coding

practice

� There is nothing specifically wrong with this example however

� Second Implementation …

October 19, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L8.16

CONCURRENT LINKED LIST

� Init and Insert

October 19, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L8.17

CCL – SECOND IMPLEMENTATION

� Lookup

October 19, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L8.18

CCL – SECOND IMPLEMENTATION - 2

TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

10/19/2016

Slides by Wes J. Lloyd L8.4

� Using a single lock for entire l ist is not very performant

� Users must “wait” in l ine for a single lock to access/modify

any item

� Hand-over-hand-locking (lock coupling)

� Introduce a lock for each node of a list

� Traversal involves handing over previous node’s lock,

acquiring the next node’s lock…

� Improves lock granularity

� Degrades traversal performance

� Consider hybrid approach

� Fewer locks, but more than 1

� Best lock-to-node distribution?

October 19, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L8.19

CONCURRENT LINKED LIST PERFORMANCE

� Improvement beyond a single master lock for a queue (FIFO)

� Two locks:

� One for the head of the queue

� One for the tail

� Synchronize enqueue and dequeue operations

� Add a dummy node

� Allocated in the queue initialization routine

� Supports separation of head and tail operations

� Items can be added and removed by separate threads at the

same time

October 19, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L8.20

MICHAEL AND SCOTT CONCURRENT QUEUES

� Remove from queue

October 19, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L8.21

CONCURRENT QUEUE

� Add to queue

October 19, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L8.22

CONCURRENT QUEUE - 2

�Consider a simple hash table

�Fixed (static) size

�Hash maps to a bucket

� Bucket is implemented using a concurrent linked list

� One lock per hash (bucket)

� Hash bucket is a linked lists

October 19, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L8.23

CONCURRENT HASH TABLE

� Four threads – 10,000 to 50,000 inserts

� iMac with four-core Intel 2.7 GHz CPU

October 19, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L8.24

INSERT PERFORMANCE –

CONCURRENT HASH TABLE

The simple concurrent hash table scales

magnificently.

TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

10/19/2016

Slides by Wes J. Lloyd L8.5

October 19, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L8.25

CONCURRENT HASH TABLE QUESTIONS

October 19, 2016
TCSS422: Operating Systems [Fall 2016]
Institute of Technology, University of Washington - Tacoma L8.26

