
TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

10/19/2016

Slides by Wes J. Lloyd L7.1

Locks

Wes J. Lloyd

Institute of Technology

University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

� Lock Metrics

� Spin Locks

� Hardware support- atomic instructions for locks

� Yielding

� Queues and User Control

October 17, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L7.2

OBJECTIVES

� Ensure code critical section(s) are executed atomically

� Only one thread is allowed to execute a critical section at any given

time

� Ensures the code snippets are “mutually exclusive”

� Protect a global counter:

� A “critical section”:

October 17, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L7.3

LOCKS

� Lock variables are called “MUTEX”

� Short for mutual exclusion (that’s what they guarantee)

� Lock variable store the state of the lock

� States

� Locked (acquired or held)

� Unlocked (available or free)

� Only 1 thread can hold a lock

October 17, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L7.4

LOCKS - 2

� pthread_mutex_lock(&lock)

� Try to acquire lock

� If lock is free, calling thread will acquire the lock

� Thread with lock enters critical section

� Thread “owns” the lock

� No other thread can acquire the lock before the owner

releases it.

October 17, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L7.5

LOCKS - 3

� Program can have many mutex (lock) variables to

“serialize” many critical sections

� Locks are also used to protect data structures

� Prevent multiple threads from changing the same data

simultaneously

� Programmer can make sections of code “granular”

� Fine grained – means just one grain of sand at a time through an

hour glass

� Similar to relational database transactions

� DB transactions prevent multiple users from modifiying a table,

row, field

October 17, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L7.6

LOCKS - 4

TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

10/19/2016

Slides by Wes J. Lloyd L7.2

� Is this code a good example of “fine grained parallelism”?

October 17, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L7.7

FINE GRAINED?

pthread_mutex_lock(&lock);
a = b++;
b = a * c;
*d = a + b +c;
FILE * fp = fopen ("file.txt", “r");
fscanf(fp, "%s %s %s %d", str1, str2, str3, &e);
ListNode *node = mylist->head;
Int i=0
while (node) {
node->title = str1;
node->subheading = str2;
node->desc = str3;
node->end = *e;
node = node->next;
i++

}
e = e – i;
pthread_mutex_unlock(&lock);

October 17, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L7.8

GRANULAR PARALLELISM

pthread_mutex_lock(&lock_a);
pthread_mutex_lock(&lock_b);
a = b++;
pthread_mutex_unlock(&lock_b);
pthread_mutex_unlock(&lock_a);

pthread_mutex_lock(&lock_b);
b = a * c;
pthread_mutex_unlock(&lock_b);

pthread_mutex_lock(&lock_d);
*d = a + b +c;
pthread_mutex_unlock(&lock_d);

FILE * fp = fopen ("file.txt", “r");
pthread_mutex_lock(&lock_e);
fscanf(fp, "%s %s %s %d", str1, str2, str3, &e);
pthread_mutex_unlock(&lock_e);

ListNode *node = mylist->head;
int i=0 . . .

� Correctness

� Does the lock work?

� Are critical sections mutually exclusive?

(atomic?)

� Fairness

� Are threads competing for a lock have a fair chance of

acquiring it?

� Overhead

October 17, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L7.9

EVALUATING LOCK IMPLEMENTATIONS

� Locks require hardware support

� To minimize overhead, ensure fairness and correctness

� Special “atomic” instructions to support lock

implementation

� Atomic exchange instruction
� XCHG

� Compare and exchange instruction
� CMPXCHG

� CMPXCHG8B

� CMPXCHG16B

October 17, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L7.10

BUILDING LOCKS

� To implement mutual exclusion

� Disable interrupts upon entering critical sections

� Any thread could disable system-wide interrupt

� What if lock is never released?

� On a multiprocessor processor each CPU has i ts own interrupts

� Do we disable interrupts for all cores simultaneously?

� While interrupts are disabled, they could be lost

� If not queued…

October 17, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L7.11

HISTORICAL IMPLEMENTATION

October 17, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L7.12

SPIN LOCK IMPLEMENTATION

� Without atomic assembly instructions

� “Do-it-yourself” Locks

� Is this lock implementation: Correct? Fair? Performant?

TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

10/19/2016

Slides by Wes J. Lloyd L7.3

� Correctness requires luck…

� Here both threads have “acquired” the lock simultaneously

October 17, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L7.13

DIY: CORRECT?

� What is wrong with while(<cond>); ?

� Spin-waiting wastes time actively waiting for another thread

� while (1); will “peg” a CPU core at 100%

� Continuously loops, and evaluates mutex->flag value…

� Generates heat…

October 17, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L7.14

DIY: PERFORMANT?

void lock(lock_t *mutex)
{
while (mutex->flag == 1); // while lock is unavailable, wait…
mutex->flag = 1;

}

� C implementation

� Implements atomicity for a spin lock

� Try this…

� lock() method will checks that TestAndSet doesn’t return 1

� Comparison is in the caller

October 17, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L7.15

DIY: TEST-AND-SET INSTRUCTION

� Requires a preemptive scheduler on single CPU core system

� Lock is never released without a context switch

October 17, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L7.16

DIY: TEST-AND-SET - 2

� Correctness:

� Spin locks guarantee: critical sections won’t be executed

simultaneously by (2) threads

� Fairness:

� No fairness guarantee. Once a thread has a lock, nothing forces it to

relinquish it…

� Performance:

� Spin locks perform “busy waiting”

� Spin locks are best for short periods of waiting

� Performance is slow when multiple threads share a CPU

� Especially for long periods

October 17, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L7.17

SPIN LOCK EVALUATION

� Checks that the lock variable has the expected value FIRST,

before changing its value

� If so, make assignment

� Return value at location

� Adds a comparison to TestAndSet

� Useful for wait-free synchronization

� Supports implementation of shared data structures which can be

updated atomically using the HW support CompareAndSwap

instruction

� Shared data structure updates become “wait-free”

� Upcoming in Chapter 32

October 17, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L7.18

COMPARE AND SWAP

TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

10/19/2016

Slides by Wes J. Lloyd L7.4

� Compare and Swap

� Spin lock usage

� X86 provides “cmpxchgl” compare-and-exchange instruction

� cmpxchg8b

� cmpxchg16b

October 17, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L7.19

COMPARE AND SWAP

� Instructions used together to support synchronization

� No support on x86 processors

� Supported by RISC: Alpha, PowerPC, ARM

� Load-linked (LL)

� Loads value into register

� Same as typical load

� Used as a mechanism to track competition

� Store-conditional (SC)

� Performs “mutually exclusive” store

� Allows only one thread to store value

October 17, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L7.20

TWO MORE “LOCK BUILDING”

CPU INSTRUCTIONS

� LL instruction loads pointer value (ptr)

� SC only stores if the load link pointer has not changed

� Requires HW support

� C code is psuedo code

October 17, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L7.21

LL/SC LOCK

� Two instruction lock

October 17, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L7.22

LL/SC LOCK - 2

� HW CPU Instruction

� Increment counter atomically in one instruction

� Fetch and return value

� Increment by 1

October 17, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L7.23

FETCH-AND-ADD

� Can build Ticket Lock using Fetch-and-Add

� Ensures progress of all threads (fairness)

October 17, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L7.24

TICKET LOCK

TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

10/19/2016

Slides by Wes J. Lloyd L7.5

October 17, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L7.25

TICKET LOCK - 2

TA myturn=0
ticket=1
turn=0

TA
while (0 != 0)
acquire lock

TB myturn=1
ticket=2
turn=0

TB
while (0 != 1)
spin

TA-unlock
myturn=0
ticket=2
turn=1

TB
while (1 != 1)
acquire lock

� Simple, correct

� Slow

� With long locks, waiting threads spin for entire timeslice

� Repeat comparison continuously

� Busy waiting

October 17, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L7.26

HARDWARE SPIN LOCKS - SUMMARY

How To Avoid Spinning?

Need both HW & OS Support !

� Change thread state:

� running �ready

� Ready relinquishes the CPU for another thread (ctxt. switch)

� How does the thread get the CPU back?

� OS must opportunistically reschedule it: ready � running

October 17, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L7.27

YIELD() – SYSTEM CALL

� Don’t allow the OS to control your program

� Use internal Thread Queues

� Allows programmer to maintain control

� Ensure fairness, prevent starvation

� Better for synchronizing large #’s of threads

� Require OS support for adding/removing theads to/from
queue(s)

� Solaris
� park(): puts thread to sleep

� unpark(threadID): wakes specified thread

� Linux: futex()

October 17, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L7.28

THREAD QUEUES

October 17, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L7.29

THREAD QUEUES - 2

lock unavailable-add thread to queue

Guard uses a spin-lock to protect the
critical sections in lock() and unlock()

Obtain guard lock

try to obtain actual lock

potential wakeup/waiting race

� Unlock

� Note: no change to m->flag if unparking a thread

� Lock is passed to the unparked thread “directly”

October 17, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L7.30

THREAD QUEUES - 3

Obtain guard lock (spin)

wake up thread from queue

release guard lock

TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

10/19/2016

Slides by Wes J. Lloyd L7.6

� Thread B: context switch occurs immediately before call to

park()

� Thread A: releases lock, calls unpark, queue is empty

� Thread B: regains context, proceeds to lock itself forever

� Need new system call

� setpark()- informs OS about soon to be parked thread

� Subsequent calls to unpark() are aware that ThreadB is about to park

� ThreadB’s call to park() immediately returns

October 17, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L7.31

WAKEUP/WAITING RACE

� Fast Userspace MuTEX

� Linux futex system calls similar to park() and unpark()

� Linux uses an in-kernel queue

� Provides a futex() system call

� Provides atomic compare-and-block operation

� Futex is a lower-level construct

� Used as building blocks for mutex, condition variables,

semaphores

� Objective: reduce the number of system calls

October 17, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L7.32

FUTEX

� futex_wait(addr, expected)

� Put calling thread to sleep

� If value @ addr != expected � return immediately

� futex_wake(addr)

� Wake one thread that is waiting on the queue

� These are not exposed as C l ibrary cal ls

� Call futex() with FUTEX_WAIT or FUTEX_WAKE

� Use a 32-bit integer

� The leftmost bit (the +/- sign) tracks the lock state

� 0 – free

� 1 – locked

� Remaining 31 bits: identifies thread

October 17, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L7.33

FUTEX - 2

October 17, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L7.34

FUTEX - 3

Void mutex_lock(int *mutex) {
int v;
/* Bit 31 was clear, we got the mutex (this is a fast lock!)
if (atomic_bit_test_set (mutex, 31) == 0)

return;
// “adds” mutex to queue
atomic_increment (mutex);
while (1) {

// is lock available?
if (atomic_bit_test_set (mutex, 31) ==0 {

// remove mutex from queue – it has the lock now
atomic_decrement (mutex);
return;

}
// Have to wait. Make sure futex value is locked (negative)
v = *mutex;
iv (v >= 0)
continue;

// wait to be woken up when lock is available
// this is not a spin lock… (signal)
futex_wait (mutex, v);

}
}

� Interesting note: Futex bug in Redhat Linux

� https://www.infoq.com/news/2015/05/redhat-futex

October 17, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L7.35

FUTEX - 4

Void mutex_unlock(int *mutex) {

// Adding 0x80000000 to counter results in 0 if and only if
// there are no other interested threads

if (atomic_add_zero (mutex, 0x80000000))
return;

// There are other threads waiting for this lock (mutex)
// wake one of them up..
// (e.g. dequeue it)
futex_wake (mutex);

}

� Hybrid between spin-locks and yielding

� Useful if lock is about to be released

� First phase

� Spin lock for some time waiting for the lock to be released

� If lock is not acquired after time expires enter phase two.

� Second phase

� Thread sleeps (yields)

� Is awoken when the lock becomes free

October 17, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L7.36

TWO PHASE LOCKS

TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

10/19/2016

Slides by Wes J. Lloyd L7.7

QUESTIONS

October 17, 2016
TCSS422: Operating Systems [Fall 2016]
Institute of Technology, University of Washington - Tacoma L7.37

