
TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

10/10/2016

Slides by Wes J. Lloyd L6.1

Concurrency:Concurrency:Concurrency:Concurrency:
An IntroductionAn IntroductionAn IntroductionAn Introduction

Wes J. Lloyd

Institute of Technology
University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

� Introduction to threads

� Race condition

� Critical section

� Thread API

October 12, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L6.2

OBJECTIVES

October 12, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L6.3

THREADS

©Alfred Park, http://randu.org/tutorials/threads

Single
Threaded
Process

Multiple
Threaded
Process

SHARED

� Enables a single process (program) to have multiple “workers”

� Supports independent path(s) of execution within a program

� Each thread has its own Thread Control Block (TCB)

� PC, registers, SP, and stack

� Code segment, memory, and heap are shared

October 12, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L6.4

THREADS - 2

� Thread Control Block vs. Process Control Block

October 12, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L6.5

PROCESS AND THREAD METADATA

October 12, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L6.6

SHARED ADDRESS SPACE

� Every thread has it’s own stack / PC

TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

10/10/2016

Slides by Wes J. Lloyd L6.2

October 12, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L6.7

THREAD CREATION EXAMPLE

intintintint main()main()main()main() Thread 1Thread 1Thread 1Thread 1 Thread 2Thread 2Thread 2Thread 2

Starts running

Prints ‘main: begin’

Creates Thread 1

Creates Thread 2

Waits for T1

Runs

Prints ‘A’

Returns

Waits for T2

Runs

Prints ‘B’

Returns

Prints ‘main: end’

October 12, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L6.8

POSSIBLE ORDERINGS OF EVENTS

intintintint main()main()main()main() Thread 1Thread 1Thread 1Thread 1 Thread 2Thread 2Thread 2Thread 2

Starts running

Prints ‘main: begin’

Creates Thread 1

Runs

Prints ‘A’

Returns

Creates Thread 2

Runs

Prints ‘B’

Returns

Waits for T1 Returns immediately

Waits for T2 Returns immediately

Prints ‘main: end’

October 12, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L6.9

POSSIBLE ORDERINGS OF EVENTS - 2

intintintint main()main()main()main() Thread 1Thread 1Thread 1Thread 1 Thread 2Thread 2Thread 2Thread 2

Starts running

Prints ‘main: begin’

Creates Thread 1

Creates Thread 2

Runs

Prints ‘B’

Returns

Waits for T1

Runs

Prints ‘A’

Returns

Waits for T2 Immediately returns

Prints ‘main: end’

October 12, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L6.10

POSSIBLE ORDERINGS OF EVENTS - 3

What if execution order of
events in the program matters?

� Show example

� A + B : ordering

� Counter: incrementing global variable by two threads

October 12, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L6.11

COUNTER EXAMPLE

� Example when counter=50

� Counter = counter + 1

� If synchronized, counter will = 52

October 12, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L6.12

RACE CONDITION

TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

10/10/2016

Slides by Wes J. Lloyd L6.3

� Code that accesses a shared variable must not be

concurrentlyconcurrentlyconcurrentlyconcurrently executed by more than one thread

� Multiple activeactiveactiveactive threads inside a critical section produces a

race conditionrace conditionrace conditionrace condition .

� AtomicityAtomicityAtomicityAtomicity of execution must be ensured in criticalcr iticalcr iticalcr itical sections

� These sections must be mutually exclusivemutually exclusivemutually exclusivemutually exclusive

October 12, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L6.13

CRITICAL SECTION

� To demonstrate how critical section(s) can be executed

“atomically” Chapter 27 & beyond introduce locks

� Counter example revisited

October 12, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L6.14

LOCKS

LINUX

THREAD API

October 12, 2016
TCSS422: Operating Systems [Fall 2016]
Institute of Technology, University of Washington - Tacoma L6.15

� pthread_create

� thread: thread struct

� attr: stack size, scheduling priority…

� start_routine: function pointer to thread routine

� arg: argument to pass to thread routine

October 12, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L6.16

THREAD CREATION

� Casting

� Suppresses compiler warnings when passing “typed” data

where (void) or (void *) is called for

� Example: uncasted capture in pthread_join
pthread_int.cpthread_int.cpthread_int.cpthread_int.c : In function ‘main’:: In function ‘main’:: In function ‘main’:: In function ‘main’:

pthread_int.c:34:20: warning: passing argument 2 of ‘pthread_int.c:34:20: warning: passing argument 2 of ‘pthread_int.c:34:20: warning: passing argument 2 of ‘pthread_int.c:34:20: warning: passing argument 2 of ‘ pthread_joinpthread_joinpthread_joinpthread_join ’ ’ ’ ’
from incompatible pointer type [from incompatible pointer type [from incompatible pointer type [from incompatible pointer type [---- WincompatibleWincompatibleWincompatibleWincompatible ---- pointerpointerpointerpointer ---- types]types]types]types]

pthread_joinpthread_joinpthread_joinpthread_join (p1, &p1val(p1, &p1val(p1, &p1val(p1, &p1val););););

� Example: uncasted return
In file included from pthread_int.c:3:0:In file included from pthread_int.c:3:0:In file included from pthread_int.c:3:0:In file included from pthread_int.c:3:0:

//// usrusrusrusr /include/pthread.h:250:12: note: expected ‘void **’ but argument /include/pthread.h:250:12: note: expected ‘void **’ but argument /include/pthread.h:250:12: note: expected ‘void **’ but argument /include/pthread.h:250:12: note: expected ‘void **’ but argument
is of type ‘is of type ‘is of type ‘is of type ‘ intintintint **’**’**’**’

extern extern extern extern intintintint pthread_joinpthread_joinpthread_joinpthread_join ((((pthread_tpthread_tpthread_tpthread_t ________ thththth , void **__, void **__, void **__, void **__ thread_returnthread_returnthread_returnthread_return););););

October 12, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L6.17

THREAD CREATION - 2

� pthread_join

int * p1val;

int * p2val;

pthread_join(p1, (void *)(void *)(void *)(void *)&p1val);

pthread_join(p2, (void *)(void *)(void *)(void *)&p2val);

� return from thread function

int * counterval = malloc(sizeof(int));

*counterval = counter;

return (void *)(void *)(void *)(void *) counterval;

October 12, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L6.18

ADDING CASTS

TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

10/10/2016

Slides by Wes J. Lloyd L6.4

October 12, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L6.19

PTHREAD_CREATE – PASS ANY DATA

� thread: which thread?

� value_ptr: pointer to return value

type is dynamic / agnostic

� Returned values *must* be on the heap

� Thread stacks destroyed upon thread termination (join)

� Pointers to thread stack memory addresses are invalid

� May appear as gibberish or lead to crash (seg fault)

� Not all threads join – What would be Examples ??What would be Examples ??What would be Examples ??What would be Examples ??

October 12, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L6.20

WAITING FOR THREADS TO FINISH

October 12, 2016
TCSS422: Operating Systems [Fall 2016]
Institute of Technology, University of Washington - Tacoma L6.21

struct myarg {
int a;
int b;

};

void *worker(void *arg)
{
struct myarg *input = (struct myarg *) arg;
printf("a=%d b=%d\n",input->a, input->b);
struct myarg output;
output.a = 1;
output.b = 2;
return (void *) &output;

}

int main (int argc, char * argv[])
{
pthread_t p1;
struct myarg args;
struct myarg *ret_args;
args.a = 10;
args.b = 20;
pthread_create(&p1, NULL, worker, &args);
pthread_join(p1, (void *)&ret_args);
printf("returned %d %d\n", ret_args->a, ret_args->b);
return 0;

}

What will this code do?

How can this code be fixed?

$./pthread_struct
a=10 b=20
Segmentation fault (core dumped)

Data on thread stack

October 12, 2016
TCSS422: Operating Systems [Fall 2016]
Institute of Technology, University of Washington - Tacoma L6.22

struct myarg {
int a;
int b;

};

void *worker(void *arg)
{
struct myarg *input = (struct myarg *) arg;
printf("a=%d b=%d\n",input->a, input->b);
input->a = 1;
input->b = 2;
return (void *) &input;

}

int main (int argc, char * argv[])
{
pthread_t p1;
struct myarg args;
struct myarg *ret_args;
args.a = 10;
args.b = 20;
pthread_create(&p1, NULL, worker, &args);
pthread_join(p1, (void *)&ret_args);
printf("returned %d %d\n", ret_args->a, ret_args->b);
return 0;

}

$./pthread_struct
a=10 b=20
returned 1 2

How about this code?

� Here we “cast” the pointer to pass/return a primitive data type

October 12, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L6.23

PASSING A SINGLE VALUE

Using this approach on your CentOS 7 VM
How large (in bytes) can the primitive data type be?

How large (in bytes) can the primitive data type
be on a 32-bit operating system?

� pthread_mutex_t data type

� /usr/include/bits/pthread_types.h

October 12, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L6.24

LOCKS

// Global Address Space
static volatile int counter = 0;
pthread_mutex_tpthread_mutex_tpthread_mutex_tpthread_mutex_t lock;lock;lock;lock;

void *worker(void *arg)
{
int i;
for (i=0;i<10000000;i++) {

intintintint rcrcrcrc = = = = pthread_mutex_lockpthread_mutex_lockpthread_mutex_lockpthread_mutex_lock(&lock);(&lock);(&lock);(&lock);
assert(rc==0);
counter = counter + 1;
pthread_mutex_unlockpthread_mutex_unlockpthread_mutex_unlockpthread_mutex_unlock(&lock);(&lock);(&lock);(&lock);

}
return NULL;

}

TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

10/10/2016

Slides by Wes J. Lloyd L6.5

� Ensure critical sections are executed atomically

� Provides implementation of “Mutual ExclusionMutual ExclusionMutual ExclusionMutual Exclusion”

� API

� Example w/o initialization & error checking

� Blocks forever until lock can be obtained

� Enters critical section once lock is obtained

� Releases lock

October 12, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L6.25

LOCKS - 2

� Assigning the constant

� API call :

� Initializes mutex with attributes specified by 2nd argument

� If NULL, then default attributes are used

� Upon initialization, the mutex is initialized and unlocked

October 12, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L6.26

LOCK INITIALIZATION

� Error checking wrapper

� What if lock can’t be obtained?

� trylock – returns immediately (fails) if lock is unavailable

� timelock – tries to obtain a lock for a specified duration

October 12, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L6.27

LOCKS - 3

� Condition variables support “signaling”

between threads

� pthread_cont_t datatype

� pthread_cond_wait()

� Waits (sleeps)

� Listens for a “signal”

� Releases the lock until signaled

October 12, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L6.28

CONDITIONS AND SIGNALS

� pthread_cond_signal()

� Called to send a “signal” to all listeners � to wake them up

� The goal is to unblock (at least one) to respond to the signal

� pthread_cond_broadcast()

� Unblocks all threads currently blocked on the specified condition

� Used when all threads should respond to the signal

� Which thread is unblocked first?

� Determined by OS scheduler (based on priority)

� Thread(s) gain the lock individually (based on priority)
as if they called pthread_mutex_lock()

October 12, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L6.29

CONDITIONS AND SIGNALS - 2

int pthread_cond_signal(pthread_cond_t * cond);

int pthread_cond_broadcast(pthread_cond_t * cond);
� Wait example

� wait puts thread to sleep, releases lock

� when awoken, lock reacquired (and released by this code)

� Another thread signals the thread

October 12, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L6.30

CONDITIONS AND SIGNALS - 3

Code performs required
work before other

thread(s) can continue

. . .

TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

10/10/2016

Slides by Wes J. Lloyd L6.6

� Why do we wait inside a while loop?

� The while ensures upon awakening the condition is rechecked

� A signal may have been raised, but the condition to proceed has

not been satisfied.

� Without checking the condition the thread may proceed to execute

when it should not.

October 12, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L6.31

CONDITION AND SIGNALS - 4

� “initialized” - - global variable shared by multiple threads

� Wait (client thread):

� Signal (parent thread): when ready…

� How is this “wait” different that pthread_cond_wait() ?

� Wastes CPU cycles � effectively pegs a core at 100%

� Potential synchronization errors with changing the value of

“initialized”

� Thread API is provided to advance the DO-IT-YOURSELF approach

October 12, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L6.32

DO-IT-YOURSELF LOCK

� Compilation

� gcc –pthread pthread.c –o pthread

� Requires explicitly linking the library with compiler flag

� List of pthread manpages

� man –k pthread

October 12, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L6.33

PTHREADS LIBRARY

� Example builds multiple single fi le programs

� All target

� pthread_mult

� Example if multiple source files should produce a single executable

� clean target

October 12, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L6.34

SAMPLE MAKEFILE

CC=gcc
CFLAGS=-pthread -I. -Wall

binaries=pthread pthread_int pthread_lock_cond pthread_struct

all: $(binaries)

pthread_mult: pthread.c pthread_int.c
$(CC) $(CFLAGS) $^ -o $@

clean:
$(RM) -f $(binaries) *.o

QUESTIONSQUESTIONSQUESTIONSQUESTIONS

October 12, 2016
TCSS422: Operating Systems [Fall 2016]
Institute of Technology, University of Washington - Tacoma L6.35

