TCSS 422: Operating Systems [Fall 2016] 10/10/2016

Institute of Technology, UW-Tacoma

TCSS 422: OPERATING SYSTEMS

Concurrency:
An Introduction

Wes J. Lloyd
Institute of Technology
University of Washington - Tacoma

OBJECTIVES

= Introduction to threads

= Race condition

= Critical section

= Thread API

TCSS422: Operating Systems [Fall 2016]

October 12,2016 Institute of Technology, University of Washington - Tacoma

THREADS

Process Multithreaded Process
registers, SP, etc registers, SP, etc... State | | Stake | | Stake
" . | S .,
Threaded moses SHARED oMY (LRSS
Process . Heap- Z - || Process

E W
L ¢ 0 € .
)

©Alfred Park, http://randu.org/utorials/threads

| October 12, 2016

TCS5422: Operating Systems [Fall 2016] 163
Institute of Technology, University of Washington - Tacoma

THREADS - 2

= Enables a single process (program) to have multiple “workers”
= Supports independent path(s) of execution within a program

= Each thread has its own Thread Control Block (TCB)
= PC, registers, SP, and stack

= Code segment, memory, and heap are shared

TCS5422: Operating Systems [Fall 2016]
CLE T Institute of Technology, University of Washington - Tacoma

PROCESS AND THREAD METADATA

= Thread Control Block vs. Process Control Block

Thread identification Process identification
Thread state Process status
CPU information: Process state:
Program counter Process status word
Register contents Sequtenconants
" Main memory
Thread priority Resources
Pointer to process that created this thread Process priority
Pointers to all other threads created by this thread Accounting
October 12, 2016 TCS5422: Operating Systems [Fall 2016] | o5 |

Institute of Technology, University of Washington - Tacoma

SHARED ADDRESS SPACE

= Every thread has it’s own stack / PC

OKB The code segment: OKB
Program Code | where instructions live Program Code
1KB The h " 1KB
e heap segment:
Heap contains mallocd data . Heap
2K8 dynamic data structures
(it grows downward)
(free)
(free)
Stack ()
(it grows upward)
The stack segment: (free)
15k8 contains local variables 15k8
Stack (1) arguments to routines, Stack (1)
16K8 return values, etc 16k8 i
A Single-Threaded Two threaded
Address Space Address Space
October 12, 2016 TCS5422: Operating Systems [Fall 2016] ‘ 66 |

Institute of Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

L6.1

TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

#include <stdio.h>
#include <assert.h>
#include <pthread.h>

void smythread(void sarg) {
printf n*, (char ») arg);

t arge, char rargv(]) {
) ad_t pl, p2;

int rc;

printf("main: begin\n");

ead_create (5p2,
hreads to finish

assert (rc == 0);
assert (rc == 0);

THREAD CREATION EXAMPLE

ead_create(spl, NULL, mythread, "A"); assert(rc == 0);
NULL, mythread, "B"); assert (rc == 0);

TCS5422: Operating Systems [Fall 2016]

October 12,2016 Institute of Technology, University of Washington - Tacoma

Starts running

Prints ‘main: begin"

Creates Thread 1
Runs
Prints ‘A’
Returns

Creates Thread 2

Waits for T4 Returns immediately
Waits for T2

Prints ‘main: end’

POSSIBLE ORDERINGS OF EVENTS - 2

Runs
Prints ‘B

Returns.

Returns immediately

TCS5422: Operating Systems [Fall 2016]

Octoher 22010 Institute of Technology, University of Washington - Tacoma

| 6.9 |

10/10/2016

POSSIBLE ORDERINGS OF EVEN
[mtman) [Threads Thread 2
Starts running
Prints ‘main: begin’
»Cveates Thread 1
Creates Thread 2
Waits for T1
Runs
» Prints ‘A"
Returns
» Waits for T2
Runs
Prints ‘B’
Returns
» Prints ‘main: end"
[omoernnams [T e e o Tocams | o]

POSSIBLE ORDERINGS OF EVENTS - 3

Starts running

Thread 1 Thread 2

Prints ‘main: begin’

Creates Thread 1
Creates Thread 2

What if execution order of

events in the program matters?

Waits for
Runs
Prints ‘A’
Returns
Waits for T2 Immediately returns
Prints ‘main: end"
October 12,2016 TCS5422: Operating Systems [Fall 2016] ‘ 1610 |

Institute of Technology, University of Washington - Tacoma

COUNTER EXAMPLE

= Show example

= A + B: ordering

= Counter: incrementing global variable by two threads

TCS5422: Operating Systems [Fall 2016]

October 12,2016 Institute of Technology, University of Washington - Tacoma

1611

Slides by Wes J. Lloyd

RACE CONDITION

= Example when counter=50
= Counter = counter + 1

= |If synchronized, counter will = 52
(after instruction)
os Thread1 Thread2 PC %eax counter
before critical section 100 o 50
mov 0x8049alc, %eax 105 50 50
add $0x1, %eax 108 51 50

Save TI's state

restore T2's state 100 0 50
mov 0x8049alc, %eax 105 50 50
add $0x1, seax 108 51 50
mov %eax, 0x804%alc 113 51 51

save T2's state
restore T1l's state 108 51 50
mov %eax, 0x8049alc 113 51

TCSS422: Operating Systems [Fall 2016]
Institute of Technology, University of Washington - Tacoma

| October 12,2016

L6.2

TCSS 422: Operating Systems [Fall 2016] 10/10/2016
Institute of Technology, UW-Tacoma

CRITICAL SECTION LOCKS

= Code that accesses a shared variable must not be = To demonstrate how critical section(s) can be executed
concurrently executed by more than one thread “atomically” Chapter 27 & beyond introduce locks

= Multiple active threads inside a critical section produces a
race condition.

Tock_t mutex;
= Atomicity of execution must be ensured in critical sections R
= These sections must be mutually exclusive lock (smutex) :
[ba1ance = palance + 1;
unlock (smutex) ;

Critical section

EI SN

= Counter example revisited

TCS5422: Operating Systems [Fall 2016]
Institute of Technology, University of Washington - Tacoma

TCS5422: Operating Systems [Fall 2016]
October 12,2016 1613 October 12,2016 Institute of Technology, University of Washington - Tacoma

[s

THREAD CREATION

= pthread_create

#include <pthread.h>

int
pthread_create(pthread_t* thread,
LI N UX const pthread attr_t* attr,
void#* (*start_routine) (void*),
void* arg) ;

THREAD API

= thread: thread struct

= attr: stack size, scheduling priority...

= start_routine: function pointer to thread routine
= arg: argument to pass to thread routine

TCSS422: Operating Systems [Fall 2016

] TCS5422: Operating Systems [Fall 2016]
Institute of Technology, University of Washington - Tacoma

October 12,2016 Institute of Technology, University of Washington - Tacoma

October 12,2016

‘ 16.16 |

THREAD CREATION - 2 ADDING CASTS

= Casting = pthread_join
= Suppresses compiler warnings when passing “typed” data int * plval;
where (void) or (void *) is called for int * p2val;
pthread_join(pl, (void *)&plval);
= Example: uncasted capture in pthread_join pthread_join(p2, (void *)&p2val);

pthread_int.c: In function ‘main’:

pthread_int.c:34:20: warning: passing argument 2 of ‘pthread_join’

from incompatible pointer type [-Wwincompatible-pointer-types]
pthread_join(pl, &plval);

return from thread function

int * counterval = malloc(sizeof(int));
*counterval = counter;

= Example: uncasted return return (void *) counterval;
In file included from pthread_int.c:3:0:
/usr/include/pthread.h:250:12: note: expected ‘void **’ but argument
is of type ‘int **’

extern int pthread_join (pthread_t __th, void **__thread_return);

TCS5422: Operating Systems [Fall 2016]
Institute of Technology, University of Washington - Tacoma

TCSS422: Operating Systems [Fall 2016]

October 12, 2016 Institute of Technology, University of Washington - Tacoma

1617

October 12,2016 ‘ 1618

Slides by Wes J. Lloyd L6.3

TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

10/10/2016

PTHREAD_CREATE - PASS ANY DATA

#include <pthread.h>

typ struct _myarg t {
» nt a;

int b;
) myarg_t;

void *mythread(void *arg) {
myarg_t *m = (myarg_t *) arg;
‘ printf(“3d 3d\n”, m->a, m->b);
NULL;

}

int main(int arge, char *argv(]) {
pthread t p;
int re;

myarg_t args;

» args. 0;
args.

07
rc = pthread_create(sp, NULL, mythread, &args):

}

TCS5422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma 1619

| October 12, 2016

WAITING FOR THREADS TO FINISH

int pthread_join(pthread_t thread, void **value_ptr);

= thread: which thread?

= value_ptr: pointer to return value
type is dynamic / agnostic

= Returned values *must* be on the heap

= Thread stacks destroyed upon thread termination (join)

= Pointers to thread stack memory addresses are invalid
= May appear as gibberish or lead to crash (seg fault)

= Not all threads join - What would be Examples ??

TCSS422: Operating Systems [Fall 2016]

October 12,2016 Institute of Technology, University of Washington - Tacoma ‘ 1620

struct myarg { . .
Int 2 at will this code do?
3

void *worker(void *arg)
{

struct myarg *input = (struct myarg *) arg;
printf("a=%d b=%d\n",input->a, input->b);
Zﬁzgﬁi_zyir%;wtp“' Data on thread stack
output.b = 2;
return (void *) &output; $./pthread_struct

} a=10 b=20

Segmentation fault (core dumped)

int main (int argc, char * argv[])
{

pthread_t pl;

struct myarg args;

struct myarg *ret_args;

args.a = 10;

args.b - 20:

pthread_4

e How can this code be fixed?
return 0

TCSS422: Operating Systems [Fall 2016]

Ociobery 222008 Institute of Technology, University of Washington - Tacoma 1621

struct myarg { .
Int 2 How about this code?
b

void *worker(void *arg)
{

struct myarg *input = (struct myarg *) arg;
printf("a=%d b=%d\n",input->a, input->b);
input->a = 1;

input->b = 2;

return (void *) &input;

$.Ipthread_struct

a=10 b=20
returned 1 2

int main (int argc, char * argv[])

pthread_t pl;

struct myarg args;

struct myarg *ret_args;

args.a = 10;

args.b = 20;

pthread_create(&pl, NULL, worker, &args);
pthread_join(pl, (void *)&ret_args);
printf("returned %d %d\n", ret_args->a, ret_args->b);
return 0;

TCSS422: Operating Systems [Fall 2016]

EHEE PHE Institute of Technology, University of Washington - Tacoma 1622

PASSING A SINGLE VALUE

Using this approach on your CentOS 7 VM

How large (in bytes) can the primitive data type be?
How large (in bytes) can the primitive data type
be on a 32-bit operating system?

9 Tt rc, m;
10 pthread create (p, NULL, mythraad,lUO);
11 pthread join(p, (void **) &m);

12 printf (“returned %d\n”, m);

0;

TCS5422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma 623

October 12, 2016

LOCKS

= pthread_mutex_t data type
= /usr/include/bits/pthread_types.h
// Global Address Space

static volatile int counter = 0;

void *worker(void *arg)

{

int i;
for (i=0;1<10000000;i++) {

assert(rc==0);
counter = counter + 1;

}
return NULL;

TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma ‘ 1624

October 12,2016

Slides by Wes J. Lloyd

L6.4

TCSS 422: Operating Systems [Fall 2016] 10/10/2016
Institute of Technology, UW-Tacoma

LOCKS - 2

LOCK INITIALIZATION

= Ensure critical sections are executed atomically

= Assigning the constant
= Provides implementation of “Mutual Exclusion” ‘ pthread mutes t lock — PTHREAD MUTEX INITIALIZER;
= API = API call:
int pthread mutex lock(pthread mutex t *mutex); int rc - pthread mutex init (slock, NULL):
int pthread_mutex_unlock (pthread mutex_t *mutex); a's‘sert(rcp:: 0y /) alm o ’ .
= Example w/o initialization & error checkin o) . .
g = |nitializes mutex with attributes specified by 2" argument
pthread mutex_t lock;
benread mutex lock (slock); o = If NULL, then default attributes are used
x=x+ 1; r whatever your critical section is
th d t lock(&lock) ; s oar e . PO
pthread mutex unlock(&lock) = Upon initialization, the mutex is initialized and unlocked
= Blocks forever until lock can be obtained
= Enters critical section once lock is obtained
= Releases lock
TCSS422: Operating Systems [Fall 2016] TCSS422: Operating Systems [Fall 2016]
October 12,2016 Insti(u(eofTechr:nIogy, University of Washington - Tacoma 1625 October 12,2016 s

Institute of Technology, University of Washington - Tacoma ‘ 1626 |

LOCKS - 3 CONDITIONS AND SIGNALS

= Error checking wrapper = Condition variables support “signaling”

between threads

gram

id Pthread_mutex_lock (pthread_mutex_t *mutex) { int pthread_cond wait (pthread cond_t *cond,
int rc = pthread mutex_lock (mutex) ; pthread mutex t *mutex);
assert (rc — 0); int pthread _cond_signal (pthread_cond_t *cond);
}

= pthread_cont_t datatype
= What if lock can’t be obtained?
int pthread mutex_trylock(pthread mutex_t *mutex); = pthread_cond_wait()
int pthread mutex_timelock (pthread mutex_t *mutex, - -
struct timespec *abs_timeout); = Waits (sleeps)
= trylock - returns immediately (fails) if lock is unavailable Hisieie i & “HEne
: : 5 e q = Releases the lock until signaled
= timelock - tries to obtain a lock for a specified duration g
TCSS422: Operating Systems [Fall 2016] TCSS422: Operating Systems [Fall 2016]
Octoher 22010 Institute of Technology, University of Washington - Tacoma | te.27 (i i 2D Institute of Technology, University of Washington - Tacoma ‘ L6.28 |

CONDITIONS AND SIGNALS - 2 CONDITIONS AND SIGNALS - 3

int pthread_cond_signal(pthread_cond_t * cond);

= Wait example
int pthread_cond_broadcast(pthread_cond_t * cond);

pthread_mutex_t lock = PTHREAD MUTEX INITIALIZER;
pthread_cond_t init = PTHREAD COND_INITIALIZER;
= pthread_cond_signal()
o N . pthread mutex_lock (slock) ;
= Called to send a “signal” to all listeners > to wake them up (initialized 0)
= The goal is to unblock (at least one) to respond to the signal * pthread_cond wait (&init, &lock)‘ .
pthFead mutex_unlock(&lock) ;

= pthread_cond_broadcast()

= Unblocks all threads currently blocked on the specified condition

= wait puts thread to sleep, releases lock
= Used when all threads should respond to the signal

= when awoken, lock reacquired (and released by this code)

= Which thread is unblocked first? = Another thread signals the thread Code performs required

work before other
= Determined by OS scheduler (based on priority) pthread_mutex_lock (&lock) ; thread(s) can continue
- Lo - tialized = 1; €
= Thread(s) gain the lock individually (based on priority) ;Z;r;:dlzznd cional (6init);
as if they called pthread_mutex_Tock () bthread mater unlock (s10ck)
TCS$422: Operating Systems [Fall 2016] TCS5422: Operating Systems [Fall 2016]
@i, 2 Institute of Technology, University of Washington - Tacoma L6.29 G2 nstitute of Technology, University of Washington - Tacoma ‘ 1630

Slides by Wes J. Lloyd L6.5

TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

10/10/2016

CONDITION AND SIGNALS - 4

pthread mutex_t lock = PTHREAD MUTEX_INITTALIZER;
pthread cond_t init = PTHREAD_COND_INITIALIZER;

pthread mutex lock(&lock)
(initialized = 0)
pthread cond wait (sinit, &lock):
pthread mutex_unlock (&lock) ;

= Why do we wait inside a while loop?

not been satisfied.

when it should not.

= The while ensures upon awakening the condition is rechecked
= A signal may have been raised, but the condition to proceed has

= Without checking the condition the thread may proceed to execute

TCS5422: Operating Systems [Fall 2016]
October 12,2016 Institute of Technology, University of Washington - Tacoma

1631

DO-IT-YOURSELF LOCK

= “initialized” -- global variable shared by multiple threads
= Wait (client thread):
while (initialized == 0)
» ; // spin

= Signal (parent thread): when ready...

‘ initialized = 1;

= How is this “wait” different that pthread_cond_wait() ?
= Wastes CPU cycles > effectively pegs a core at 100%

= Potential synchronization errors with changing the value of
“initialized”

= Thread APl is provided to advance the DO-IT-YOURSELF approach

TCS5422: Operating Systems [Fall 2016]
October 12,2016 Institute of Technology, University of Washington - Tacoma 1632

PTHREADS LIBRARY

= Compilation
= gcc -pthread pthread.c -o pthread
= Requires explicitly linking the library with compiler flag

= List of pthread manpages
= man -k pthread

TCS5422: Operating Systems [Fall 2016]

Octoher 22010 Institute of Technology, University of Washington - Tacoma

1633 |

SAMPLE MAKEFILE

cc=gcc
CFLAGS=-pthread -I. -wall

binaries=pthread pthread_int pthread_lock_cond pthread_struct
all: $(binaries)

pthread_mult: pthread.c pthread_int.c
$(CC) $(CFLAGS) $A -0 $@

clean:
$(RM) -f $(binaries) *.o

= Example builds multiple single file programs
= All target
® pthread_mult
= Example if multiple source files should produce a single executable

= clean target

7C55422: Operating Systems [Fall 2016]
Octouent2ianie Institute of Technology, University of Washington - Tacoma Le34

QUESTIONS

TCSS422: Operating Systems [Fall 2016]
(e i 20D Institute of Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

L6.6

