
TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

10/14/2016

Slides by Wes J. Lloyd L4.1

Scheduling: Scheduling: Scheduling: Scheduling:
MultiMultiMultiMulti---- level Feedback Queue,level Feedback Queue,level Feedback Queue,level Feedback Queue,

Proportional ShareProportional ShareProportional ShareProportional Share

Wes J. Lloyd

Institute of Technology
University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

� Multi- level Feedback Queue

� Proportional Share Scheduler

October 7, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L5.2

OBJECTIVES

�Objectives:

� Improve turnaround time:

Run shorter jobs first

�Minimize response time:

Important for interactive jobs (UI)

�Achieve without a priori knowledge of job length

October 7, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L5.3

MULTI-LEVEL FEEDBACK QUEUE

� Multiple job queues

� Adjust job priority based on

observed behavior

� Interactive Jobs

� Frequent I/O � keep priority high

� Interactive jobs require fast

response time (GUI/UI)

� Batch Jobs

� Require long periods of CPU

utilization

� Keep priority low

October 7, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L5.4

MLFQ - 2 Round-Robin
within a Queue

� New arriving jobs are placed into highest priority queue

� If a job uses its entire time slice, priority is reduced

� Jobs appears CPU-bound (“batch” job), not interactive (GUI/UI)

� If a job relinquishes the CPU for I/O priority stays the same

October 7, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L5.5

MLFQ: DETERMINING JOB PRIORITY

MLFQ approximates SJF

� Three-queue scheduler, time slice=10ms

October 7, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L5.6

MLFQ: LONG RUNNING JOB

Priority

TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

10/14/2016

Slides by Wes J. Lloyd L4.2

� A run_time=200ms, B run_time = 20ms

� Barr ival_time = 100ms

October 7, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L5.7

MLFQ: BATCH AND INTERACTIVE JOBS

Priority

� Continuous interactive job with a long running batch job

� Low response time is good for B

� A continues to make progress

October 7, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L5.8

MLFQ: BATCH AND INTERACTIVE - 2

The MLFQ approach keeps interactive job(s) at the highest priority

�Starvation

October 7, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L5.9

MLFQ: ISSUES

� Gaming the scheduler

� Issue I/O operation at 99% completion of the time slice

� Keeps job priority fixed – never lowered

� Job behavioral change

� CPU/batch process becomes an interactive process

October 7, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L5.10

MLFQ: ISSUES - 2

Priority becomes stuck

� Priority Boost

� Reset all jobs to topmost queue after some time interval S

October 7, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L5.11

RESPONDING TO BEHAVIOR CHANGE

Starvation

� With priority boost

� Prevents starvation

October 7, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L5.12

RESPONDING TO BEHAVIOR CHANGE - 2

TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

10/14/2016

Slides by Wes J. Lloyd L4.3

� Improved time accounting:

� Track total job execution time in the queue

� Each job receives a fixed time allotment

� When allotment is exhausted, job priority is lowered

October 7, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L5.13

PREVENTING GAMING

� Consider the tradeoffs:

� How many queues?

� What is a good time slice?

� How often should we “Boost” priority of jobs?

� What about different time slices to different queues?

October 7, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L5.14

MLFQ: TUNING

� Oracle Solaris MLFQ implementation

� 60 Queues �

w/ slowly increasing time slice (high to low priority)

� Provides sys admins with set of editable table(s)

� Supports adjusting time slices, boost intervals, priority

changes, etc.

� Advice

� Provide OS with hints about the process

� Nice command � Linux

October 7, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L5.15

PRACTICAL EXAMPLE

� The refined set of MLFQ rules:

� Rule 1:Rule 1:Rule 1:Rule 1: If Priority(A) > Priority(B), A runs (B doesn’t).

� Rule Rule Rule Rule 2:2:2:2: If Priority(A) = Priority(B), A & B run in RR.

� Rule Rule Rule Rule 3:3:3:3: When a job enters the system, it is placed at the

highest priority.

� Rule Rule Rule Rule 4:4:4:4: Once a job uses up its time allotment at a given

level (regardless of how many times it has given up the

CPU), its priority is reduced(i.e., it moves down on queue).

� Rule Rule Rule Rule 5:5:5:5: After some time period S, move all the jobs in the

system to the topmost queue.

October 7, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L5.16

MLFQ RULE SUMMARY

PROPORTIONAL SHARE

SCHEDULER

October 7, 2016
TCSS422: Operating Systems [Fall 2016]
Institute of Technology, University of Washington - Tacoma L5.17

� Also called fair-share scheduler

� Or lottery scheduler

� Guarantee each job receives some percentage of CPU time

based on share of “tickets”

� Each job receives an allotment of tickets

� % of tickets corresponds to potential share of a resource

� Can conceptually schedule any resource this way

� CPU, disk I/O, memory

October 7, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L5.18

PROPORTIONAL SHARE SCHEDULER

TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

10/14/2016

Slides by Wes J. Lloyd L4.4

� Simple implementation

� Just need a random number generator

� Picks the winning ticket

� Maintain a data structure of jobs and tickets (list)

� Traverse list to find the owner of the ticket

� Consider sorting the list for speed

October 7, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L5.19

LOTTERY SCHEDULER

October 7, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L5.20

LOTTERY SCHEDULER IMPLEMENTATION

1 // counter: used to track if we’ve found the winner yet
2 int counter = 0;
3
4 // winner: use some call to a random number generat or to
5 // get a value, between 0 and the total # of ticket s
6 int winner = getrandom(0, totaltickets);
7
8 // current: use this to walk through the list of jo bs
9 node_t *current = head;
10
11 // loop until the sum of ticket values is > the win ner
12 while (current) {
13 counter = counter + current->tickets;
14 if (counter > winner)
15 break ; // found the winner
16 current = current->next;
17 }
18 // ’current’ is the winner: schedule it...

� Ticket currency / exchange

� User allocates tickets in any desired way

� OS converts user currency into global currency

� Example:

� There are 200 global tickets assigned by the OS

October 7, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L5.21

TICKET MECHANISMS

� Ticket transfer

� Temporarily hand off tickets to another process

� Ticket inflation

� Process can temporarily raise or lower the number of

tickets it owns

� If a process needs more CPU time, it can boost tickets.

October 7, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L5.22

TICKET MECHANISMS - 2

� Scheduler picks a winningwinningwinningwinning ticket

� Load the job with the winning ticket and run it

� Example:

� Given 100 tickets in the pool

� Job A has 75 tickets: 0 - 74

� Job B has 25 tickets: 75 – 99

� But what do we know about probability of a coin flip?

October 7, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L5.23

LOTTERY SCHEDULING

� Equality of distribution (fairness) requires a lot of fl ips!

October 7, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L5.24

COIN FLIPPING

Similarly,

Lottery scheduling requires lots of “rounds” to achieve fairness.

TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

10/14/2016

Slides by Wes J. Lloyd L4.5

October 7, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L5.25

LOTTERY FAIRNESS

� With two jobs

� Each with the same number of tickets (t=100)

When the job length is not very long,

average unfairness can be quite severe.

� What is the best approach to assign tickets to jobs?

� Typical approach is to assume users know best

� Users are provided with tickets, which they allocate as

desired

� How should the OS automatically distribute tickets upon

job arrival?

� What do we know about incoming jobs a priori ?

� Ticket assignment is really an open problem…

October 7, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L5.26

TICKET ASSIGNMENT PROBLEM

�Addresses statistical probability issues with

lottery scheduling

� Instead of guessing a random number to select a

job, simply count…

October 7, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L5.27

STRIDE SCHEDULING

� Jobs have a “stride” value

� A stride value describes the counter pace when the job should

give up the CPU

� Stride value is inverse in proportion to the job’s number of

tickets

� Total system tickets = 10,000

� Job A has 100 tickets � Astride = 10000/100 = 100

� Job B has 50 tickets � Bstride = 10000/50 = 200

� Job C has 250 tickets � Cstride = 10000/250 = 40

� Stride scheduler tracks “pass” values for each job (A, B, C)

October 7, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L5.28

STRIDE SCHEDULER

� Basic algorithm:

1. Stride scheduler picks a job with the lowest pass value

2. Scheduler increments job’s pass value by its stride and

starts running

3. Stride scheduler increments a counter

4. When counter exceeds pass value of current job, pick a

new job (go to 1)

October 7, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L5.29

STRIDE SCHEDULER - 2

�Stride values

�Tickets = priority to select job

�Stride is inverse tickets

�Lower stride = more chances to run (higher priority)

Priority

C stride = 40

A stride = 100

B stride = 200

October 7, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L5.30

STRIDE SCHEDULER EXAMPLE

TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

10/14/2016

Slides by Wes J. Lloyd L4.6

� Randomly pick job A (all pass values=0)

� Set A’s pass value to A’s stride = 100

� Increment counter until > 100

� Pick a new job

October 7, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L5.31

STRIDE SCHEDULER EXAMPLE - 2

� Loosely based on the stride scheduler

� Time slice: Linux uses “Nice value”“Nice value”“Nice value”“Nice value”

� Nice value predates the CFS scheduler

� Top shows nice values

� Process command: Ps ax -o pid,ni,cmd,%cpu

� Nice Values: from -20 to 19

� Lower is higherhigherhigherhigher priority

� Default is 0

� Challenge:

� How do we map a nice value to an actual CPU timeslice (ms)

� What is the best mapping?

� O(1) scheduler (< 2.6.23) - tried to map nice value to timeslice

October 7, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L5.32

LINUX: COMPLETELY FAIR SCHEDULER (CFS)

� CFS uses weighted fair queueing

� Nice values become relative for determining time slices

� Proportion of CPU time to allocate is relative to other

queued tasks

� CFS models system as a Perfect Multi-Tasking System

� In perfect system every process of the same priority

receives exactly 1/n th of the CPU time

� struct sched_entity contains vruntime parameter

� Describes process execution time in nanoseconds

� Perfect scheduler �
achieve equal vruntime for all processes of same priority

October 7, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L5.33

COMPLETELY FAIR SCHEDULER - 2

� The task on a given runqueue (nice value) with the lowest
vruntime will be scheduled text

� Runqueues are stored using a l inux rbtree

� Self balancing binary search tree

� The leftmost node will have the lowest vruntime

� Walking the tree to find the left most node is only O(log N) for N

nodes

� If tree is balanced, left most node can be cached

� Key takeaway

identifying the next job to schedule is really really really really fast!

October 7, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L5.34

COMPLETELY FAIR SCHEDULER - 3

QUESTIONSQUESTIONSQUESTIONSQUESTIONS

October 7, 2016
TCSS422: Operating Systems [Fall 2016]
Institute of Technology, University of Washington - Tacoma L5.35

