TCSS 422: Operating Systems [Fall 2016] 10/14/2016
Institute of Technology, UW-Tacoma

TCSS 422: OPERATING SYSTEMS OBJECTIVES

= Multi-level Feedback Queue

Scheduling: 4 : = Proportional Share Scheduler
Multi-level Feedback Queue,
Proportional Share

Wes J. Lloyd
Institute of Technology
University of Washington - Tacoma

TCSS422: Operating Systems [Fall 2016]

October 7, 2016 Institute of Technology, University of Washington - Tacoma

152

MULTI-LEVEL FEEDBACK QUEUE Round-Robin
within a Queue
= QObjectives: = Multiple job queues
=Improve turnaround time: = Adjust job priority based on [High Priorityl Q8 — () —> ()
Run shorter jobs first ISR DEma e Q7
A . i 6
=Minimize response time: ® Interactive J°"; Q
. P =F t1/0 > k iority high
Important for interactive jobs (Ul) requent I/0 > keep priority hig Qs
= Interactive jobs require fast
i i L) response time (GUI/UI) Q4 —>@
= Achieve without a priori knowledge of job length
= Batch Jobs Q3
= Require long periods of CPU 2
utilization Q
= Keep priority low [Low Priority] Q1 —>@
ocober7, 2016 | L . Unveraty o Wshington - Tocoma IEN Otober7, 2016 | L oy, Unersty o Washingion - Tacoma

MLFQ: DETERMINING JOB PRIORITY MLFQ: LONG RUNNING JOB

= New arriving jobs are placed into highest priority queue = Three-queue scheduler, time slice=10ms

= |f a job uses its entire time slice, priority is reduced
= Jobs appears CPU-bound (“batch” job), not interactive (GUI/UI)

Priority
= |f a job relinquishes the CPU for /0 priority stays the same
MLFQ approximates SJF
0 50 100 150 200
Long-running Job Over Time (msec)
TCSS422: 0 ting Systs Fall 2016 TCSS422: Oy ting Syste Fall 2016]
ocber 016 | e e it acoms | =] Cuoberz,aots | S Spening st 108 ome

Slides by Wes J. Lloyd L4.1

TCSS 422: Operating Systems [Fall 2016] 10/14/2016
Institute of Technology, UW-Tacoma

= Aun_time=200ms, B, ime = 20ms = Continuous interactive job with a long running batch job
® Barivar_time = 100ms = Low response time is good for B
= A continues to make progress
Priority Q2 A I The MLFQ approach keeps interactive job(s) at the highest priority
q NN RN RN
N NN RN BN I
@ - « B.
0 50 00 150 200 Q
Scheduling multiple jobs (msec) HAAEEEEEEEENEEN
0 50 100 150 200
A Mixed 1/O-intensive and CPU-intensive Workload (msec)
: i 1] : d il
Ouoberz, 2016 | S cpeing st 0] come | =] Cuober7,aots | SR Spmming st 108 oma | =]

MLFQ: ISSUES MLFQ: ISSUES - 2

= Starvation = Gaming the scheduler
[High Priority] Q8 @ @ @ @ @ = |[ssue I/0 operation at 99% completion of the time slice
= Keeps job priority fixed - never lowered
Q7
Q6 = Job behavioral change
= CPU/batch process becomes an interactive process
Q3 [High Priority) Q8 — (A)—>(8)—>(c)—>(D)—> (e)—>(F
4 M
Q Qs
Q3 @
Q
Q2 @
23
[Low Priority] QL — (G)— @ CPU bound batch job(s) Priority becomes StUCK B tiowiois) @i — (@) (5) crusounassunsonty
TCSS422: 0 ting Syste [Fall 2016] TCSS422: Oy ting Syste [Fall 2016]
e Instituta of Technology, Univerlty of Washington -Tacoma | 159 | EEanbaed i T U e e 1510 |

RESPONDING TO BEHAVIOR CHANGE RESPONDING TO BEHAVIOR CHANGE - 2

gagwgggggsggg = With priority boost

Q2
= Prevents starvation
1
¢ . | g%%% o ﬁsﬁ
Q Starvation & @
e

o 50 100 150 200 -5
Without Priority Boost A I B: C‘%
: N ©

= Priority Boost
= Reset all jobs to topmost queue after some time interval S

100 150 200

Without(Left) and With(Right) Priority Boost A] By B

TCS5422: Operating Systems [Fall 2016]

TCS5422: Operating Systems [Fall 2016]
Institute of Technology, University of Washington - Tacoma

October 7, 2016 | s Cricbeuz2hic Institute of Technology, University of Washington - Tacoma s

Slides by Wes J. Lloyd L4.2

TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

PREVENTING GAMING

= I[mproved time accounting:
= Track total job execution time in the queue
= Each job receives a fixed time allotment
= When allotment is exhausted, job priority is lowered
NN

§

@M

o o N

Qo Qo o
[NRALANRNANRRN] N | |
0 50 100 150 200

0

Without(Left) and With(Right) Gaming Tolerance

TCS5422: Operating Systems [Fall 2016]

| October 7, 2016 Institute of Technology, University of Washington - Tacoma

1513

10/14/2016

MLFQ: TUNING

= Consider the tradeoffs:
= How many queues?
= What is a good time slice?
= How often should we “Boost” priority of jobs?
= What about different time slices to different queues?

\

Example) 10ms for the highest queue, 20ms for the middle,
40ms for the lowest

TCSS422: Operating Systems [Fall 2016]

October 7, 2016 Institute of Technology, University of Washington - Tacoma

1514

PRACTICAL EXAMPLE

= Oracle Solaris MLFQ implementation
=60 Queues >

= Provides sys admins with set of editable table(s)

changes, etc.

= Advice
= Provide OS with hints about the process
= Nice command - Linux

w/ slowly increasing time slice (high to low priority)

= Supports adjusting time slices, boost intervals, priority

TCS5422: Operating Systems [Fall 2016]

[OctobeZj2016! Institute of Technology, University of Washington - Tacoma

1515 |

MLFQ RULE SUMMARY

= The refined set of MLFQ rules:
= Rule 1: If Priority(A) > Priority(B), A runs (B doesn’t).
= Rule 2: If Priority(A) = Priority(B), A & B run in RR.

= Rule 3: When a job enters the system, it is placed at the
highest priority.

= Rule 4: Once a job uses up its time allotment at a given
level (regardless of how many times it has given up the
CPU), its priority is reduced(i.e., it moves down on queue).

= Rule 5: After some time period S, move all the jobs in the
system to the topmost queue.

TCS5422: Operating Systems [Fall 2016]

OctotenZj2016) Institute of Technology, University of Washington - Tacoma

1516 |

PROPORTIONAL SHARE

SCHEDULER

TCS8422: Operating Systems [Fall 2016]

(R 2D Institute of Technology, University of Washington - Tacoma

PROPORTIONAL SHARE SCHEDULER

= Also called fair-share scheduler
= Or lottery scheduler

= Guarantee each job receives some percentage of CPU time
based on share of “tickets”

=Each job receives an allotment of tickets
= % of tickets corresponds to potential share of a resource

= Can conceptually schedule any resource this way
CPU, disk I/0, memory

TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma Ls.18

October 7, 2016

Slides by Wes J. Lloyd

L4.3

TCSS 422: Operating Systems [Fall 2016]

10/14/2016
Institute of Technology, UW-Tacoma

LOTTERY SCHEDULER TTERY SCHEDULER IMPLEMENTATION

= Simple implementation

Job:A Jol Job:C
head Tix100 Tix250 NULL
= Just need a random number generator

Picks the winning ticket

. 2 nt counter =

= Maintain a data structure of jobs and tickets (list) 2 .
5 0 and the total # of ticke s

=Traverse list to find the owner of the ticket H erandom(0, totaltickets):
8 current: 0 walk through the list of jo bs

. . . 9 node_t *currer ead;

= Consider sorting the list for speed 10
11 loop until the sum of ticket values is > the win ner
12 while (current) {
13 counter = counter + current->tickets;
14 f (counter > winner)
15 break ; found the winne
16 current = current->next;
17
1 current is the winner: schedule it

TCSS422: Operating Systems [Fall 2016] TCSS422: Operating Systems [Fall 2016]
October 7, 2016 Institute of Technology, University of Washington - Tacoma L5129 CECLSHZR Institute of Technology, University of Washington - Tacoma 1520

TICKET MECHANISMS TICKET MECHANISMS - 2

= Ticket currency / exchange
= User allocates tickets in any desired way
= 0S converts user currency into global currency

= Ticket transfer
= Temporarily hand off tickets to another process

= Ticket inflation

= Example: = Process can temporarily raise or lower the number of
=There are 200 global tickets assigned by the 0S tickets it owns
= If a process needs more CPU time, it can boost tickets.
User A > 500 (A's currency) to AL = 50 (global currency)

> 500 (A's currency) to A2 > 50 (global currency)

User B > 10(B's currency) to B1 > 100 (global currency)

TC55422: Operating Systems [Fall 2016]
[OctobeZj2016! Institute of Technology, University of Washington - Tacoma o2l

TC55422: Operating Systems [Fall 2016]
CeebesZ20ls) Institute of Technology, University of Washington - Tacoma 522

LOTTERY SCHEDULING COIN FLIPPING

= Scheduler picks a winning ticket

= Equality of distribution (fairness) requires a lot of flips!
= Load the job with the winning ticket and run it

® All heads
= Example:

= Given 100 tickets in the pool

Job A has 75 tickets: 0 - 74
Job B has 25 tickets: 75 - 99

Scheduler's winning tickets: 63 85 70 39 76 17 29 41 36 39 10 99 68 83 63 Similarly, : . . .
Lottery scheduling requires lots of “rounds” to achieve fairness.
Resulting scheduler: A B A A B A A A A A AB AB A . T .
. . . Increasing number of con tosses.
= But what do we know about probability of a coin flip?

TCS5422: Operating Systems [Fall 2016]
October 7, 2016 Institute of Technology, University of Washington - Tacoma

1523 TCSS422: Operating Systems [Fall 2016]

October 7, 2016 nstitute of Technology, University of Washington - Tacoma ‘ 524

Slides by Wes J. Lloyd L4.4

TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

10/14/2016

LOTTERY FAIRNESS

= With two jobs
= Each with the same number of tickets (t=100)

109

2 5 &

Unfaimess (Average)

10 100 1000
Job Length

When the job length is not very long,
average unfairness can be

TCS5422: Operating Systems [Fall 2016]
Institute of Technology, University of Washington - Tacoma

October 7, 2016

TICKET ASSIGNMENT PROBLEM

= What is the best approach to assign tickets to jobs?
= Typical approach is to assume users know best

= Users are provided with tickets, which they allocate as
desired

= How should the OS automatically distribute tickets upon
job arrival?

= What do we know about incoming jobs a priori ?
=Ticket assignment is really an open problem...

TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma 1526

October 7, 2016

STRIDE SCHEDULING

= Addresses statistical probability issues with
lottery scheduling

job, simply count...

= Instead of guessing a random number to select a

STRIDE SCHEDULER

= Jobs have a “stride” value

= A stride value describes the counter pace when the job should
give up the CPU

= Stride value is inverse in proportion to the job’s number of
tickets

= Total system tickets = 10,000
=Job A has 100 tickets > A4 = 10000/100 = 100
= Job B has 50 tickets 2> Bg,qe = 10000/50 = 200
= Job C has 250 tickets > C;qe = 10000/250 = 40

= Stride scheduler tracks “pass” values for each job (A, B, C)

TCS5422: Operating Systems [Fall 2016]

[OctobeZj2016! Institute of Technology, University of Washington - Tacoma

I

TCS5422: Operating Systems [Fall 2016]

OctotenZj2016) Institute of Technology, University of Washington - Tacoma

1528 |

STRIDE SCHEDULER - 2

= Basic algorithm:

starts running
3. Stride scheduler increments a counter

new job (go to 1)

1. Stride scheduler picks a job with the lowest pass value
2. Scheduler increments job’s pass value by its stride and

4. When counter exceeds pass value of current job, pick a

STRIDE SCHEDULER EXAMPLE

= Stride values
=Tickets = priority to select job
=Stride is inverse tickets
=Lower stride = more chances to run (higher priority)

Priority
C stride = 40
A stride = 100
B stride = 200

TCS5422: Operating Systems [Fall 2016]

October 7, 2016 Institute of Technology, University of Washington - Tacoma

1529

TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma Ls.30

October 7, 2016

Slides by Wes J. Lloyd

L4.5

TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

STRIDE SCHEDULER EXAMPLE - 2

= Randomly pick job A (all pass values=0)
= Set A’s pass value to A’s stride = 100
= Increment counter until > 100

10/14/2016

LINUX: COMPLETELY FAIR SCHEDULER (CFS)

= Loosely based on the stride scheduler

= Time slice: Linux uses “Nice value”
= Nice value predates the CFS scheduler

= Pick a new job

Pass(A) Pass(B) Pass(C) Who Runs?
(stride=100) (stride=200) (stride=40)

0 0 0 A
100 0 0 B
100 200 0 C
100 200 40 c
100 200 80 C
100 200 120 A
200 200 120 c
200 200 160 C
200 200 200

= Top shows nice values
= Process command: Ps ax -o pid,ni,cnmd, %pu

= Nice Values: from -20 to 19
= Lower is higher priority
= Defaultis O

= Challenge:
= How do we map a nice value to an actual CPU timeslice (ms)
= What is the best mapping?

TCS5422: Operating Systems [Fall 2016]

October 7, 2016 Institute of Technology, University of Washington - Tacoma

1531

= 0(1) scheduler (< 2.6.23) - tried to map nice value to timeslice

TCSS422: Operating Systems [Fall 2016]

October 7, 2016 Institute of Technology, University of Washington - Tacoma

[on

COMPLETELY FAIR SCHEDULER - 2

= CFS uses weighted fair queueing
= Nice values become relative for determining time slices

= Proportion of CPU time to allocate is relative to other
queued tasks

= CFS models system as a Perfect Multi-Tasking System
= |In perfect system every process of the same priority
receives exactly 1/n th of the CPU time
mstruct sched_entity containsvrunti me parameter
= Describes process execution time in nanoseconds

= Perfect scheduler >
achieve equal vr unt i me for all processes of same priority

TCS5422: Operating Systems [Fall 2016]

[OctobeZj2016! Institute of Technology, University of Washington - Tacoma

1533 |

COMPLETELY FAIR SCHEDULER - 3

= The task on a given runqueue (nice value) with the lowest
vrunti me will be scheduled text

® Runqueues are stored using a linux rbtree
= Self balancing binary search tree
= The leftmost node will have the lowest vr unti me

= Walking the tree to find the left most node is only O(log N) for N
nodes

= |f tree is balanced, left most node can be cached

= Key takeaway
identifying the next job to schedule is really fast!

OctotenZj2016) Institute of Technology, University of Washington - Tacoma

TCS5422: Operating Systems [Fall 2016] ‘ s |

QUESTIONS

TCS8422: Operating Systems [Fall 2016

]
(O 2D Institute of Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

L4.6

