TCSS422: Operating Systems [Fall 2016]
Institute of Technology, University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

Process API,
Limited Direct Execution

Wes J. Lloyd
Institute of Technology
University of Washington - Tacoma

TCSS422; Operating Systems [Fall 2016]

OctobeiBi12010 Institute of Technology, University of Washington - Tacomd

OBJECTIVES

= Process APl - Ch. 5

= Limited Direct Execution - Ch. 6

October 3, 2016 TCS5422: Operating Systems [Fall 2016] | 152 |

Institute of Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

10/3/2016

L3.1

TCSS422: Operating Systems [Fall 2016]
Institute of Technology, University of Washington - Tacoma

fork()

= “Parent” process is the original

execution point
= Book says “pretty odd”

= Copy of
= Address space (memory)
= Register
= Program Counter (PC)
= Fork returns
= child PID to parent

= Creates a new process - think of “a fork in the road”

= Creates “child” process of the program from the current

= Creates a duplicate program instance (these are processes!)

= 0 to child
el - [o]
FORK EXAMPLE
= pl.c

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int main(int arge, char *argv[]}{
printf("hello world (pid:%d)\n", (int) getpid());

‘ int rc =fork();
it (e < 0){ 11 fork failed; exit
fprintf(stderr, "fork failed\n");

exit(;
} elseif (rc == 0){ //child (new process)

printf("hello, 1 am child (pid:%d)\n", (int) getpid());
} else { Il parent goes down this path (main)

printf("hello, I am parent of %d (pid:%d)\n",
rc, (int) getpid());

return 0;

TCS5422: Operating Systems [Fall 2016]

October 3, 2016 Institute of Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

10/3/2016

TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma

FORK EXAMPLE - 2

= Non deterministic ordering of execution

prompt> ./pl

prompt>

hello world (pid:29146)
hello, | am parent of 29147 (pid:29146)
hello, I am child (pid:29147)

or

prompt> ./pl

prompt>

hello world (pid:29146)
hello, I am child (pid:29147)
hello, | am parent of 29147 (pid:29146)

= CPU scheduler determines which to run first

October 3, 2016

TCS5422: Operating Systems [Fall 2016] s
Institute of Technology, University of Washington - Tacoma -

October 3, 2016

TCS5422: Operating Systems [Fall 2016] 16
Institute of Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

10/3/2016

L3.3

TCSS422: Operating Systems [Fall 2016]
Institute of Technology, University of Washington - Tacoma

wait()

= wait(), waitpid()

= Called by parent process

= Waits for a child process to finish executing

= Not a sleep() function

= Provides some ordering to multi-process execution

TCS5422: Operating Systems [Fall 2016]

October 3, 2016 Institute of Technology, University of Washington - Tacoma

FORK WITH WAIT

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/wait.h>

it main(int arge, char *argv[l){
printf("hello world (pid:%d)\n", (
intrc =fork();
it (c < 0){ 1l fork failed; exit
fprintf(stderr, "fork failed\n");
exit(1);
} elseif (e == 0){ //child (new process)
printf(*hello, I am child (pid:%d)\n", (int) getpid 0):
} else { /l parent goes down this path (main)
int we =wait(NULL);
printf("hello, | am parent of %d (wc:%d) (pid:%d)\n
re, we, (int) getpid();

int) getpidQ);

return 0;

TCS5422: Operating Systems [Fall 2016]

October 3, 2016 Institute of Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

10/3/2016

L3.4

TCSS422: Operating Systems [Fall 2016]
Institute of Technology, University of Washington - Tacoma

FORK WITH WAIT - 2

= Deterministic ordering of execution

prompt> ./p2
hello world (pid:29266)

hello, | am child (pid:29267)

hello, | am parent of 29267 (wc:29267) (pid:29266)
prompt>

TCSS422: Operating Systems [Fall 2016]

October 3, 2016 Institute of Technology, University of Washington - Tacoma

FORK EXAMPLE

® Linux example

TCS5422: Operating Systems [Fall 2016]

October 3, 2016 Institute of Technology, University of Washington - Tacoma

13.10

Slides by Wes J. Lloyd

10/3/2016

L3.5

TCSS422: Operating Systems [Fall 2016]

Institute of Technology,

University of Washington - Tacoma

exec()

= Supports running an external program
= 6 types: execl(), execlp(), execle(), execv(), execvp(), execvpe()

= execl(), execlp(), execle(): const char *arg

List of pointers (terminated by null pointer)
to strings provided as arguments... (arg0, argi, .. argn)

= Execv(), execvp(), execvpe()
Array of pointers to strings as arguments

Strings are null-terminated
First argument is name of file being executed

TCS5422: Operating Systems [Fall 2016]
Institute of Technology, University of Washington - Tacoma

October 3, 2016 13.11 |

EXEC() - 2

= Common use case:

= Write a new program which wraps a legacy one

= Provide a new interface to an old system: Web services
= Legacy program thought of as “black box”

= We don’t want to know what is inside...

[P Dlack Box

Oulput

Internal behaviar of the code 15 unknown

TCS5422: Operating Systems [Fall 2016]

October 3, 2016 Institute of Technology, University of Washington - Tacoma

13.12 |

Slides by Wes J. Lloyd

10/3/2016

L3.6

TCSS422: Operating Systems [Fall 2016]
Institute of Technology, University of Washington - Tacoma

EXEC EXAMPLE

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <sys/wait.h>

int - main(int arge, char *argv[]}{
printf("hello world (pid:%d)\n", (int) getpid());
intrc =fork();
it (c< 0)f 11 fork failed; exit
fprintf(stderr, "fork failed\n");
exit(1),
} elseif (rc == 0){ /l child (new process)
printf("hello, I am child (pid:%d)\n", (int) getpid());
- char *myargs[3];
myargs[0] = strdup("wc"); Il program: "wc" (word count)
myargs[1] = strdup("p3.c"); /I argument: file to count

myargs[2] =NULL; /I marks end of array

TCSS422: Operating Systems [Fall 2016]

October 3, 2016 Institute of Technology, University of Washington - Tacoma

13.13

EXEC EXAMPLE - 2

- execvp(myargs[0], myargs); /I 'runs word count
printf("this shouldn’t print out");
} else { Il parent goes down this path (main)

int wc =wait(NULL);
printf("hello, I am parent of %d (wc:%d) (pid:%d)\n
re,we, (int) getpid();

return 0;

prompt> ./p3

hello world (pid:29383)

hello, I am child (pid:29384)

29107 1030 p3.c

hello, | am parent of 29384 (wc:29384) (pid:29383)
prompt>

TCS5422: Operating Systems [Fall 2016]

October 3, 2016 Institute of Technology, University of Washington - Tacoma

13.14

Slides by Wes J. Lloyd

10/3/2016

L3.7

TCSS422: Operating Systems [Fall 2016]
Institute of Technology, University of Washington - Tacoma

EXEC WITH FILE REDIRECTION (OUTPUT)

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <fentl.h>
#include <sys/wait.h>

int
main(int argc, char *argv[]){
int rc =fork();

it (e < 0){ I fork failed; exit
fprintf(stderr, "fork failed\n");
exit(1),

} elseif (rc == 0){ / child: redirect standard output to a file

close(STDOUT_FILENO);
open("./p4.output’, O_CREAT|O_WRONLY|O_TRUNC, S_IRW

XU);

TCS5422: Operating Systems [Fall 2016]

October 3, 2016 Institute of Technology, University of Washington - Tacoma

1315 |

FILE MODE BITS

- S_| RAKU

read, wite, execute/search by owner
S I RUSR

read perm ssion, owner

S | WJISR

write pernission, owner

S I XUSR

execut e/ sear ch perni ssion, owner

S_| RAKG

read, wite, execute/search by group
S_| RGRP

read pernm ssion, group

S_I WGRP

write pernission, group

S_| XGRP

execut e/ sear ch perni ssion, group

S_| RWKO

read, wite, execute/search by others
S_| ROTH

read perm ssion, others

S_I WOTH

write pernission, others

TCS5422: Operating Systems [Fall 2016]

October 3, 2016 Institute of Technology, University of Washington - Tacoma

13.16

Slides by Wes J. Lloyd

10/3/2016

L3.8

TCSS422: Operating Systems [Fall 2016]
Institute of Technology, University of Washington - Tacoma

EXEC W/ FILE REDIRECTION (OUTPUT) - 2

/I now exec "wc"...
char *myargs[3];
myargs[0] = strdup("wc");
myargs[1] = strdup("p4.c");
myargs[2] = NULL; Il marks end of array
execvp(myargs[0], myargs); I/ runs word count

} oelse { /I parent goes down this path (main)
int wc =wait(NULL);

J/ program: "we" (word count)
I argument: file to count

return 0;

prompt> ./p4

prompt> cat p4.output
32 109 846 p4.c
prompt>

TCS5422: Operating Systems [Fall 2016]
Institute of Technology, University of Washington - Tacoma

‘ October 3, 2016

1317

LIMITED DIRECT

EXECUTION

TCSS422: Operating Systems [Fall 2016]

(B 2 20 Institute of Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

10/3/2016

L3.9

TCSS422: Operating Systems [Fall 2016]
Institute of Technology, University of Washington - Tacoma

VIRTUALIZING THE CPU

= How does the CPU support running so many jobs
simultaneously?

= Time Sharing

= Tradeoffs:

= Performance

= Excessive overhead
= Control

= Fairness

= Security

= Both HW and OS support
is used

TCSS422: Operating Systems [Fall 2016]

October 3, 2016 Institute of Technology, University of Washington - Tacoma

13.19

DIRECT EXECUTION

= What if programs could directly control the CPU / system?

(o) Program
1. Create entry for process list

Computer BOOT Sequence:

OS with Direct Execution

9. Free memory of process
10. Remove from process list

TCS5422: Operating Systems [Fall 2016]

October 3, 2016 Institute of Technology, University of Washington - Tacoma

13.20

Slides by Wes J. Lloyd

10/3/2016

L3.10

TCSS422: Operating Systems [Fall 2016]
Institute of Technology, University of Washington - Tacoma

DIRECT EXECUTION - 2

= With direct execution:

How does the OS stop a program from running, and switch
to another to support time sharing?

How do programs share disks and perform I/0 if they are
given direct control? Do they know about each other?

With direct execution, how can dynamic memory structures
such as linked lists grow over time?

TCS5422: Operating Systems [Fall 2016]
Institute of Technology, University of Washington - Tacoma

October 3, 2016 1321

CONTROL TRADEOFF

= Too much control:

= No security
= No time sharing

= Too little control:

=Too much OS overhead
= Poor performance for compute & I/0
= Complex APIs (system calls), difficult to use

TCS5422: Operating Systems [Fall 2016]
Institute of Technology, University of Washington - Tacoma

13.22

October 3, 2016

Slides by Wes J. Lloyd

10/3/2016

L3.11

TCSS422: Operating Systems [Fall 2016]

Institute of Technology,

University of Washington - Tacoma

CONTEXT SWITCHING OVERHEAD

Context Switching

Total cost of
context switching

Multitasking

H (N |

vs. Multitasking with context switching
Sequential

TCS5422: Operating Systems [Fall 2016]

October 3, 2016 Institute of Technology, University of Washington - Tacoma

13.23

LIMITED DIRECT EXECUTION

= 0S implements LDE to support time/resource sharing
= Enabled by protected (safe) control transfer

® CPU supported context switch

= Provides data isolation

TCS5422: Operating Systems [Fall 2016]

October 3, 2016 Institute of Technology, University of Washington - Tacoma

13.24

Slides by Wes J. Lloyd

10/3/2016

L3.12

TCSS422: Operating Systems [Fall 2016]
Institute of Technology, University of Washington - Tacoma

CPU MODES

= Utilize CPU Privilege Rings (Intel x86)
= rings O (kernel), 1 (VM kernel), 2 (unused), 3 (user)

<= no

= User mode:
Application is running, but w/o direct I/0 access

= Kernel mode:
0OS kernel is running performing restricted operations

TCSS422: Operating Systems [Fall 2016]

October 3, 2016 Institute of Technology, University of Washington - Tacoma

1325

CPU MODES

= User mode: ring 3 - untrusted
=Some instructions and registers are disabled by the CPU
= Exception registers
= HALT instruction
= MMU instructions
=0S memory access
=|/0 device access

= Kernel mode: ring O - trusted
= All instructions and registers enabled

TCS5422: Operating Systems [Fall 2016]

October 3, 2016 Institute of Technology, University of Washington - Tacoma

13.26

Slides by Wes J. Lloyd

10/3/2016

L3.13

TCSS422: Operating Systems [Fall 2016]
Institute of Technology, University of Washington - Tacoma

SYSTEM CALLS

= Enable restricted “OS” operations
= Kernel exposes key functions through an API:
= Device I/0
= Task swapping: context switch
= Memory management/allocation: malloc()
= Creating/destroying processes

TCS5422: Operating Systems [Fall 2016]

October 3, 2016 Institute of Technology, University of Washington - Tacoma

1327

TRAPS:

SYSTEM CALLS, EXCEPTIONS, INTERRUPTS

Mainiine Code A\ iternptervice Routine
Intermupt
ToopO) {
imstruction 1
Instruction 2

el R
= Three kinds of traps mervietons

= Sys call (planned) user > kernel
SYSCALL for 1/0, etc.

= Trap: any transfer to kernel mode

= Exception (error) user 2> kernel
Div by zero, page fault, page protection error

= Interrupt: (event) user > kernel
Non-maskable vs. maskable
Keyboard event, network packet arrival, timer ticks
Memory parity error (ECC), hard drive failure

TCS5422: Operating Systems [Fall 2016]

October 3, 2016 Institute of Technology, University of Washington - Tacoma

13.28

Slides by Wes J. Lloyd

10/3/2016

L3.14

TCSS422: Operating Systems [Fall 2016] 10/3/2016 TCSS422: Operating Systems [Fall 2016] 10/3/2016
Institute of Technology, University of Washington - Tacoma Institute of Technology, University of Washington - Tacoma

EXCEPTION TYPES MULTITASKING

Aeynchionous coe Nerwnosfable Betieen Resiie switch between processes?
Invoke operating system Synchronous. User request. Nonmaskable Between Resume
Synchronous User request User maskable Between Resume
= Coopg
Synchronous User request User maskable Between Resume
Integer arithmetic overflow Synchronous Coerced User maskable. Within Resume
Synchronous Coerced User maskable Within Resume
Synchronous Coerced Nonmaskable Within Resume
Synchronous. Coerced User maskable Within Resume - < I U 5
Synchronous: Coerced Nonmaskable Within Resume - I I I ega I o p era tl ons
e e e Witin D
Reynchonous Coorced Nonmaskable it Terminate = What problems could you for see with this approach?
‘Asynchronous Coerced Nonmaskable Within Terminate
TCSS422: Operating Systems [Fall 2016] TCSS422: Operating Systems [Fall 2016]
‘ October 3, 2016 Institute of Technology, University of Washington - Tacoma 1329 October 3, 2016 Institute of Technology, University of Washington - Tacoma 331
0S @ boot Hardware

(kernel mode)

‘ initialize trap table
remember address of
‘ syscall handler

05 @ run Hardware Program
(kernel mode) (user mode)

Create entry for process lst = Preemptive multitasking (32 & 64 bit OSes)
W) (oo menon o progrem

Setup user stack ith argy = >= Mac 0SX, Windows 95+

Computer BOOT Sequence:

MULTITASKING - 2

OS with Limited Direct Execution

gives OS the ability to

run again on a CPU.

move to kernel mode

Handle trap e 0 3p handler 1. Current program is halted
= o 2. Program states are saved
restore regs from kernel stack
| .
fitiialt 3. 0S Interrupt handler is run (kernel mode)
eturn fi
) i _ _ N
) Free memory o process = What is a good interval for the timer interrupt?
Remove from process list

TCSS422: Operating Systems [Fall 2016]
Institute of Technology, University of Washington - Tacoma L3.30

TCS5422: Operating Systems [Fall 2016]

October 3, 2016 Institute of Technology, University of Washington - Tacoma

October 3, 2016

1332 |

Slides by Wes J. Lloyd L3.15 Slides by Wes J. Lloyd L3.16

10/3/2016 TCSS422: Operating Systems [Fall 2016] 10/3/2016

TCSS422: Operating Systems [Fall 2016]
Institute of Technology, University of Washington - Tacoma

Institute of Technology, University of Washington - Tacoma

05 @ boot Hardware
(kernel mode)
CONTEXT SWITCH iz ep bl remeroer address of
- syscall handler
timer handler

‘ start interrupt timer
‘ start timer
interrupt CPU in X ms

= Preemptive multitasking initiates “trap”

into the OS code to determine:
_ Hardware Program
+« Whether to continue running the current process,
or switch to a different one. Co ntext SWitCh
+ If the decision is made to switch, the OS performs a context
switch swapping out the current process for a new one. e etructA)
‘ restore regs(8) from proc-struct(8)

switch to k-stack(B)
return-from-trap (into B)

restore regs(B) from k-stack(B)

move to user mode
q Process B

jump to B PC
TCS8422: Operating Systems [Fall 2016]
October3, 2016 Institute of Technology, University of Washington - Tacoma 1335

TCS5422: Operating Systems [Fall 2016] 333

October 3, 2016 Institute of Technology, University of Washington - Tacoma

CONTEXT SWITCH - 2 INTERRUPTED INTERRUPTS

= What happens if during an interrupt (trap to kernel

1. Save register values of the current process to its kernel
mode), another interrupt occurs?

stack

= General purpose registers

= PC: program counter (instruction pointer)
= kernel stack pointer

= Linux
=< 2.6 kernel: non-preemptive kernel
= >= 2.6 kernel: preemptive kernel

2. Restore soon-to-be-executing process from its kernel

stack
3. Switch to the kernel stack for the soon-to-be-executing
process
TCSS422: Operating Systems [Fall 2016] TCSS422: Operating Systems [Fall 2016]
October 3, 2016 Institute of Technology, University of Washington - Tacoma L334 October 3, 2016 Institute of Technology, University of Washington - Tacoma 1336 |

Slides by Wes J. Lloyd L3.17 Slides by Wes J. Lloyd L3.18

TCSS422: Operating Systems [Fall 2016]

Institute of Technology,

University of Washington - Tacoma

PREEMPTIVE KERNEL

= Use “locks” as markers of regions of non-
preemptibility (non-maskable interrupt)

= Preemption counter (preempt _count)
= begins at zero
=increments for each lock acquired (not safe to preempt)
=decrements when locks are released

= |nterrupt can be interrupted when preenpt _count =0
= |t is safe to preempt (maskable interrupt)
=the interrupt is more important

TCSS422: Operating Systems [Fall 2016]

October 3, 2016 Institute of Technology, University of Washington - Tacoma

1337

QUESTIONS

TCSS422: Operating Systems [Fall 2016]
Institute of Technology, University of Washington - Tacoma

October 3, 2016

Slides by Wes J. Lloyd

10/3/2016

L3.19

