
TCSS422: Operating Systems [Fall 2016]
Institute of Technology, University of Washington - Tacoma

10/3/2016

Slides by Wes J. Lloyd L3.1

Process API,Process API,Process API,Process API,

Limited Direct ExecutionLimited Direct ExecutionLimited Direct ExecutionLimited Direct Execution

Wes J. Lloyd

Institute of Technology
University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

October 3, 2016
TCSS422: Operating Systems [Fall 2016]
Institute of Technology, University of Washington - Tacoma L3.1

� Process API – Ch. 5

� Limited Direct Execution – Ch. 6

OBJECTIVES

October 3, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L3.2

TCSS422: Operating Systems [Fall 2016]
Institute of Technology, University of Washington - Tacoma

10/3/2016

Slides by Wes J. Lloyd L3.2

� Creates a new process - think of “a fork in the road”

� “Parent” process is the original

� Creates “child” process of the program from the current current current current
execution execution execution execution pointpointpointpoint

� Book says “pretty odd”

� Creates a duplicateduplicateduplicateduplicate program instance (these are processes!processes!processes!processes!)

� CopyCopyCopyCopy of

� Address space (memory)

� Register

� Program Counter (PC)

� Fork returns

� child PID to parent

� 0 to child

October 3, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L3.3

fork()

� p1.c

October 3, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L3.4

FORK EXAMPLE

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int main(int argc, char *argv[]){
printf("hello world (pid:%d)\n", (int) getpid());
int rc = fork();
if (rc < 0) { // fork failed; exit

fprintf(stderr, "fork failed\n");
exit(1);

} else if (rc == 0) { // child (new process)
printf("hello, I am child (pid:%d)\n", (int) getpid());

} else { // parent goes down this path (main)
printf("hello, I am parent of %d (pid:%d)\n",
rc, (int) getpid());

}
return 0;

}

TCSS422: Operating Systems [Fall 2016]
Institute of Technology, University of Washington - Tacoma

10/3/2016

Slides by Wes J. Lloyd L3.3

� Non deterministic ordering of execution

or

� CPU scheduler determines which to run first

October 3, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L3.5

FORK EXAMPLE - 2

prompt> ./p1
hello world (pid:29146)
hello, I am parent of 29147 (pid:29146)
hello, I am child (pid:29147)
prompt>

prompt> ./p1
hello world (pid:29146)
hello, I am child (pid:29147)
hello, I am parent of 29147 (pid:29146)
prompt>

October 3, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L3.6

:(){ :|: & };:

TCSS422: Operating Systems [Fall 2016]
Institute of Technology, University of Washington - Tacoma

10/3/2016

Slides by Wes J. Lloyd L3.4

� wait(), waitpid()

� Called by parent process

� Waits for a child process to finish executing

� Not a sleep() function

� Provides some ordering to multi-process execution

October 3, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L3.7

wait()

October 3, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L3.8

FORK WITH WAIT

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/wait.h>

int main(int argc, char *argv[]){
printf("hello world (pid:%d)\n", (int) getpid());
int rc = fork();
if (rc < 0) { // fork failed; exit

fprintf(stderr, "fork failed\n");
exit(1);

} else if (rc == 0) { // child (new process)
printf("hello, I am child (pid:%d)\n", (int) getpid ());

} else { // parent goes down this path (main)
int wc = wait(NULL);
printf("hello, I am parent of %d (wc:%d) (pid:%d)\n ",
rc, wc, (int) getpid());

}
return 0;

}

TCSS422: Operating Systems [Fall 2016]
Institute of Technology, University of Washington - Tacoma

10/3/2016

Slides by Wes J. Lloyd L3.5

� Deterministic ordering of execution

October 3, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L3.9

FORK WITH WAIT - 2

prompt> ./p2
hello world (pid:29266)
hello, I am child (pid:29267)
hello, I am parent of 29267 (wc:29267) (pid:29266)
prompt>

� Linux example

October 3, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L3.10

FORK EXAMPLE

TCSS422: Operating Systems [Fall 2016]
Institute of Technology, University of Washington - Tacoma

10/3/2016

Slides by Wes J. Lloyd L3.6

� Supports running an external program

� 6 types: execl(), execlp(), execle(), execv(), execvp(), execvpe()

� execl(), execlp(), execle(): const char *arg

List of pointers (terminated by null pointer)

to strings provided as arguments… (arg0, arg1, .. argn)

� Execv(), execvp(), execvpe()

Array of pointers to strings as arguments

Strings are null-terminated

First argument is name of fi le being executed

October 3, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L3.11

exec()

� Common use case:

� Write a new program which wraps a legacy one

� Provide a new interface to an old system: Web services

� Legacy program thought of as “black box”

� We don’t want to know what is inside…

October 3, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L3.12

EXEC() - 2

TCSS422: Operating Systems [Fall 2016]
Institute of Technology, University of Washington - Tacoma

10/3/2016

Slides by Wes J. Lloyd L3.7

October 3, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L3.13

EXEC EXAMPLE

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <sys/wait.h>

int main(int argc, char *argv[]){
printf("hello world (pid:%d)\n", (int) getpid());
int rc = fork();
if (rc < 0) { // fork failed; exit

fprintf(stderr, "fork failed\n");
exit(1);

} else if (rc == 0) { // child (new process)
printf("hello, I am child (pid:%d)\n", (int) getpid());
char *myargs[3];
myargs[0] = strdup("wc"); // program: "wc" (word count)
myargs[1] = strdup("p3.c"); // argument: file to count
myargs[2] = NULL; // marks end of array
…

October 3, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L3.14

EXEC EXAMPLE - 2

…
execvp(myargs[0], myargs); // runs word count
printf("this shouldn’t print out");

} else { // parent goes down this path (main)
int wc = wait(NULL);
printf("hello, I am parent of %d (wc:%d) (pid:%d)\n ",

rc, wc, (int) getpid());
}
return 0;

}

prompt> ./p3
hello world (pid:29383)
hello, I am child (pid:29384)
29 107 1030 p3.c
hello, I am parent of 29384 (wc:29384) (pid:29383)
prompt>

TCSS422: Operating Systems [Fall 2016]
Institute of Technology, University of Washington - Tacoma

10/3/2016

Slides by Wes J. Lloyd L3.8

October 3, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L3.15

EXEC WITH FILE REDIRECTION (OUTPUT)

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <fcntl.h>
#include <sys/wait.h>

int
main(int argc, char *argv[]){

int rc = fork();
if (rc < 0) { // fork failed; exit

fprintf(stderr, "fork failed\n");
exit(1);

} else if (rc == 0) { // child: redirect standard output to a file
close(STDOUT_FILENO);
open("./p4.output", O_CREAT|O_WRONLY|O_TRUNC, S_IRW XU);
…

October 3, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L3.16

FILE MODE BITS

S_IRWXU
read, write, execute/search by owner
S_IRUSR
read permission, owner
S_IWUSR
write permission, owner
S_IXUSR
execute/search permission, owner
S_IRWXG
read, write, execute/search by group
S_IRGRP
read permission, group
S_IWGRP
write permission, group
S_IXGRP
execute/search permission, group
S_IRWXO
read, write, execute/search by others
S_IROTH
read permission, others
S_IWOTH
write permission, others

TCSS422: Operating Systems [Fall 2016]
Institute of Technology, University of Washington - Tacoma

10/3/2016

Slides by Wes J. Lloyd L3.9

October 3, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L3.17

EXEC W/ FILE REDIRECTION (OUTPUT) - 2

…
// now exec "wc"...
char *myargs[3];
myargs[0] = strdup("wc"); // program: "wc" (word count)
myargs[1] = strdup("p4.c"); // argument: file to count
myargs[2] = NULL; // marks end of array
execvp(myargs[0], myargs); // runs word count

} else { // parent goes down this path (main)
int wc = wait(NULL);

}
return 0;

}

prompt> ./p4
prompt> cat p4.output
32 109 846 p4.c
prompt>

LIMITED DIRECT

EXECUTION

October 3, 2016
TCSS422: Operating Systems [Fall 2016]
Institute of Technology, University of Washington - Tacoma L3.18

TCSS422: Operating Systems [Fall 2016]
Institute of Technology, University of Washington - Tacoma

10/3/2016

Slides by Wes J. Lloyd L3.10

� How does the CPU support running so many jobs

simultaneously?

� Time SharingTime SharingTime SharingTime Sharing

� Tradeoffs:

� Performance

� Excessive overhead

� Control

� Fairness

� Security

� Both HW and OS support

is used

October 3, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L3.19

VIRTUALIZING THE CPU

� What if programs could directly control the CPU / system?

October 3, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L3.20

DIRECT EXECUTION

OS Program

1. Create entry for process list

2. Allocate memory for

program

3. Load program into memory

4. Set up stack with argc /

argv
5. Clear registers

6. Execute call main()

9. Free memory of process

10. Remove from process list

7. Run main()
8. Execute return from main()

Without limits on running programs,

the OS wouldn’t be in control of anything and

thus would be “just a library”

Computer BOOT Sequence:
OS with Direct Execution

TCSS422: Operating Systems [Fall 2016]
Institute of Technology, University of Washington - Tacoma

10/3/2016

Slides by Wes J. Lloyd L3.11

� With direct execution:

How does the OS stop a program from running, and switch

to another to support time sharingtime sharingtime sharingtime sharing?

How do programs share disks and perform I/O if they are

given direct control? Do they know about each other?

With direct execution, how can dynamic memory structures

such as linked lists grow over time?

October 3, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L3.21

DIRECT EXECUTION - 2

� Too much control:

� No security

� No time sharing

� Too little control:

� Too much OS overhead

� Poor performance for compute & I/O

� Complex APIs (system calls), difficult to use

October 3, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L3.22

CONTROL TRADEOFF

TCSS422: Operating Systems [Fall 2016]
Institute of Technology, University of Washington - Tacoma

10/3/2016

Slides by Wes J. Lloyd L3.12

October 3, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L3.23

CONTEXT SWITCHING OVERHEAD

� OS implements LDE to support time/resource sharing

� Enabled by protected protected protected protected ((((safe) control transfersafe) control transfersafe) control transfersafe) control transfer

� CPU supported context switch

� Provides data isolation

October 3, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L3.24

LIMITED DIRECT EXECUTION

TCSS422: Operating Systems [Fall 2016]
Institute of Technology, University of Washington - Tacoma

10/3/2016

Slides by Wes J. Lloyd L3.13

� Utilize CPU Privilege Rings (Intel x86)

� rings 0 (kernel), 1 (VM kernel), 2 (unused), 3 (user)

� User modeUser modeUser modeUser mode:

Application is running, but w/o direct I/O access

� Kernel modeKernel modeKernel modeKernel mode:

OS kernel is running performing restricted operations

October 3, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L3.25

CPU MODES

access no access

� User mode: ring 3 - untrusted

� Some instructions and registers are disabled by the CPU

� Exception registers

� HALT instruction

� MMU instructions

� OS memory access

� I/O device access

� Kernel mode: ring 0 – trusted

� All instructions and registers enabled

October 3, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L3.26

CPU MODES

TCSS422: Operating Systems [Fall 2016]
Institute of Technology, University of Washington - Tacoma

10/3/2016

Slides by Wes J. Lloyd L3.14

� Enable restricted “OS” operations

� Kernel exposes key functions through an API:

� Device I/O

� Task swapping: context switch

� Memory management/allocation: malloc()

� Creating/destroying processes

October 3, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L3.27

SYSTEM CALLS

� Trap: any transfer to kernel mode

� Three kinds of traps

� Sys call (planned) user � kernel
� SYSCALL for I/O, etc.

� Exception (error) user � kernel
� Div by zero, page fault, page protection error

� Interrupt: (event) user � kernel
� Non-maskable vs. maskable

� Keyboard event, network packet arrival, timer ticks

� Memory parity error (ECC), hard drive failure

October 3, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L3.28

TRAPS:

SYSTEM CALLS, EXCEPTIONS, INTERRUPTS

TCSS422: Operating Systems [Fall 2016]
Institute of Technology, University of Washington - Tacoma

10/3/2016

Slides by Wes J. Lloyd L3.15

Exception typeException typeException typeException type
Synchronous vs. Synchronous vs. Synchronous vs. Synchronous vs.

asynchronousasynchronousasynchronousasynchronous

User request vs. User request vs. User request vs. User request vs.

coercedcoercedcoercedcoerced

User maskable vs. User maskable vs. User maskable vs. User maskable vs.

nonmaskablenonmaskablenonmaskablenonmaskable

Within vs. between Within vs. between Within vs. between Within vs. between

instructionsinstructionsinstructionsinstructions
Resume vs. terminateResume vs. terminateResume vs. terminateResume vs. terminate

I/O device requestI/O device requestI/O device requestI/O device request Asynchronous Coerced Nonmaskable Between Resume

Invoke operating systemInvoke operating systemInvoke operating systemInvoke operating system Synchronous User request Nonmaskable Between Resume

Tracing instruction executionTracing instruction executionTracing instruction executionTracing instruction execution Synchronous User request User maskable Between Resume

BreakpointBreakpointBreakpointBreakpoint Synchronous User request User maskable Between Resume

Integer arithmetic overflowInteger arithmetic overflowInteger arithmetic overflowInteger arithmetic overflow Synchronous Coerced User maskable Within Resume

FloatingFloatingFloatingFloating----point arithmetic overflow point arithmetic overflow point arithmetic overflow point arithmetic overflow

or underflowor underflowor underflowor underflow
Synchronous Coerced User maskable Within Resume

Page faultPage faultPage faultPage fault Synchronous Coerced Nonmaskable Within Resume

Misaligned memory accessesMisaligned memory accessesMisaligned memory accessesMisaligned memory accesses Synchronous Coerced User maskable Within Resume

Memory protection violationMemory protection violationMemory protection violationMemory protection violation Synchronous Coerced Nonmaskable Within Resume

Using undefined instructionUsing undefined instructionUsing undefined instructionUsing undefined instruction Synchronous Coerced Nonmaskable Within Terminate

Hardware malfunctionHardware malfunctionHardware malfunctionHardware malfunction Asynchronous Coerced Nonmaskable Within Terminate

Power failurePower failurePower failurePower failure Asynchronous Coerced Nonmaskable Within Terminate

October 3, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L3.29

EXCEPTION TYPES

October 3, 2016
TCSS422: Operating Systems [Fall 2016]
Institute of Technology, University of Washington - Tacoma L3.30

Computer BOOT Sequence:
OS with Limited Direct Execution

TCSS422: Operating Systems [Fall 2016]
Institute of Technology, University of Washington - Tacoma

10/3/2016

Slides by Wes J. Lloyd L3.16

� How/when should the OS regain control of the CPU to

switch between processes?

� Cooperative multitasking (mostly pre 32-bit)

� < Windows 95, Mac OSX

� Opportunistic: running programs must give up control

� User programs must call a special yieldyieldyieldyield system call

� When performing I/O

� Illegal operations

� What problems could you for see with this approach?

October 3, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L3.31

MULTITASKING

A process gets stuck in an infinite loop.

���� Reboot the machine

� Preemptive multitasking (32 & 64 bit OSes)

� >= Mac OSX, Windows 95+

� Timer interrupt

� Raised at some regular interval (in ms)

� Interrupt handling

1. Current program is halted

2. Program states are saved

3. OS Interrupt handler is run (kernel mode)

� What is a good interval for the timer interrupt?

October 3, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L3.32

MULTITASKING - 2

A timer interrupt gives OS the ability to
run again on a CPU.

TCSS422: Operating Systems [Fall 2016]
Institute of Technology, University of Washington - Tacoma

10/3/2016

Slides by Wes J. Lloyd L3.17

� Preemptive multitasking initiates “trap”

into the OS code to determine:

� Whether to continue running the current processcurrent processcurrent processcurrent process,

or switch to a dif ferent onedif ferent onedif ferent onedif ferent one.

� If the decision is made to switch, the OS performs a context

switch swapping out the current process for a new one.

October 3, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L3.33

CONTEXT SWITCH

1. Save register values of the current process to its kernel

stack

� General purpose registers

� PC: program counter (instruction pointer)

� kernel stack pointer

2. Restore soon-to-be-executing process from its kernel

stack

3. Switch to the kernel stack for the soon-to-be-executing

process

October 3, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L3.34

CONTEXT SWITCH - 2

TCSS422: Operating Systems [Fall 2016]
Institute of Technology, University of Washington - Tacoma

10/3/2016

Slides by Wes J. Lloyd L3.18

October 3, 2016
TCSS422: Operating Systems [Fall 2016]
Institute of Technology, University of Washington - Tacoma L3.35

Context Switch

� What happens if during an interrupt (trap to kernel

mode), another interrupt occurs?

� Linux

� < 2.6 kernel: non-preemptive kernel

� >= 2.6 kernel: preemptive kernel

October 3, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L3.36

INTERRUPTED INTERRUPTS

TCSS422: Operating Systems [Fall 2016]
Institute of Technology, University of Washington - Tacoma

10/3/2016

Slides by Wes J. Lloyd L3.19

�Use “locks” as markers of regions of non-

preemptibility (non-maskable interrupt)

�Preemption counter (preempt_count)

� begins at zero

� increments for each lock acquired (not safe to preempt)

� decrements when locks are released

� Interrupt can be interrupted when preempt_count=0

� It is safe to preempt (maskable interrupt)

� the interrupt is more important

October 3, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L3.37

PREEMPTIVE KERNEL

QUESTIONSQUESTIONSQUESTIONSQUESTIONS

October 3, 2016
TCSS422: Operating Systems [Fall 2016]
Institute of Technology, University of Washington - Tacoma L1.38

