
TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

12/9/2016

Slides by Wes J. Lloyd L23.1

VirtualizationVirtualizationVirtualizationVirtualization

Wes J. Lloyd

Institute of Technology

University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

� Virtualization

� Server consolidation

� VM hypervisors

� Virtualization overhead

� Virtual infrastructure management

December 7, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L23.2

OBJECTIVES

� Server Consolidation

� Support legacy applications

� Run old OSes, libraries, while masking new hardware

changes

� Sandboxing / Isolation

� Use VMs to isolate parts of applications

� VMs act as containers

� Simulate unavailable hardware

� Example: smart phone application development

December 7, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L23.3

VIRTUALIZATION MOTIVATIONS

� Address datacenter underutilization

� Run multiple different OSes simultaneously on same hardware

� Enable “application appliances”

� Package application as set of virtual machines (or containers)

� Encapsulate complex application configuration & setup

� Support Server Partitioning

� Distribute server resources (e.g. RAM, CPU cores) across set of

VMs

� Support software testing

� Scalable tests, debugging at the OS/VM level

December 7, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L23.4

VIRTUALIZATION MOTIVATIONS - 2

�Began with mainframe computers

� IBM System/370 circa 1972

�Original “hypervisor”

�Control program

�“Computing environment” for users to interact w/

mainframes

�Time sharing(CPU), task isolation

� Implements a “Virtual Machine” complete with

unique memory address space

December 7, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L23.5

HISTORY OF VIRTUALIZATION

�Number of transistors in microprocessors doubles

every two years

� Transistor density � heat dissipation issues

�Addressed by:

� Smaller (shrink) die sizes

� Lowering chip voltages

� Aggressive cooling

� Clock frequencies steady or no longer

increasing

December 7, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L23.6

MOORE'S LAW

TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

12/9/2016

Slides by Wes J. Lloyd L23.2

December 7, 2016
TCSS422: Operating Systems [Fall 2016]
Institute of Technology, University of Washington - Tacoma L23.7

� 1989, 800 nm, 5v, 1 core

� 1995, 350 nm, 2.8v, 1 core

� 1998, 250 nm, 2.0v, 1 core

� 1999, 180 nm, 1.6v, 1 core

� 2002, 90 nm, 1.2 - 1.4v, up to 2 cores

� 2006, 65 nm, 1.1125v, up to 4 cores

� 2008, 45 nm, 1.05 - 1.15v, up to 8 cores

� 2010, 32nm, .725 - 1.4v, up to 10 cores

� 2012, 22nm, .65 – 1.3v, up to 18 cores

� 2014, 14nm, .55 – 1.52v up to 24 cores

� 2017, 10nm …

December 7, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L23.8

MOORE’S LAW:

APPROACHING PHYSICAL LIMITS

�Performance gains no longer achieved by

increasing clock rate

�Performance gains by increasing number of CPU

cores & architecture improvements

� Transistors are cheap

� Intel Xeon Westmere-EX

�2.6 billion transistors, 10-cores

December 7, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L23.9

MULTI-CORE PROCESSORS

�X86 Multi-CPU Many-Core Servers

�Many servers 2 to 4 CPU sockets

�CPUs feature 8,10,12,16+ cores!

�CPU Hyper-threading (cores w/ 2 threads of

execution)

�Most existing software not highly parallel

�8-core CPU running 1-core code is no faster

�Parallel programming inherently difficult

December 7, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L23.10

MODERN SERVERS

� 5,000 servers over 6 months

December 7, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L23.11

AVERAGE SERVER UTILIZATION @ GOOGLE

December 7, 2016
TCSS422: Operating Systems [Fall 2016]
Institute of Technology, University of Washington - Tacoma L23.12

TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

12/9/2016

Slides by Wes J. Lloyd L23.3

�Use VMs to consolidate legacy physical servers

� For better utilization of physical resources

�Parallel computing with ”parallel” computers

� Ideal for service-based computing

�Process multiple simultaneous sessions

�Virtual machines share CPU, disk, memory

�Enables utility “Cloud” computing

�provide VMs as a service (Amazon EC2)

December 7, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L23.13

WHAT ARE WE GOING TO DO

WITH ALL OF THESE CORES?

SERVER

CONSOLIDATION

December 7, 2016
TCSS422: Operating Systems [Fall 2016]
Institute of Technology, University of Washington - Tacoma L23.14

�Breaks traditional 1:1 mappings of

�Application to Operating System

�Operating System to Physical Machine

�Now n:1 mapping of

� (n) applications to (1) Physical Machine

�And 1:n

� (1) Application, (n) many physical machines

December 7, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L23.15

SERVER CONSOLIDATION - 1

1. Characterize Application Resource Requirements

�How sensitive is app to resource shortages?

� Test in isolated environment to quantify resource

requirements

2. Determine VMs distribution across Physical

Infrastructure

3. Balance server workloads at runtime

December 7, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L23.16

SERVER CONSOLIDATION STEPS

� Computational resources

of average physical

server exceeds needs of

applications

� Average server

utilization only ~15%

� Virtualization enables

server consolidation

using virtual machines

December 7, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L23.17

SERVER CONSOLIDATION - 2

�Static allocation

�Direct replacement of physical servers with long

running virtual machines

�Provides “base” level resources for application

�Dynamic allocation

�VMs added to meet application demand

�Shorter lifetime

December 7, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L23.18

SERVER CONSOLIDATION - 3

TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

12/9/2016

Slides by Wes J. Lloyd L23.4

VIRTUAL MACHINE

HYPERVISORS

December 7, 2016
TCSS422: Operating Systems [Fall 2016]
Institute of Technology, University of Washington - Tacoma L23.19

� What is the tradeoff space?

December 7, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L23.20

KEY VIRTUALIZATION TRADEOFF

PERFORMANCE

TRADEOFF
HardwareHardwareHardwareHardware

AbstractionAbstractionAbstractionAbstraction
OverheadOverheadOverheadOverhead

�Acts as a control program

�Miniature OS that manages VMs

�Runs on bare metal

�Also known as Virtual Machine Monitor (VMM)

� Traps instructions (i.e. device I/O) to implement
sharing & multiplexing

�User mode instructions run directly on the CPU

�Paravirtualization

�Requires support to be included in the OS kernel

� Objective: minimize virtualization Objective: minimize virtualization Objective: minimize virtualization Objective: minimize virtualization overheadoverheadoverheadoverhead

December 7, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L23.21

TYPE 1 HYPERVISOR

� Problem: Original x86 CPUs could not trap special
instructions

� Instructions not specially marked

� Solution: Full Virtualization

� Trap ALL instructions

� “Fully” simulate entire computer

� Tradeoff: High Overhead

� Benefit: Can virtualize any operating system without
modification

December 7, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L23.22

TYPE 2 HYPERVISOR

�Virtual Box

�Commonly used for end-user MS Windows emulation

� Linux-based KVM

�XEN in hvm-mode

December 7, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L23.23

COMMON VMMS:

FULL VIRTUALIZATION

� XEN

� Citrix Xen-server (a commercial version of XEN)

� VMWare ESX (commercial)

� VMWare ESXi (free)

� Paravirtual I/O drivers introduced

� KVM

� Virtualbox

December 7, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L23.24

COMMON VMMS:

PARAVIRTUALIZATION

TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

12/9/2016

Slides by Wes J. Lloyd L23.5

� Developed at Cambridge in ~ 2003

XEN

Physical Machine ����

XEN kernel ����

Host OS ����

Guest VMs
�VMs managed as “domains”

�Domain 0 is the hypervisor (host OS)

�Domains 1..n are VMs

December 7, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L23.26

XEN - 2

�Physical machine boots special XEN kernel

�Kernel provides paravirtual API to manage CPU &

device multiplexing

�Guests require modified XEN-aware kernels

�Xen supports full-virtualization for unmodified OS

guests in hvm mode

�Amazon EC2 largely based on XEN

December 7, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L23.27

XEN - 3 QEMU HYPERVISOR

�Generic process and machine emulator

�Written in 2005 by Fabrice Bellard

�Provides hardware emulation – full virtualization

�Emulates a variety of CPU architectures, on a

variety of hosts:

�X86, PowerPC server, PowerPC embedded, IBM

S390

�Basis for KVM, VirtualBox, XEN-hvm mode

�These are forked versions of QEMU codebase

KERNEL BASED VIRTUAL

MACHINES (KVM)

� x86 hw notoriously difficult to virtualize

�Extensions added to 64-bit Intel/AMD CPUs

�Provides hardware assisted virtualization

�New “guest” operating mode

�Hardware state switch

�Exit reason reporting

� Intel/AMD implementations different

�Linux uses vendor specific kernel modules

KVM – 2

TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

12/9/2016

Slides by Wes J. Lloyd L23.6

KVM – 3

�KVM has /dev/kvm device file node

�Linux character device, with operations:

� Create new VM

� Allocate memory to VM

� Read/write virtual CPU registers

� Inject interrupts into vCPUs

� Running vCPUs

�VMs run as Linux processes

�Scheduled by host OS

�Can be pinned to specific cores with “taskset”

KVM PARAVIRTUALIZED I/O

� KVM – Virtio

� Custom Linux based paravirtual device drivers

� Supersedes QEMU hardware emulation (full virt.)

� Based on XEN paravirtualized I/O

� Custom block device driver provides paravirtual device

emulation

� Virtual bus (memory ring buffer)

� Requires hypercall facility

� Direct access to memory

KVM DIFFERENCES FROM XEN

�KVM requires hardware-level VMX support

�KVM can virtualize any OS without special kernels

�Less invasive

�Native KVM I/O performance is slow

�Due to full hardware emulation

KVM ENHANCEMENTS

�Paravirtualized device drivers

�Virtio

�Guest Symmetric Multiprocessor (SMP) support

�Supported as of Linux 2.6.23

� Live Migration

� Linux Scheduler Integration

�Optimize scheduler with knowledge that KVM

processes are virtual machines

CONTAINER BASED VIRTUALIZATION

�VMs are soft partitions of the base OS

�All VMs share same OS kernel

� Tradeoff: No support for running different OSes

�Benefit: Faster & much less overhead

�Common containers:

�Docker

�CoreOS/Rocket

�Linux-Vservers, OpenVZ (legacy)

CONTAINERIZATION

Virtualization Containerization

TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

12/9/2016

Slides by Wes J. Lloyd L23.7

CONTAINERS VS VIRTUAL MACHINES

VIRTUALIZATION

OVERHEAD

November 23, 2016
TCSS422: Operating Systems [Fall 2016]
Institute of Technology, University of Washington - Tacoma L19.38

“VIRTUALIZATION OF LINUX

SERVERS”
� Presented at 2008 Linux Symposium

� Benchmarks Virtualization Performance of:

� Container-based virtualization

� Linux-Vserver

� OpenVZ

� Paravirtualization

� XEN

� Full Virtualization

� KVM

� VirtualBox (/w VMX CPU support)

� VirtualBox (w/o VMX CPU support)

� KQEMU

� QEMU

OVERHEAD TESTS

�Host OS: Ubuntu 7.10, 2.6.22-14 kernel

�Guest OS: Ubuntu 6.10 LTS

� IBM Lenovo desktop

� Intel Core 2 Duo 6300 processor

�4GB RAM

�80GB SATA HD

�2x 1 Gigabit network interface cards

�Single VM � 2GB RAM allocation

�Multi VM: 2x1622MB, 4x811MB, 8x405MB,

16x202MB, 31x101MB

KERNEL BUILD (CPU & FILE I/O) BZIP2 (CPU)

TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

12/9/2016

Slides by Wes J. Lloyd L23.8

DBENCH (FILE I/O) NETPERF (NETWORK I/O)

DD (FILE I/O) RSYNC (NETWORK I/O)

SYSBENCH

(10,000 RDBMS TRANSACTIONS)

SYSBENCH

(10,000 RDBMS TRANSACTIONS)

TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

12/9/2016

Slides by Wes J. Lloyd L23.9

VIRTUALIZATION OVERHEAD – RUSLE2

EROSION MODEL

Hypervisor Avg. Time (sec) Performance

Physical server 15.65 100%

Xen 3.1 25.39 162.24%

Xen 3.4.3 23.35 149.20%

Xen 4.0.1 26.2 167.41%

Xen 4.1.1 27.04 172.78%

Xen 3.4.3 hvm 32.1 205.11%

KVM disk virtio 31.86 203.58%

KVM no virtio 32.39 206.96%

KVM net virtio 35.36 225.94%

Average execution time for 100 model runs, 10 trials
15.8 sec CPU time, 56k dsr, 144k dsw, 9387k nbr, 9403k nbs

4 VMs hosted by 1 PM, 8 cores, ~4GB RAM,

VIRTUAL

INFRASTRUCTURE

MANAGEMENT

December 7, 2016
TCSS422: Operating Systems [Fall 2016]
Institute of Technology, University of Washington - Tacoma L23.50

CLOUD COMPUTING –

AS A SERVICE

InfrastructureInfrastructureInfrastructureInfrastructure

PlatformPlatformPlatformPlatform

SoftwareSoftwareSoftwareSoftware

August 7, 2012

CLOUD COMPUTING –

AS A SERVICE

IaaSIaaSIaaSIaaS

User manages:
Application Services,

Application Infrastructure,
Virtual Servers

PaaSPaaSPaaSPaaS

User manages:
Application Services

SaaSSaaSSaaSSaaS

August 7, 2012

VIRTUAL INFRASTRUCTURE

MANAGEMENT (VIM)

�Middleware to manage virtual machines and

infrastructure of IaaS “clouds”

�Examples

�OpenNebula

�Nimbus

�Eucalyptus

�OpenStack

VIM FEATURES

�Create/destroy VM Instances

� Image repository

�Create/Destroy/Update images

� Image persistence

�Contextualization of VMs

�Networking address assignment

�DHCP / Static IPs

�Manage SSH keys

TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

12/9/2016

Slides by Wes J. Lloyd L23.10

VIM FEATURES - 2

�Virtual network configuration/management

�Public/Private IP address assignment

�Virtual firewall management

� Configure/support isolated VLANs (private

clusters)

�Support common virtual machine managers

(VMMs)

�XEN, KVM, VMware

�Support via libvirt library

VIM FEATURES - 3

�Shared “Elastic” block storage

�Facility to create/update/delete disk images

�Amazon EBS

�Eucalyptus SC

�OpenStack Volume Controller

KEY/VALUE STORAGE

�Amazon Simple Storage Service (S3)

� Used for object storage of arbitrary data

�Eucalyptus Walrus (S3 clone)

�No replication

�Hosted by single server

�EC2 S3 compatible

�OpenStack -> ObjectStorage (S3 clone)

�EC2 S3 compatible

�Not used for VM images

VM IMAGE MANAGEMENT

� Image Repositories

� Image registration/publication

� Initial transfer from VM or physical host

�Creation of repository copy

�Replication across redundant servers

�Performance

�Snapshot live VMs

�Metadata

VM IMAGE STORAGE

�Amazon -> S3

�Eucalyptus -> Walrus (S3 clone)

�OpenStack -> ImageService

EPHEMERAL STORAGE

�Hosted on physical machine with the VM

�Base image

�Mounted as /dev/sda1

�EC2 size limit = 10 GB

�Limit applies to persisted portion

�Extended space

�Larger non-persisted space

�Mounted as /dev/sda2

� Initially empty

TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

12/9/2016

Slides by Wes J. Lloyd L23.11

“ELASTIC” BLOCK STORAGE

�Network storage service

�Not co-located with VM

�Amazon EBS

�Eucalyptus SC

�OpenStack Volume Controller

�Requires

�Dedicated high speed server(s) with large disks

�Network Attached Storage (NAS) device

“ELASTIC” BLOCK STORAGE - 2

� Facilitates OS image separation from data

�Performance bounded by network

�Amazon EBS - 1 Gigabit max

�VM Disk I/O becomes Network I/O + Disk I/O

�Amazon/Eucalyptus- Boot from EBS

SCALING INFRASTRUCTURE

�Multi-tier application scaling

�Simply adding VMs may be insufficient

�Which tier is the bottleneck?

�Application server

�Database server

�Log/transaction server

�Number of worker threads

�Number of database connections

APPLICATION SCALING:APPLICATION SCALING:APPLICATION SCALING:APPLICATION SCALING:

PERFORMANCE VS. RESOURCESPERFORMANCE VS. RESOURCESPERFORMANCE VS. RESOURCESPERFORMANCE VS. RESOURCES

requests/time

R
e

s
o

u
rc

e
A

llo
c
a

ti
o

n Ideal Resource Ideal Resource Ideal Resource Ideal Resource
AllocationAllocationAllocationAllocation

Balances costs vs.
performance

Over provisioned
- Higher cost
- No dropped requests

Under provisioned
- Lower cost
- Drops requests

QUESTIONSQUESTIONSQUESTIONSQUESTIONS

December 7, 2016
TCSS422: Operating Systems [Fall 2016]
Institute of Technology, University of Washington - Tacoma L23.66

TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

12/9/2016

Slides by Wes J. Lloyd L23.12

EXTRA SLIDESEXTRA SLIDESEXTRA SLIDESEXTRA SLIDES

67

KVM I/O VIRTUALIZATION

�Programmed I/O (pio)

�Memory-mapped I/O (mmio)

�All pio and mmio requests forwarded to

userspace

�Device model used to interpret requests

�Simulates behavior

�Triggers real I/O with underlying physical

hardware as needed

� Interrupts injected into guest when I/O complete

MEMORY MANAGEMENT UNIT

(MMU) VIRTUALIZATION

�X86 provides virtual memory system with 1-level

of mapping (page table)

�Guest virtual -> guest physical

�Two-level mapping needed for hosting virtual

machines

�Guest virtual -> guest physical -> host physical

MMU - 2

�Classic Solution

�CPU page table used as a “shadow”

� Guest physical -> host physical

�Guest (VM) page tables stored in memory

� Above the “shadow” table

� Enables combined translation

� Guest virtual -> host physical

�Guest (VM) page tables writes require

synchronization with “shadow” page table

XEN MEMORY MANAGEMENT

�No virtual page table or address translation

�XEN provides all guests with direct read-only

access to the memory management unit (MMU)

�Writes are validated by XEN by tracking types and

reference counts

�Page table updates grouped into single hypercall

XEN PARAVIRTUAL I/O

�Uses Virtual Block Devices

�Physical devices shared by XEN using a circular
queue

�Direct memory access used to transfer I/O
directly to XEN VM memory

�Multiple requests batched together to improve
throughput at the expense of latency

�Use of hypercalls enable VM to trigger privileged
operations – (ring 0)

TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

12/9/2016

Slides by Wes J. Lloyd L23.13

XEN DATA TRANSFER I/O RING HYBRID VIRTUALIZATION

� Full virtualization -> faster CPU/memory mgmt

�Paravirtualization -> faster I/O

�Combine Full & Para for optimal performance

�VMX CPU extensions

�Paravirtualized device drivers

�Supported by XEN, KVM

�XEN HVM

�Paravirtual I/O requires specialized drivers

