TCSS 422: Operating Systems [Fall 2016] 12/7/2016

Institute of Technology, UW-Tacoma

TCSS 422: OPERATING SYSTEMS

File Systems and
RAID

Wes J. Lloyd
Institute of Technology
University of Washington - Tacoma

OBJECTIVES

= Introduction to RAID

= File systems - structure

= File systems - inodes

= File systems - indexing

TCSS422: Operating Systems [Fall 2016]

December7, 2016 Institute of Technology, University of Washington - Tacoma

222

= Redundant array of inexpensive disks (RAID)

= Enable multiple disks to be grouped together to:

= Provide the illusion of one giant disk

= For performance improvements
= Striping: For mirrored disks we can increase read speeds splitting
read transactions to run in parallel across two physical disks

= For redundancy
= Mirroring: duplication of data

RAID CONTROLLER

= Special hardware RAID controllers offer

= Microcontroller
= Provides firmware to direct RAID operation

= Volatile memory

= Non-volatile memory
= Buffers writes in case of power loss

= Specialized logic to perform parity calculations

TCS5422: Operating Systems [Fall 2016]
Institute of Technology, University of Washington - Tacoma

December7, 2016 223

TCS5422: Operating Systems [Fall 2016]

Py, AT Institute of Technology, University of Washington - Tacoma

1224

RAID LEVEL O - STRIPING

= RAID Level O: Simplest form
= Stripe blocks across disk in a round-robin fashion
= Excellent performance and capacity

= Capacity

= Capacity is equal to the sum of all disks
= Performance

=R/W are distributed in round-robin fashion across all disks
= Reliability

=No redundancy

RAID LEVEL 1 - MIRRORING

= RAID 1 tolerates HDD failure
= Two copies of each block across disks

Disk 0 Disk 1 Disk 2 Disk 3
0 0 1 1
2 3 3
4 4 5 5
6 6 7 7

Simple RAID-1: Mirroring (Keep two physical copies)

= RAID 10 (RAID 1 + RAID 0): Mirror then stripe data
= RAID 01 (RAID O + RAID 1): Stripe then mirror data

December7, 2016 TCS5422: Operating Systems [Fall 2016] | 25

Institute of Technology, University of Washington - Tacoma

TCSS422: Operating Systems [Fall 2016]

December7, 2016 nstitute of Technology, University of Washington - Tacoma

226

Slides by Wes J. Lloyd

L22.1

TCSS 422: Operating Systems [Fall 2016] 12/7/2016
Institute of Technology, UW-Tacoma

RAID 1 - EVALUATION RAID 5 - PARITY DISK

= Capacity: RAID 1 is expensive

= Raid 5 - trades off space requirement for redundancy
= The useful capacity is n/2

= |n a 5-disk array, you can only recover from the loss of 1 HDD

= Writes rotate across bit, distributing a parity bit
= Reliability: RAID-1 does well To rebuid At : idpt fy 4 die
L]
= Can tolerate the loss of disk(s) oAre :Il & af .Ioc Is vou o_n .y nele q 2ruom B
.
= Up to n/2 disk failures can be tolerated depending on which RAID [y GOt cam i, 68 (e Es 1R 1S eilly
fails = Only need: Disk 0 Disk 1 Disk 2 Disk 3 Disk 4
3 blocks + 1 parity block) 1 2 3 50
or 5 6 7 PL 4
= Performance: RAID-1 is slow at writing 4 blocks
= Must wait for writes to complete to all disk(s) © 1 = 8 9
15 P3 12 13 14
P4 16 17 18 19
| i 1
RAID is not a backup! RNl Wit Rotated Party
TCSS422: 0 ting Systs Fall 2016 TCSS422: Operating Syste Fall 2016]
| oeembern s e e it T El Decemberr, auis | [ERT ORI I s | o]

. N N N RAID Level Comparison
- N -
Capacity: Useful capacity is (n-1) disks rom— SAD 0 D 1 RAID 1€ AAD 5 RAID BEE RAD &
= A HDD must be dedicated as a parity disk Minimum # Drives 2 2 3 3 4 4 q
Data Protection No Single-drive | Single-drive | Single-drive | Single-drive Two-drive | Up to one disk
Protection failure failure Tailure Tailure failure failure in each
= Performance sub-array
* Writes are very slow: roughly = n/4 Fiead Perfomance High High High High High High High
- B o —_— ivelle Gl |Viite Performance High Medium Medium Low Low Low Medium
CEE e CIIMEIEHE © 6 e ¢ Fiead Perfomance N/A Medium High Low Low Low High
(degraded)
P Viite Performance N/A High High Low Low Low High
= Reliability {deeraded)
= In RAID 5, a disk may fail, and the RAID keeps running | Capacity Utilization 100% 50% 50% B7%-94% | 50%-88% | 50% - 8B% 50%
= Rebuilds are slow !!! Typical High end Operating, Operating Data Data Data archive, | Fast databases,
| Applications workstations, | system, system, warehousing, | wamhousing, | backup to disk, | application
= Depending on disk size 8-24 hours is not unheard of data logging, | transaction transaction web sendng, | webserdng, | high availability | sarvers
real-time databases databases archiving archiving solutions,
rendering, very servers with
. . . i ransitory data large capact
= RAID 6: Adds a second parity disk for increased resilience Y mi’,mfm;’
TCSS422: Operating Systems [Fall 2016] TCSS422: Operating Systems [Fall 2016]
Cecemuenli20ie Institute of Technology, University of Washington - Tacoma 2o DecembenZi2016 Institute of Technology, University of Washington - Tacoma w210 |

FILE SYSTEMS

= Implemented by the OS as pure software

= Provide:
= Data structures: to describe disk content
= Arrays of blocks, index-nodes, trees

FILESYSTEMS

= Access methods: provides mapping for OS calls open(),
read(), write(), etc.

= Which structures are read? written? For each call?
= How efficiently does the structure support file operations?

= Many available file systems (A-Z)

TCSS422; Operating Systems [Fall 2016] TC55422: Operating Systems [Fall 2016]
Decembegzi2nic Institute of Technology, University of Washington - Tacoma DECHES 20

Institute of Technology, University of Washington - Tacoma L2212

Slides by Wes J. Lloyd L22.2

TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

12/7/2016

FILE SYSTEMS - 2

FILE SYSTEM ORGANIZATION

= Numerous file systems abound (A-Z)

= ADFA, AdVFS, AFS, AFS, AosFS, AthFS, BFS, BFS, Btrfs, CFS,
CMDFS, CP/M, DDFS, DTFS, DOS 3.x, EAFS, EDS, ext, etx2,
etx3, ext4, ext3cow, FAT, VFAT, FATX, FFS, Fossil, Files-11,
Felx, HFS, HPFS, HTFS, IceFS, ISO 9660, JFS, JXFS, Lisa FS,
LFS, MFS, Minix FS, NILFS, NTFS, NetWare FS, OneFS, OFS, 0S-
9, PFS, ProDOS, Qnx5fs, Qnx6fs, ReFS, ReiserFS, Reiser4,
Reliance, Reliance Nitro, RFS, S51K, SkyFS, SFS, Soup (Apple),
SpadFS, STL, TRFS, Tux3, UDF, UFS, UFS2, VxFS, VLIR, WAFL,
XFS, FS, ZFS

TCS5422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma | e

December7, 2016

= Disk is divided into blocks

= Block size supported by most HDDs is 512 bytes

= Typical FS block size is 4 KB

= An instance of a file system is typically called a partition

= A single physical disk can have multiple partitions (file
systems)

TCSS422: Operating Systems [Fall 2016]

December7, 2016 Institute of Technology, University of Washington - Tacoma

214

FILE SYSTEM EXAMPLE

= Consider a 64 block (4096KB block size)
disk, aka. a 256 KB disk

= | egacy low density 5-%“ floppy had
160KB single side, 360KB double sided
capacity

LLLLTOI] DI CEL] LT
0 7 8 15 16 23 24 31

[0 OO OO OO
32 39 40 47 48 55 56 63
[oecembern,aome [TCsan creing v 1 208 o T | e

FILE SYSTEM STORAGE

= File system is stored using blocks on the disk
= This is considered a “reserved” region of the disk

= Corruption of the reserved region can destroy the file
tables causing data on the disk to by unaddressable

= File system tracks:
= Which blocks comprise a file
=Where the blocks reside (are they contiguous?)
=The size of files
=The owner of files
= File permissions (e.g. R/W/X)

TCS5422: Operating Systems [Fall 2016]

Py, AT Institute of Technology, University of Washington - Tacoma

12216

FILE SYSTEM LOCATION

FILE SYSTEM EXAMPLES - 2

= Below the reserved region is at the front on a 64-block disk
partition
= There are 56 blocks to track using “index-nodes” (inodes)

) Data Region)

' |

LLITTITT] PEEEREERE] PeEPREERE] [le[[l]e[[]

0 7 8 15 16 23 24 31
Data Region

f i
[o[e[e[o[e[e[o]e] [p[e[e[oe[o[o]e] [p[e[e[o[e[e[ele] [o[e]o]o[e]e]o[2]
32 39 40 47 48 55 56 63

TCS5422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma | e

| December7, 2016

= Consider 256kb disk, with 56 free data blocks
= j-node size 256 bytes each

= 4KB block can contain 16 inodes

= Minimum of 4 - 4KB blocks required

= Here reserve 5 - 4KB blocks for files

= Provides some spare inodes

_Inodes Data Region)
BEREERRE FRPFERRD] [REReR]
0 7 8 15 16 23 24 31

Data Region

k i
[lepleple[ele] [e[o[e[e[o[e[e[e] [e[o[e[o[e[o[e]] [o[e]o[e[>]o[=]e]
32 39 40 47 48 55 56 63

TCSS422: Operating Systems [Fall 2016]

December7, 2016 nstitute of Technology, University of Washington - Tacoma

12218

Slides by Wes J. Lloyd

L22.3

TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

FILE SYSTEM - FREE LIST

= Allocation structures:
= “Free list” of free inodes and blocks
= Example stores free list using bitmaps
= Array of bits indicate if inode or FS block is in use (0/1)
= Inode bitmap: 80 bits for inode table
= Data bitmap: 56 bits for data blocks

_ Inodes | Data Region)

' it i

[IEEEEEE [lCPPPPP] PPPPEPPE] [PlP[p]

0 7 8 15 16 FERT) 31
Data Region

o[e[e[e[e[e[e]e]
63

,
[le[e[eee[e]e] [o[oe[e[o[o[e[e] [o[e[e[[=[[=]o]
32 39 40 47 48 55 56

12/7/2016

TCS5422: Operating Systems [Fall 2016]

SUPERBLOCK

= Contains information about the file system, “S”:
= How many inodes?
= How many data blocks?
= Location of inode table
= File system identity code(s)

_ Inodes Data Region)

PEEEREEE] FEEEEERE FREEEEEE

0 7 8 15 16 23 24 31
Data Region

t {
[leelele[e]e[e] [e[e[e[elefelefe] [ole[ele[e[e[o]e] [[o[e[e[e[e[o[e]
32 39 40 47 48 55 56 63

| December7, 2016

TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma 12220

| December7, 2016 Institute of Technology, University of Washington - Tacoma | 12219
INODE EXAMPLE
= Every inode has an inode number (index value)
= Based on iyay § A " ¥ ~ ulated
a a PR
« Example: | Yhat is the inode location?
= offset into 12KB + (32 x 256)
= Size of ino ', 7 2"
e ' 12KB + 8KB = 20 KB
= [node location = inode start addr + (inode no. x inode size)
The Inode table
| | | iblock0 | iblock1 | iblock2 | iblock3 | iblock4
B s
0KB 4KB 8KB 12kB 16KB 20KB 24K8 28KB 32KB

INODE EXAMPLE - 2

= Disks are addressed by sectors, not bytes
= Disk stores large number of addressable sectors

The Inode table

TCS5422: Operating Systems [Fall 2016]

| Cecemuenli20ie Institute of Technology, University of Washington - Tacoma

| ! | iblock0 | iblockl | iblock2 iblock4 |
DEOE BREEED -
Super s 0| @ |u|a o
5w o 5 = o = 5= [] e -

0KB 4KB 8KB 12KB 16KB 20KB 24KB 28KB 32KB

TCS5422: Operating Systems [Fall 2016]

Py, AT Institute of Technology, University of Washington - Tacoma

222

INODE EXAMPLE - 3

= Inodes store all information about a file:

= File type (e.g. directory, file, other)

= Size, and the number of blocks allocated to a file on disk
= R/W/X permissions

= Time information

The Inode table

iblock0 | iblockl | iblock2 | iblock3 | iblock4

o[[2] [=]n 5w]n|a]e]e]a|e]s]s]e
Super s[5 [w [w|alals|s|a|s|s|n]n]n]ms
w5 w5 [m | » @ |n |« |%]||0|a|e|a|s|7]n]ns

OKB 4KB 8KB 12KB 16KB 20KB 24KB 28KB 32KB

TCS5422: Operating Systems [Fall 2016]
| December7, 2016 Institute of Technology, University of Washington - Tacoma 1223

INODES - EXT2 LINUX FS

Size Name What is this inode field for?

2 mode can this file be read/written/executed?

2 uid who owns this file?

4 size how many bytes are in this file?

4 time what time was this file last accessed?

4 ctime what time was this file created?

4 mtime what time was this file last modified?

4 dtime what time was this inode deleted?

4 gid which group does this file belong to?

2 links_count how many hard links are there to this file?

2 blocks how many blocks have been allocated to this file?
4 flags how should ext2 use this inode?

) osdl an OS-dependent field

60 block a set of disk pointers (15 total)

4 generation file version (used by NFS)

P file_acl a new permissions model beyond mode bits

4 dir_acl called access control lists

4 faddr an unsupported field
12 i_osd2 another OS-dependent field

December7, 2016 TCSS422: Operating Systems [Fall 2016] 224

Institute of Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

L22.4

TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

MULTI-LEVEL INDEX

= Inodes use multi-level index
= First level: include 12-direct block pointers
= Second level: include 1 indirect block pointer

pointers

* Indirect pointer: one level
= Maximum file size
= (12 + 1,024) * 4KB = (1,036 x 4KB) = 4,144 KB

= Points to an entire block (4096 KB / 4 bytes) = 1,024 block

12/7/2016

TCS5422: Operating Systems [Fall 2016]

December7, 2016 Institute of Technology, University of Washington - Tacoma

=

MULTI-LEVEL INDEX - 2

Direct blocks

Double indirect

Indirect blocks blocks

TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma 12226

December7, 2016

MULTI-LEVEL INDEX - 3

" Double indirect pointer
= First level: include 12-direct block pointers
= Second level: include 1 indirect block pointer
= Third level: include 1 indirect block pointer
= Maximum file size:
=12+ 1,024 + (1,024 x 1,024) * 4KB
= 1,049,612 x 4KB = 4,198,448 KB
= > 4GB

= Triple indirect pointer
= Maximum file size:
=12 + 1,024 + (10242) + (10243) * 4KB = > 4TB

TCS5422: Operating Systems [Fall 2016]

Cecemuenli20ie Institute of Technology, University of Washington - Tacoma

EXTENTS

= Extents have a pointer with a stored length
= Each file has multiple extents
= A single extent would require contiguous file allocation

= |In contrast to block pointers

= Extents conserve space better than multi-level indexes, but
are less agile at representing file allocations scattered across
the disk

= Multi-level indexes excel for scattered file allocations

= File indexing presents a space vs. flexibility tradeoff

TCS5422: Operating Systems [Fall 2016]

Py, AT Institute of Technology, University of Washington - Tacoma

12228

FILE INDEXING

= Multi-level indexing
= Ext2, ext3

= Extents
= NTFS, Btrfs (b-tree fs)

= Exhaustive file systems feature comparison

= Ext4 (default Ubuntu 16.04), XFS (default CentOS 7)

= https://en.wikipedia.org/wiki/Comparison_of_file_systems

TCS5422: Operating Systems [Fall 2016]

December7, 2016 Institute of Technology, University of Washington - Tacoma

[o

COMMON FILE CHARACTERISTICS

Most files are small Roughly 2K is the most common size

Average file size is growing Almost 200K is the average

Most bytes are stored in large files | A few big files use most of the space

File systems contains lots of files Almost 100K on average

File systems are roughly half full Even as disks grow, file system remain -50% full
Directories are typically small Many have few entries; most have 20 or fewer

File System Measurement Summary

TCSS422: Operating Systems [Fall 2016]

December7, 2016 nstitute of Technology, University of Washington - Tacoma

12230

Slides by Wes J. Lloyd

L22.5

TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

DIRECTORIES

= Directory contains file name and i number (index)
= Extra files for the parent dir and pwd
= Can store dirs as linear list, often stored in inodes

for duplicates when creating a new file

inum | reclen | strlen | name

5 4 2
2 4 3 .
12 4 4 foo
13 4 3 bar
24 8 7 foobar

on-disk for dir

= XFS uses B-trees to eliminate sequential search of filenames

12/7/2016

TCS5422: Operating Systems [Fall 2016]

December7, 2016 Institute of Technology, University of Washington - Tacoma

[o

FILE I/0 - READ

= Consider reading a file called “/foo/bar”

= Traverse starting at root “/” (inumber = 2) to find file

= Read each inode to dereference file block location on disk

TCSS422: Operating Systems [Fall 2016]

December7, 2016 Institute of Technology, University of Washington - Tacoma

2232

FILE I/0 - READ OPERATIONS

= 3 block file: 11 reads, 3 writes (last access time)

File Read Timeline (Time Increasing Downward)

data inode | root foo bar root foo bar bar bar
bitmap bitmap | inode inode inode | data data datal0] datall] data[2]
open(bar) read
read
read
read
read
read() read
read
write
read) read
read

write

read() read
read

write

TCS5422: Operating Systems [Fall 2016]

Cecemuenli20ie Institute of Technology, University of Washington - Tacoma

FILE I/0 - WRITE

= At least Five I/0s to update an existing file
=one to read the data bitmap
=one to write the bitmap (to reflect its new state to disk)
=two more to read and then write the inode
=one to write the actual block itself.

TCS5422: Operating Systems [Fall 2016]

Py, AT Institute of Technology, University of Washington - Tacoma

2234

FILE1/O - WRITE - 2

File Creation Timeline (Time Increasing Downward)

data inode | root foo bar root foo bar bar bar
bitmap bitmap | inode inode inode | data data datal0] data(l] data[2]
create read
(/foo/bar) read
read
read
read
wiite
write
read
write
write
write() read
read
write write
write
wiite) read
read
write write
wiite
write) read
read write
write
write

TCS5422: Operating Systems [Fall 2016]

December7, 2016 Institute of Technology, University of Washington - Tacoma

=

FREE SPACE MANAGEMENT

= Free Lists
= Linked list of free blocks

= Head node tracks first free block, each subsequent block
is linked with a pointer

= Bitmaps
Bit-wise arrays of free blocks

= B-trees (XFS)

Represents free list in a more compact form, with better search
performance

= Free list design impacts efficiency of finding free blocks

TCSS422: Operating Systems [Fall 2016]

December7, 2016 nstitute of Technology, University of Washington - Tacoma

12236

Slides by Wes J. Lloyd

L22.6

TCSS 422: Operating Systems [Fall 2016] 12/7/2016

Institute of Technology, UW-Tacoma

CACHING READS AND WRITES

FILE CACHING

= Two approaches to cache allocation
= Static partitioning
= Allocate a fixed size cache at system boot time
= For example: dedicate 10% of memory for disk R/W cache

= Dynamic partitioning
= Linux has a unified page cache
= Pages are cached to a unified page cache for multiple purposes
= Memory virtualization pages
= Inodes, disk pages

TCS5422: Operating Systems [Fall 2016]

December7, 2016 Institute of Technology, University of Washington - Tacoma

=

= Subsequent file opens to a cache file can eliminate reads

= Benefits of write caching
= Batch updates together to reduce HDD requests
= Writes can be scheduled intelligently in the future
= Some writes can be avoided altogether
= For example: short lived tmp files

= Typical write buffering is from 5 to 30 seconds
= Risk of data loss

= Fsync(): force synchronization to disk
= Some apps such as database use to ensure immediate writes

TCSS422: Operating Systems [Fall 2016]

December7, 2016 Institute of Technology, University of Washington - Tacoma

12238

QUESTIONS

TCSS422: Operating Systems [Fall 2016]
Institute of Technology, University of Washington - Tacoma

November 30, 2016

Slides by Wes J. Lloyd

L22.7

