
TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

9/30/2016

Slides by Wes J. Lloyd L2.1

September 30, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma

The Abstraction: The Abstraction: The Abstraction: The Abstraction:
The ProcessThe ProcessThe ProcessThe Process

Wes J. Lloyd

Institute of Technology
University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

� Process API

� Process states

� Process data structures

September 30, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L2.2

OBJECTIVES

� How should the CPU be shared?

� Time Sharing:

Run one process, pause it, run another

� How do we SWAP processes in and out of the CPU

efficiently?

� Goal is to minimize overheadoverheadoverheadoverhead of the swap

September 30, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L2.3

CPU VIRTUALIZING

� Process comprises of:

� Memory

� Instructions (“the code”)

� Data (heap)

� Registers

� PC: Program counter

� Stack pointer

September 30, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L2.4

PROCESS

A process is a running program.

� Modern OSes provide a Process API for process suppor t

� Create

� Create a new process

� Destroy

� Terminate a process (ctrl-c)

� Wait

� Wait for a process to complete/stop

� Miscel laneous Control

� Suspend process (ctrl-z)

� Resume process (fg, bg)

� Status

� Obtain process statistics: (top)

September 30, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L2.5

PROCESS API

1. Load program code (and static data) into memory

� Program executable code (binary): loaded from disk

� Static data: also loaded/created in address space

� Eager loading: Load entire program before running

� Lazy loading: Only load what is immediately needed

� Modern OSes: Supports paging & swapping

2. Run-time stack creation

� Stack: local variables, function params, return address(es)

September 30, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L2.6

PROCESS API: CREATE

TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

9/30/2016

Slides by Wes J. Lloyd L2.2

3. Create program’s heap memory

� For dynamically allocated data

4. Other initialization

� I/O Setup

� Each process has three open file descriptors:

Standard Input, Standard Output, Standard Error

5. Start program running at the entry point: main()

� OS transfers CPU control to the new process

September 30, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L2.7

PROCESS API: CREATE

September 30, 2016
TCSS422: Operating Systems [Fall 2016]
Institute of Technology, University of Washington - Tacoma L2.8

code

static data

heap

stack

Process

Memory

code

static data

heap

Program

Loading:

Reads program from

disk into the address

space of process

CPU

� Running

� Currently executing instructions

� Ready

� Process is ready to run, but has been preempted

� CPU is presently allocated for other tasks

� Blocked

� Process is notnotnotnot ready to run. It is waiting for another event

to complete:

� Process has already been initialized and run for awhile

� Is now waiting on I/O from disk(s) or other devices

September 30, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L2.9

PROCESS STATES

September 30, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L2.10

PROCESS STATE TRANSITIONS

Running Ready

Blocked

Descheduled

Scheduled

I/O: doneI/O: initiate

� OS provides data structures to track process information

� Process list

� Process Data

� State of process: Ready, Blocked, Running

� Register context

� PCB (Process Control Block)

� A C-structure that contains information about each

process

September 30, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L2.11

PROCESS DATA STRUCTURES

� xv6: pedagogical implementation of Linux

� Simplified structures

September 30, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L2.12

XV6 KERNEL DATA STRUCTURES

// the registers xv6 will save and restore
// to stop and subsequently restart a process
struct context {

int eip; // Index pointer register
int esp; // Stack pointer register
int ebx; // Called the base register
int ecx; // Called the counter register
int edx; // Called the data register
int esi; // Source index register
int edi; // Destination index register
int ebp; // Stack base pointer register

};

// the different states a process can be in
enum proc_state { UNUSED, EMBRYO, SLEEPING,

RUNNABLE, RUNNING, ZOMBIE };

TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

9/30/2016

Slides by Wes J. Lloyd L2.3

September 30, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L2.13

XV6 KERNEL DATA STRUCTURES - 2

// the information xv6 tracks about each process
// including its register context and state
struct proc {

char *mem; // Start of process memory
uint sz; // Size of process memory
char *kstack; // Bottom of kernel stack

// for this process
enum proc_state state; // Process state
int pid; // Process ID
struct proc *parent; // Parent process
void *chan; // If non-zero, sleeping on chan
int killed; // If non-zero, have been killed
struct file *ofile[NOFILE]; // Open files
struct inode *cwd; // Current directory
struct context context; // Switch here to run process
struct trapframe *tf; // Trap frame for the

// current interrupt
};

� struct task_struct, equivanelnt to struct proc

� Provides process description

� Large: 10,000+ bytes

� /usr/src/linux-headers-{kernel version}/include/linux/sched.h

� 1227 – 1587

� Struct thread_info, provides “context”

� thread_info.h is at:

/usr/src/linux-headers-{kernel version}/arch/x86/include/asm/

September 30, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L2.14

LINUX: STRUCTURES

September 30, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L2.15

LINUX: THREAD_INFO

struct thread_info {
struct task_struct *task; /* main task structure */
struct exec_domain *exec_domain; /* execution domain */
__u32 flags; /* low level flags */
__u32 status; /* thread synchronous flags */
__u32 cpu; /* current CPU */
int preempt_count; /* 0 => preemptable,

<0 => BUG */
mm_segment_t addr_limit;
struct restart_block restart_block;
void __user *sysenter_return;

#ifdef CONFIG_X86_32
unsigned long previous_esp; /* ESP of the previous stack in

case of nested (IRQ) stacks
*/

__u8 supervisor_stack[0];
#endif

int uaccess_err;
};

� List of Linux data structures:

http://www.tldp.org/LDP/tlk/ds/ds.html

� Description of process data structures:

http://www.makelinux.net/books/lkd2/ch03lev1sec1

2nd edition is online (dated from 2005):

Linux Kernel Development, 2nd edition

Robert Love

Sams Publishing

September 30, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L2.16

LINUX STRUCTURES - 2

QUESTIONSQUESTIONSQUESTIONSQUESTIONS

