
TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

11/21/2016

Slides by Wes J. Lloyd L18.1

Paging Paging Paging Paging
Smaller TablesSmaller TablesSmaller TablesSmaller Tables

Wes J. Lloyd

Institute of Technology
University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

� Smaller tables

� Hybrid tables

� Multi- level page tables

November 21, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L18.2

OBJECTIVES

� Consider array-based page tables:

� Each process has its own page table

� 32-bit process address space (up to 4GB)

� With 4 KB pages

� 20 bits for VPN

� 12 bits for the page offset

November 21, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L18.3

LINEAR PAGE TABLES

� Page tables stored in RAM

� Support potential storage of 220 translations

= 1,048,576 pages per process @ 4 bytes/page

� Page table size 4MB / process

� Consider 100+ OS processes

� Requires 400+ MB of RAM to store process information

November 21, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L18.4

LINEAR PAGE TABLES - 2

Page tables are too big and

consume too much memory.

� Larger pagesLarger pagesLarger pagesLarger pages = 16KB = 214

� 32-bit address space: 232

� 218 = 262,144 pages

� Memory requirement cut to ¼

� However pages are huge

� Internal fragmentation results

� 16KB page(s) allocated for small programs with only a

few variables

November 21, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L18.5

PAGING: USE SMALLER TABLES

� Process: 16KB Address Space w/ 1KB pages

November 21, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L18.6

PAGE TABLES: WASTED SPACE

Page Table

Most of the page table is unused

and full of wasted space.

TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

11/21/2016

Slides by Wes J. Lloyd L18.2

� Combine segments and page tables

� Use stack, heap, code

segment base/bound registers

� Base register: point to page table

� Bounds register: store end of page table

November 21, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L18.7

HYBRID TABLES

� Each process has (3) page tables

� 1 each for code, stack, heap segments

� Base register stores address of start of table

� 216 bits for VPN, can only address 65,536 pages/segment

November 21, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L18.8

HYBRID TABLES - 2

� HW must look up page table on TLB miss

� SN bits indicate which pair of base/bound registers to use

� SEG_MASK = 1100 0000 0000 0000 0000 0000 0000 0000

� SN_SHIFT = 30 bits (shift 30 bits right)

� VPN_MASK = 0011 1111 1111 1111 1111 0000 0000 0000

� VPN_SHIFT = 12 bits (shift 12 bits right)

� PTE ADDR = Base of table + VPN * size of a page table entry

November 21, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L18.9

COMPUTING PAGE TABLE ADDESS

� Consider memory storage requirements for hybrid page tables

� 3 Segments, w/ 4KB pages

� 3 code pages

� 1 stack pages

� 3 heap pages

� 3 sets of base/bounds registers

� 32-bit bit-string:

� 2 bits – segment type

� 16 bits – virtual

� 12 bits – page offset

� How much memory is required?

� How much memory can be addressed?

November 21, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L18.10

HYBRID TABLES - 3

� Consider a large sparsely populated heap

� Heap may have been enlarged for memory which was freed

� Free-ing memory doesn’t necessarily shrink the heap

� Consider our realloc example

� Large sparse segments waste space

� Page tables are now of variable size (no longer fixed)

� Can be 1 to many actual pages

� Must find space for variable sized page tables

� Fragmentation is possible

� Need a free space list

November 21, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L18.11

HYBRID TABLES - 4

� Consider a page table:

� 32-bit addressing, 4KB pages

� 220 page table entries

� Even if memory is sparsely populated the per process page

table requires:

� Often most of the 4MB per process page table is empty

� Page table must be placed in 4MB contiguous block of RAM

� MUST SAVE MEMORY!

November 21, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L18.12

MULTI-LEVEL PAGE TABLES

TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

11/21/2016

Slides by Wes J. Lloyd L18.3

� Add level of indirection, the “page directory”

November 21, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L18.13

MULTI-LEVEL PAGE TABLES - 2

Two level indexing:

2

20

pages addressed with

two level-indexing

(page directory index, page table index)

� Advantages

� Only allocates page table space in proportion to the

address space actually used

� Can easily grab next free page to expand page table

� Disadvantages

� Multi-level page tables are an example of a time-space

tradeoff

� Sacrifice address translation time (now 2-level) for space

� Complexity: multi-level schemes are more complex

November 21, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L18.14

MULTI-LEVEL PAGE TABLES - 3

� 16KB address space, 64byte pages

� How large would a one-level page table need to be?

� 214 / 26 = 28 = 256 entries (page frames)

November 21, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L18.15

EXAMPLE

� 256 total page table entries (4 bytes each)

� 1,024 bytes page table size / stored using 64-byte pages

= 16 page directory entries (PDEs)

� Each page directory page can hold 16 page table entries

(PTEs)

� 16 page directory pages x 16 page table entries

= 256 total page table entries

November 21, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L18.16

EXAMPLE - 2

� 8 bit VPN to map 256 pages

� 4 bits for page directory index

� 6 bits offset into 64-byte page

November 21, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L18.17

PAGE DIRECTORY INDEX

� 4 bits page directory index

� 4 bits page table index

� Can now have just one page directory entry

� Plus a 16-entry (64-byte) page

November 21, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L18.18

PAGE TABLE INDEX

TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

11/21/2016

Slides by Wes J. Lloyd L18.4

� For this example, how much space is required to store as a
single-level array based page table?

� 16KB address space, 64 byte pages

� 256 page frames, 4 byte page size

� 1,024 bytes required (single level)

� How much space is required for a two-level page table with
only 4 page table entries?

� Page directory = 16 entries x 4 bytes (1 x 64 byte page)

� Page table = 4 entries x 4 bytes (1 x 64 byte page)

� 128 bytes required (2 x 64 byte pages)

� Savings = using just 12.5% the space !!!

November 21, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L18.19

EXAMPLE - 3

� Consider: 32-bit address space, 4KB pages, 220 pages

� Only 4 mapped pages

� Single level: 4 MB (we’ve done this before)

� Two level:

� Page directory = 210 entries x 4 bytes = 1 x 4 KB page

� Page table = 4 entries x 4 bytes (mapped to 1 4KB page)

� 8KB (8,192 bytes) required

� Savings = using just .78 % the space !!!

� 100 sparse processes now require < 1MB for page tables

November 21, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L18.20

32-BIT EXAMPLE

� Consider: page size is 29 = 512 bytes

� Page size 512 bytes / Page entry size 4 bytes

November 21, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L18.21

MORE THAN TWO LEVELS

� Page table entries per page = 512 / 4 = 128

� 7 bites – for page table index

November 21, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L18.22

MORE THAN TWO LEVELS - 2

� To map an address space of 230=1GB memory locations

� 214 = 16,384 page directory entries are required

� With 27 (128 entry) page tables

� Page size = 512 bytes / 4 bytes per addr

November 21, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L18.23

MORE THAN TWO LEVELS - 3

2

14

pages can not be addressed

using 512 bytes pages (only 2

7

)

Requires three level page table:

Page directory 0 (PD Index 0)

Page directory 1 (PD Index 1)

Page Table Index

� We can now address 1GB using “fine grained” 512 byte pages

� Using multiple levels of indirection

� Consider the implications for address translation!

� How much space is required for a virtual address space with 4

entries on a 512-byte page? (let’s say 4 32-bit integers)

� PD0 1 page, PD1 1 page, PT 1 page = 1,536 bytes

� Savings = 1,536 / 2,097,152 = .07% !!!

November 21, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L18.24

MORE THAN TWO LEVELS - 4

TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

11/21/2016

Slides by Wes J. Lloyd L18.5

November 21, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L18.25

ADDRESS TRANSLATION - 1

(01) Extract the virtual page number (VPN)(02-03) Check if TLB holds VPN translation(05-07) Generate physical address from TLB

November 21, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L18.26

ADDRESS TRANSLATION - 2

(12-13) Extract PDIndex and PDEAddr(14) Get page directory entry(15-17) Check if PDE is valid, if so fetch entry from page table

November 21, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L18.27

ADDRESS TRANSLATION - 3

� Keep a single page table for each physical page of memory

� Consider 4GB physical memory

� Using 4KB pages, page table requires 4MB to map all of RAM

� Page table stores

� Which process uses each page

� Which process virtual page (from process virtual address

space) maps to the physical page

� Finding process memory pages requires search of 220 pages

� Hash table: can index memory and speed lookups

November 21, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L18.28

INVERTED PAGE TABLES

QUESTIONSQUESTIONSQUESTIONSQUESTIONS

November 21, 2016
TCSS422: Operating Systems [Fall 2016]
Institute of Technology, University of Washington - Tacoma L18.29

