TCSS 422: Operating Systems [Fall 2016] 11/21/2016

Institute of Technology, UW-Tacoma

TCSS 422: OPERATING SYSTEMS

Paging
Smaller Tables

Wes J. Lloyd
Institute of Technology
University of Washington - Tacoma

OBJECTIVES

= Smaller tables

= Hybrid tables

= Multi-level page tables

TCSS422: Operating Systems [Fall 2016]

November21,2016 Institute of Technology, University of Washington - Tacoma

82

LINEAR PAGE TABLES

= Consider array-based page tables:
= Each process has its own page table
= 32-bit process address space (up to 4GB)
= With 4 KB pages
= 20 bits for VPN
= 12 bits for the page offset

LINEAR PAGE TABLES - 2

= Page tables stored in RAM

= Support potential storage of 220 translations
= 1,048,576 pages per process @ 4 bytes/page
= Page table size 4MB / process

Page tables are too big and

consume too much memory.

= Consider 100+ OS processes
= Requires 400+ MB of RAM to store process information

TCS5422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma uss3

November21, 2016

TCS5422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma Les

November 21,2016

PAGING: USE SMALLER TABLES

= Larger pages = 16KB = 214
= 32-bit address space: 232
= 218 = 262,144 pages

32
%‘ x4 =1MB per page table

= Memory requirement cut to ¥
= However pages are huge
= Internal fragmentation results

= 16KB page(s) allocated for small programs with only a
few variables

PAGE TABLES: WASTED SPACE

" Process: 16KB Address Space w/ 1KB pages
Page Table Physical Memory
el

space

0
\ Allocate

PFN valid prot present dirty

e Most of the page table is unused
and full of wasted space.

1
23 1 w- 1 1

A Page Table For 16KB Address Space

A 16KB Address Space with 1KB Pages

TCS5422: Operating Systems [Fall 2016]

November21, 2016 Institute of Technology, University of Washington - Tacoma | s

TCSS422: Operating Systems [Fall 2016]

November21,2016 Institute of Technology, University of Washington - Tacoma

186

Slides by Wes J. Lloyd

L18.1

TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

11/21/2016

HYBRID TABLES

= Combine segments and page tables

= Use stack, heap, code
segment base/bound registers

= Base register: point to page table

= Bounds register: store end of page table

November21, 2016 TCS5422: Operating Systems [Fall 2016] | e |

Institute of Technology, University of Washington - Tacoma

HYBRID TABLES - 2

= Each process has (3) page tables

= 1 each for code, stack, heap segments

= Base register stores address of start of table

= 216 pjts for VPN, can only address 65,536 pages/segment

3130292827262524232221201918171615141312 11

I_I_H\|\[\WIHHH\II\IIIIIIIIII

VPN

32-bit Virtual address space with 4KB pages

Seg value Content

00 unused segment
01 code
10 heap.
1 stack

TCSS422: Operating Systems [Fall 2016]

November21,2016 Institute of Technology, University of Washington - Tacoma

N

COMPUTING PAGE TABLE ADDESS

= HW must look up page table on TLB miss
= SN bits indicate which pair of base/bound registers to use

01: SN = (VirtualAddress & SEG_MASK) >> SN_SHIFT
02: VEN = (VirtualAddress & VEN_MASK) >> VPN_SHIFT
03: AddressOfPTE = Base[SN] + (VEN * sizeof (PTE))

= SEG_MASK = 1100 0000 0000 0000 0000 0000 0000 0000
= SN_SHIFT = 30 bits (shift 30 bits right)

= VPN_MASK = 0011 1111 14111 14111 1111 0000 0000 0000
= VPN_SHIFT = 12 bits (shift 12 bits right)

= PTE ADDR = Base of table + VPN * size of a page table entry

TCS5422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma s

November21, 2016

HYBRID TABLES - 3

= Consider memory storage requirements for hybrid page tables
= 3 Segments, w/ 4KB pages
= 3 code pages
= 1 stack pages
= 3 heap pages
= 3 sets of base/bounds registers
= 32-bit bit-string:
= 2 bits - segment type
= 16 bits - virtual
= 12 bits - page offset
= How much memory is required?
= How much memory can be addressed?

TCS5422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma s10

November 21,2016

HYBRID TABLES - 4

= Consider a large sparsely populated heap

= Heap may have been enlarged for memory which was freed
= Free-ing memory doesn’t necessarily shrink the heap

= Consider our realloc example

= Large sparse segments waste space

= Page tables are now of variable size (no longer fixed)
= Can be 1 to many actual pages

= Must find space for variable sized page tables

= Fragmentation is possible

= Need a free space list

TCS5422: Operating Systems [Fall 2016]

November21, 2016 Institute of Technology, University of Washington - Tacoma

=N

MULTI-LEVEL PAGE TABLES

= Consider a page table:
= 32-bit addressing, 4KB pages
= 220 page table entries

= Even if memory is sparsely populated the per process page
table requires:

Page table size = — = 4Byte — 4MByte

= Often most of the 4MB per process page table is empty
= Page table must be placed in 4MB contiguous block of RAM

= MUST SAVE MEMORY!

TCSS422: Operating Systems [Fall 2016]
Institute of Technology, University of Washington - Tacoma

November 21,2016 .12

Slides by Wes J. Lloyd

L18.2

TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

MULTI-LEVEL PAGE TABLES - 2

= Add level of indirection, the “page directory”
Linear Page Table Multi-level Page Table
PBTR 201 l— peR 200

=

Two level indexing:

220 pages addressed with
two level-indexing
(page directory index, page table index)

PFN203

o] -
o -
1
1

PFN204

Linear (Left) And Multi-Level (Right) Page Tables

11/21/2016

TCS5422: Operating Systems [Fall 2016]

November21, 2016 Institute of Technology, University of Washington - Tacoma

[e

MULTI-LEVEL PAGE TABLES - 3

= Advantages

=Only allocates page table space in proportion to the
address space actually used

= Can easily grab next free page to expand page table

= Disadvantages

= Multi-level page tables are an example of a time-space
tradeoff

= Sacrifice address translation time (now 2-level) for space
= Complexity: multi-level schemes are more complex

TCSS422: Operating Systems [Fall 2016]

November21,2016 Institute of Technology, University of Washington - Tacoma

us1a

EXAMPLE

= 16KB address space, 64byte pages
= How large would a one-level page table need to be?
m 214 / 26 = 28 = 256 entries (page frames)

0000 0000___code
0000 0001 code.
(ire) Address space 1648
(free) Page size 64 byte
heap Virtual address 1abit
Beap VPN 8 bit
(ree) Offset 6 bit
(free)
. Page table entry 2(256)
11 1] stack A 16-KB Address Space With 64-byte Pages

[13]12]ua]0]o]8[7]6[5]4]3]2]1]0]

Offset

TCS5422: Operating Systems [Fall 2016]

WAL 2 Institute of Technology, University of Washington - Tacoma

EXAMPLE - 2

= 256 total page table entries (4 bytes each)

= 1,024 bytes page table size / stored using 64-byte pages
= 16 page directory entries (PDEs)

= Each page directory page can hold 16 page table entries
(PTEs)

= 16 page directory pages x 16 page table entries
= 256 total page table entries

TCS5422: Operating Systems [Fall 2016]

WA, At Institute of Technology, University of Washington - Tacoma

816

PAGE DIRECTORY INDEX

= 8 bit VPN to map 256 pages
= 4 bits for page directory index
= 6 bits offset into 64-byte page

_Page Directory Index _,

[BlEElml o [s 76543 2]1]0]
’ VPN ' Offset '
14-bits Virtual address

TCS5422: Operating Systems [Fall 2016]

November21, 2016 Institute of Technology, University of Washington - Tacoma

[e

PAGE TABLE INDEX

= 4 bits page directory index
= 4 bits page table index

, Page Directory Index Page Table Index
[fw] o [8[7[6[5[4][3]2]2]0]

VPN Offset
14-bits Virtual address

= Can now have just one page directory entry
= Plus a 16-entry (64-byte) page

TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma 818

November 21,2016

Slides by Wes J. Lloyd

L18.3

TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

EXAMPLE - 3

= For this example, how much space is required to store as a
single-level array based page table?

= 16KB address space, 64 byte pages
= 256 page frames, 4 byte page size
= 1,024 bytes required (single level)

= How much space is required for a two-level page table with
only 4 page table entries?

= Page directory = 16 entries x 4 bytes (1 x 64 byte page)
= Page table = 4 entries x 4 bytes (1 x 64 byte page)
= 128 bytes required (2 x 64 byte pages)

= Savings = using just 12.5% the space !!!

11/21/2016

TCS5422: Operating Systems [Fall 2016]

November21, 2016 Institute of Technology, University of Washington - Tacoma

[e

32-BIT EXAMPLE

= Consider: 32-bit address space, 4KB pages, 22° pages
= Only 4 mapped pages

= Single level: 4 MB (we've done this before)

= Two level:

= Page directory = 210 entries x 4 bytes = 1 x 4 KB page

= Page table = 4 entries x 4 bytes (mapped to 1 4KB page)
= 8KB (8,192 bytes) required

= Savings = using just .78 % the space !!!

= 100 sparse processes now require < 1MB for page tables

TCSS422: Operating Systems [Fall 2016]

November21,2016 Institute of Technology, University of Washington - Tacoma

118.20

MORE THAN TWO LEVELS

= Consider: page size is 29 = 512 bytes
= Page size 512 bytes / Page entry size 4 bytes

30292827262524232221201918171615141312111098 76 54 3 2

T T T T PRI

VPN offset
Virtual address 30 bit
Page size 512 byte
VPN 21 bit
Offset 9 bit

TCS5422: Operating Systems [Fall 2016]

WAL 2 Institute of Technology, University of Washington - Tacoma

MORE THAN TWO LEVELS - 2

= Page table entries per page = 512 / 4 = 128
= 7 bites - for page table index

3029282726252423222120191817161514131211109 8 76 54 3 21 0
NRRRRNNNNARRRRRNN NN RRRRRNNY
Page Directory Index
VPN offset
Virtual address 30 bit
Page size 512 byte
VPN 21 bit
Offset 9 bit
Page entry per page 128 PTES ———> log, 128 =7

TCS5422: Operating Systems [Fall 2016]

WA, At Institute of Technology, University of Washington - Tacoma

us22

MORE THAN TWO LEVELS - 3

= To map an address space of 23°=1GB memory locations
= 214 = 16.384 page directory entries are required
= Wit

Requires three level page table:
" Pag Page directory 0 (PD Index 0)

Page directory 1 (PD Index 1)
Page Table Index

VEN

offset
Virtual address 30 bit
Page size 512 byte
VPN 21 bit
Offset 9 bit
Page entry per page 128 PTEs ——f—>log,128 =7

TCS5422: Operating Systems [Fall 2016]

November21, 2016 Institute of Technology, University of Washington - Tacoma

[e

MORE THAN TWO LEVELS - 4

= We can now address 1GB using “fine grained” 512 byte pages
= Using multiple levels of indirection

30292827262524232221201918171615141312111098 7654 3 21 0

[T T AT T

| Page Table Index

VPN

= Consider the implications for address translation!

= How much space is required for a virtual address space with 4
entries on a 512-byte page? (let’s say 4 32-bit integers)

= PDO 1 page, PD1 1 page, PT 1 page = 1,536 bytes

= Savings = 1,536 / 2,097,152 = .07% !!!

TCSS422: Operating Systems [Fall 2016]

November21,2016 nstitute of Technology, University of Washington - Tacoma

1s2a

Slides by Wes J. Lloyd

L18.4

TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

ADDRESS TRANSLATION - 1

VPN = (VirtualAddress & VEN_MASK) >> SHIFT
(success, T1bEntry) = TLB_Lookup (VEN)
(Success == True) //TLB Hit
(CanAccess (T1bEntry.ProtectBits) == True)

Offset = VirtualAddress & OFFSET_MASK
PhysAddr = (TlbEntry.PEN << SHIFT) | Offset
Register = AccessMemory (PhysAddr)

)

perform the full multi-level lookup

RaiseException (PROTECTION FAUL

(05-07) Generate physical address from TLB

11/21/2016

| November21, 2016

TCS5422: Operating Systems [Fall 2016]
Institute of Technology, University of Washington - Tacoma

=

ADDRESS TRANSLATION - 2

s
12: Phlndex = (VEN & PD_MASK) >> PD_SHIPE
13: PDEAddr = PDBR + (PDIndex * sizeof (PDE))
102 205 = Rccessvemory (sDERAE)
1s: (PDE.Valid == False)
16: RaiseException (SEGMENTATION_FAULT)
17:
| (15-47) Check if PDE is valid, if so fetch entry from page table |
| November21, 2016 TCS5422: Operating Systems [Fall 2016] 626

Institute of Technology, University of Washington - Tacoma

ADDRESS TRANSLATION - 3

PTIndex = (VEN & PT_MASK) >> PT_SHIFT
PTEAJdr = (PDE.PFN << SHIFT) + (PTIndex * sizeof (PTE))
PTE = AccessMemory (PTEAddr)
(PTE.Valid == False)
RaiseException (SEGMENTATION_FAULT)
(CanAccess (PTE.ProtectBits) == False)
RaiseException (PROTECTION_FAULT) ;

TLB_Insert (VEN, PTE.PFN , PTE.ProtectBits)

RetryInstruction()

November21, 2016

TCS5422: Operating Systems [Fall 2016]
Institute of Technology, University of Washington - Tacoma

INVERTED PAGE TABLES

= Keep a single page table for each physical page of memory

= Consider 4GB physical memory
= Using 4KB pages, page table requires 4MB to map all of RAM

= Page table stores
= Which process uses each page

= Which process virtual page (from process virtual address
space) maps to the physical page

= Finding process memory pages requires search of 22° pages
= Hash table: can index memory and speed lookups

TCS5422: Operating Systems [Fall 2016]

WAL 2 Institute of Technology, University of Washington - Tacoma

828

QUESTIONS

November 21, 2016

TCSS422: Operating Systems [Fall 2016]
Institute of Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

L18.5

