
TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

11/14/2016

Slides by Wes J. Lloyd L16.1

Introduction to
Paging

Wes J. Lloyd

Institute of Technology
University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

� Paging

� Address translation

� Paging questions

November 14, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L16.2

OBJECTIVES

� Split up address space of process into fixed sized pieces

called pages

� Alternative to variable sized pieces (Segmentation) which

suffers from significant fragmentation

� Physical memory is split up into an array of fixed-size slots

called page frames.

� Each process has a page table which translates virtual

addresses to physical addresses

November 14, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L16.3

PAGING

� Flexibility

� Abstracts the process address space into pages

� No need to track direction of HEAP / STACK growth

� No need to store unused space

� Simplicity

� Pages and page frames are the same size

� Easy to allocate and keep a free list of pages

November 14, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L16.4

ADVANTAGES OF PAGING

� Consider a 128 byte address space

with 16-byte page frames

� Consider a 64-byte process

address space

November 14, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L16.5

PAGING: EXAMPLE
Page Table:
VP0 � PF3
VP1 � PF7
VP2 � PF5
VP3 � PF2 � Two address components

� VPN: Virtual Page Number

� Offset: Offset within a Page

� Example:

Page Size: 16-bytes, Address Space: 64-bytes

November 14, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L16.6

PAGING: ADDRESS TRANSLATION

TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

11/14/2016

Slides by Wes J. Lloyd L16.2

� Consider a 64-byte address space

� Stored in 128-byte physical memory

� Offset is preserved

� VPN is looked up

November 14, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L16.7

EXAMPLE: PAGING

ADDRESS TRANSLATION

Page Table:
VP0 � PF3
VP1 � PF7
VP2 � PF5
VP3 � PF2

� Where are page tables stored?

� What are the typical contents of the page table?

� How big are page tables?

� Does paging make the system too slow?

November 14, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L16.8

PAGING QUESTIONS

� Real world size example:

� Consider a 32-bit process address space (up to 4GB)

� With 4 KB pages

� 20 bits for VPN

� 12 bits for the page offset

� Page tables for each process are stored in RAM

� Support potential storage of 220 translations

= 1,048,576 pages per process

� Each page has a page table entry size of 4 bytes

� Consider 100+ OS processes

� Requires 400+ MB of RAM to store process information

November 14, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L16.9

WHERE ARE PAGE TABLES STORED?

November 14, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L16.10

PAGE TABLE WITH

KERNEL PHYSICAL MEMORY

� Page table is data structure used to map virtual page

numbers (VPN) to the physical address (Physical Frame

Number PFN)

� Linear page table � simple array

� Page-table entry

� 32 bits for capturing state

November 14, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L16.11

WHAT’S ACTUALLY IN THE PAGE TABLE

� P: present

� R/W: read/write bit

� U/S: supervisor

� A: accessed bit

� D: dirty bit

� PFN: the page frame number

November 14, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L16.12

PAGE TABLE ENTRY

TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

11/14/2016

Slides by Wes J. Lloyd L16.3

� Common flags:

� Valid Bit: Indicating whether the particular translation is valid.

� Protection Bit: Indicating whether the page could be read

from, written to, or executed from

� Present Bit: Indicating whether this page is in physical

memory or on disk(swapped out)

� Dir ty Bit: Indicating whether the page has been modified since

it was brought into memory

� Reference Bit(Accessed Bit): Indicating that a page has been

accessed

November 14, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L16.13

PAGE TABLE ENTRY - 2

� Page tables are too big to store on the CPU

� Page tables are stored using physical memory

� Paging supports efficiently storing a sparsely populated

address space

� Reduced memory requirement

Compared to base and bounds, and segments

November 14, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L16.14

HOW BIG ARE PAGE TABLES?

� Translation

� Issue #1: Starting location of the page table is
needed

�HW Support: Page-table base register

� stores active process

� Facilitates translation

� Issue #2: Each memory address translation for paging
requires an extra memory reference

�HW Support: TLBs (Chapter 19)

November 14, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L16.15

DOES PAGING MAKE

THE SYSTEM TOO SLOW?

Page Table:
VP0 � PF3
VP1 � PF7
VP2 � PF5
VP3 � PF2

Stored in RAM �

1. // Extract the VPN from the virtual address

2. VPN = (VirtualAddress & VPN_MASK) >> SHIFT

3.

4. // Form the address of the page-table entry (PTE)

5. PTEAddr = PTBR + (VPN * sizeof(PTE))

6.

7. // Fetch the PTE

8. PTE = AccessMemory(PTEAddr)

9.

10. // Check if process can access the page

11. if (PTE.Valid == False)

12. RaiseException(SEGMENTATION_FAULT)

13. else if (CanAccess(PTE.ProtectBits) == False)

14. RaiseException(PROTECTION_FAULT)

15. else

16. // Access is OK: form physical address and fetch it

17. offset = VirtualAddress & OFFSET_MASK

18. PhysAddr = (PTE.PFN << PFN_SHIFT) | offset

19. Register = AccessMemory(PhysAddr)

November 14, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L16.16

PAGING MEMORY ACCESS

� Example: Use this Array initialization Code

� Assembly equivalent:

November 14, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L16.17

COUNTING MEMORY ACCESSES

November 14, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L16.18

MEMORY ACCESSES:
FOR THE FIRST 5 LOOP ITERATIONS

TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

11/14/2016

Slides by Wes J. Lloyd L16.4

QUESTIONS

November 14, 2016
TCSS422: Operating Systems [Fall 2016]
Institute of Technology, University of Washington - Tacoma L16.19

