
TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

11/14/2016

Slides by Wes J. Lloyd L15.1

Free Space

Management

Wes J. Lloyd

Institute of Technology
University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

� Fragmentation

� Free List

� Memory header

� Free list operations

November 14, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L15.2

OBJECTIVES

� Management of

� Fixed-sized units

� Easy: keep a list

� Memory request, return first free entry

� Variable sized units

� Resulting variable sized malloc requests

� Challenging

� Leads to fragmentation

November 14, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L15.3

FREE SPACE MANAGEMENT

� Consider a 30-byte heap

� Request for 15-bytes

� Free space: 20 bytes

� No available contiguous chunk � return NULL

November 14, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L15.4

FRAGMENTATION

� External

� Example: Client asks for 100 bytes: malloc(100)

� OS: No 100 byte contiguous chunk(s) are available: returns

NULL

� Memory is externally fragmented - - Compaction can fix!

� Internal

� OS returns memory units that are too large

� Example: Client asks for 100 bytes: malloc(100)

� OS: Returns 125 byte chunk

� Fragmentation is *in* the allocated chunk

� Memory is lost, and unaccounted for

November 14, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L15.5

FRAGMENTATION - 2

� Request for 1 byte of memory: malloc(1)

� OS locates a free chunk to satisfy request

� Splits chunk into two, returns first chunk

November 14, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L15.6

SPLITTING

TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

11/14/2016

Slides by Wes J. Lloyd L15.2

� Consider 30-byte heap

� Free() frees all 10 bytes segments

� Request arrives: malloc(30)

� No contiguous 30-byte chunk exists

� Coalescing regroups chunks into contiguous chunk

� Allocation can now proceed

November 14, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L15.7

COALESCING

� free(void *ptr): Does not require a size parameter

� How does the OS know how much memory to free?

� Header block

� Small descriptive block of memory at start of chunk

November 14, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L15.8

MEMORY HEADERS

� Contains size

� Pointers: for faster memory access

� Magic number: integrity checking

November 14, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L15.9

MEMORY HEADERS - 2

� Size of memory chunk is:

� Header size + user malloc size

� N bytes + sizeof(header)

� Easy to determine address of header

November 14, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L15.10

MEMORY HEADERS - 3

� Simple free list struct

� Use mmap to create free list

� 4kb heap, 4 byte header, one contiguous free chunk

November 14, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L15.11

THE FREE LIST

� Create and initialize heap

� Heap layout:

November 14, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L15.12

FREE LIST - 2

TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

11/14/2016

Slides by Wes J. Lloyd L15.3

� Consider a request for a 100 bytes: malloc(100)

� Header block requires 8 bytes

� 4 bytes for size, 4 bytes for magic number

� Split the heap

November 14, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L15.13

FREE LIST: MALLOC() CALL

November 14, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L15.14

FREE LIST: FREE() CALL

� Free(sptr)

� 3 chunks start at 16,384

� Location on heap of next

free chunk

� Start=16384

+ 108 (end of 1st chunk)

+ 108 (end of 2nd chunk)

+ 108 (end of 2nd chunk)

= 16708

November 14, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L15.15

FREE LIST: FREE() CALL - 2

� Now free:

� Free(16384)

� Free(16600)

� External fragmentation

� Free chunk pointers

out of order

� Coalescing is needed

November 14, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L15.16

FREE LIST- FREE ALL CHUNKS

� Start with small sized heap

� Request more memory when full

� sbrk(), brk()

November 14, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L15.17

GROWING THE HEAP

Segmented heap

� Best f it

� Traverse free list

� Identify all candidate free chunks

� Note which is smallest (has best fit)

� When splitting, “leftover” pieces are small

(and potentially less useful)

� Worst f it

� Traverse free list

� Identify largest free chunk

� Split largest free chunk, leaving a still large free chunk

November 14, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L15.18

MEMORY ALLOCATION STRATEGIES

TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

11/14/2016

Slides by Wes J. Lloyd L15.4

� First f it

� Start search at beginning of free list

� Find first chunk large enough for request

� Split chunk, returning a “fit” chunk, saving the remainder

� Avoids full free list traversal of best and worst fit

� Next f it

� Similar to first fit, but start search at last search location

� Maintain a pointer that “cycles” through the list

� Helps balance chunk distribution vs. first fit

� Find first chunk, that is large enough for the request, and split

� Avoids full free list traversal

November 14, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L15.19

MEMORY ALLOCATION STRATEGIES - 2

� Allocation request for 15 bytes

� Result of Best Fit

� Result of Worst Fit

November 14, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L15.20

EXAMPLES

� For popular sized requests

e.g. for kernel objects such as locks, inodes, etc.

� Manage as segregated free lists

� Provide object caches: stores pre-initialized objects

� How much memory should be dedicated for specialized

requests?

� If a given cache is low in memory, can request “slabs” of

memory from the general allocator for caches.

� General allocator will reclaim slabs when not used

November 14, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L15.21

SEGREGATED LISTS

� Binary buddy allocation

� Divides free space by two to find a block that is big enough to

accommodate the request; the next split is too small…

� Consider a 7KB request

November 14, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L15.22

BUDDY ALLOCATION

� Buddy allocation: suffers from internal fragmentation

� Allocated fragments, typically too large

� Coalescing is simple

� Two adjacent blocks are promoted up

November 14, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L15.23

BUDDY ALLOCATION - 2 QUESTIONS

November 14, 2016
TCSS422: Operating Systems [Fall 2016]
Institute of Technology, University of Washington - Tacoma L15.24

