TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

TCSS 422: OPERATING SYSTEMS

Free Space
Management

Wes J. Lloyd
Institute of Technology
University of Washington - Tacoma

11/14/2016

OBJECTIVES

= Fragmentation

= Free List

= Memory header

= Free list operations

TCSS422: Operating Systems [Fall 2016]

November 14,2016 Institute of Technology, University of Washington - Tacoma

52

FREE SPACE MANAGEMENT

= Management of

= Fixed-sized units
= Easy: keep a list
= Memory request, return first free entry

= Variable sized units
= Resulting variable sized malloc requests
= Challenging
= Leads to fragmentation

TCS5422: Operating Systems [Fall 2016]

oie mberte 201 Institute of Technology, University of Washington - Tacoma

us3

FRAGMENTATION

= Consider a 30-byte heap
30-byte heap: [_free [Tused | free |
0 10 20 30

= Request for 15-bytes

- addr: 0 addr:20
free list. head — 0019 —> 3enip — NULL

= Free space: 20 bytes

= No available contiguous chunk = return NULL

TCS5422: Operating Systems [Fall 2016]

Wb, At Institute of Technology, University of Washington - Tacoma

L1sa

FRAGMENTATION - 2

= External
= Example: Client asks for 100 bytes: malloc(100)

= 0S: No 100 byte contiguous chunk(s) are available: returns
NULL

= Memory is externally fragmented - - Compaction can fix!

= [nternal
= 0S returns memory units that are too large
= Example: Client asks for 100 bytes: malloc(100)
= 0S: Returns 125 byte chunk
= Fragmentation is *in* the allocated chunk
= Memory is lost, and unaccounted for

SPLITTING

= Request for 1 byte of memory: malloc(1)

30-byte heap: [free [Tused [free |
0 10 20 30

N addr:0 addr:20
free list: _head —> 1., .19 > len:10 NULL

= 0S locates a free chunk to satisfy request
= Splits chunk into two, returns first chunk

TCS5422: Operating Systems [Fall 2016]

November14, 2016 Institute of Technology, University of Washington - Tacoma

[o

30-byte heap: [free [Tused 7T free]

0 10 20 21 30

. ddr: 0 addr:21
free list. head — ;enfm Jen:9 —> NULL

November 14, 2016

TCSS422: Operating Systems [Fall 2016]
Institute of Technology, University of Washington - Tacoma

L1s6

Slides by Wes J. Lloyd

L15.1

TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

COALESCING

= Consider 30-byte heap
= Free() frees all 10 bytes segments

addr:10 addr:0 addr:20

head > len:10 > len:10 > len:lo

= Request arrives: malloc(30)
= No contiguous 30-byte chunk exists
= Coalescing regroups chunks into contiguous chunk

addr:0

head > len:30

— NULL

= Allocation can now proceed

— NULL

TCS5422: Operating Systems [Fall 2016]

November14, 2016 Institute of Technology, University of Washington - Tacoma

| s |

11/14/2016

MEMORY HEADER

= free(void *ptr): Does not require a size parameter

= How does the OS know how much memory to free?

= Header block
=Small descriptive block of memory at start of chunk

} The header used by malloc library

The 20 bytes returned to caller

An Allocated Region Plus Header

TCSS422: Operating Systems [Fall 2016]

November 14,2016 Institute of Technology, University of Washington - Tacoma

| s]

MEMORY HEADERS - 2

size: 20

magic: 1234567

1t magic;
The 20 bytes } header_t;

returned to caller

A Simple Header
Specific Contents Of The Header

= Contains size
= Pointers: for faster memory access
= Magic number: integrity checking

TCS5422: Operating Systems [Fall 2016]

oie mberte 201 Institute of Technology, University of Washington - Tacoma

uss

MEMORY HEADERS - 3

= Size of memory chunk is:
= Header size + user malloc size
= N bytes + sizeof(header)

= Easy to determine address of header

void free(void *ptr) {

header_t *hptr = (

d *)ptr -

£ (header_t) ;

TCSS422: Operating Systems [Fall 2016]

Wb, At Institute of Technology, University of Washington - Tacoma

THE FREE LIST

= Simple free list struct

t _node_t (
t size;

struct _node_t *next;

} nodet_t;

= Use mmap to create free list
= 4kb heap, 4 byte header, one contiguous free chunk

etur
node_t *head = mmap (NULL,

a chun ree space

, PROT_READ|PROT_WRITE,
MAP_ANON |MAP_PRIVATE, -1, 0);

head->size = 4096 - sizeof (node_t);

head->next = NULL;

TCS5422: Operating Systems [Fall 2016]

November14, 2016 Institute of Technology, University of Washington - Tacoma

=N

FREE LIST - 2

= Create and initialize heap
P
node_t *head

PROT_READ|PROT_WRITE,

MAP_ANON|MAP_PRIVATE, -1, 0);
head->size ot (node_t) 5
head->next

= Heap layout:

[virtual address: 16K8]
header: size field

size: 4088

o

head —>| next: header: next field(NULL is 0)

e the rest of the 4KB chunk

TCSS422: Operating Systems [Fall 2016]

November 14,2016 Institute of Technology, University of Washington - Tacoma

[o

Slides by Wes J. Lloyd

L15.2

TCSS 422: Operating Systems [Fall 2016] 11/14/2016
Institute of Technology, UW-Tacoma

FREE LIST: MALLOC() CALL REE LIST: FREE() CALL

= Consider a request for a 100 bytes: malloc(100)

8 bytes header { [virtual address: 16KB]
= Header block requires 8 bytes

magic: 1234567

. . 100 bytes still allocated
= 4 bytes for size, 4 bytes for magic number vtes stil allocate
= Split the heap
sptr —»|magic 2807
A 4KB Heap With One Free Chunk A Heap : After One Allocation 100 bytes still allocated
hesd —> —— o T (but about to be freed)
size: 4088 _ sze 100
ptr —> 29 1234567 magic: 1234567
the rest of the 100 bytes now allocated 100 bytes still allocated
the 4KB chunk
head —>|— head size 3764
size: 3980 Met 01
next: 0
The free 3764-byte chunk

the free 3980 byte chunk
Free Space With Three Chunks Allocated

TCS5422: Operating Systems [Fall 2016]

November14, 2016 Institute of Technology, University of Washington - Tacoma | L3

TCS5422: Operating Systems [Fall 2016]
November 14,2016 Institute of Technology, University of Washington - Tacoma

usas |

FREE LIST: FREE() CALL - 2 FREE LIST- FREE ALL CHUNKS

= Free(sptr)

[virtual address: 16KB] = Now free: [virtual address: 16K8]
= 3 chunks start at 16,384 " Free(16384) ——M—> -
] 100 bytes stil allocated " Free(16600) (now free)
= Location on heap of next size. 100
free chunk I —————————— = External fragmentation [next 16708 | ——|
free chunk of .
(now i\;\eofy)”" ° = Free chunk pointers (now free)
size: 100 out of order head
= Start=16384 magic: 1234567 16?%22
+ 108 (end of 15t chunk)] ,
100 bytes still allocated ® Coalescing is needed (now free)
+ 108 (end of 2M chunk) E
+ 108 (end of 2" chunk) EET
=16708 The free 3764-byte chunk The free 3764-byte chunk
| |
November 14, 2016 TCSS422: Operating Systems [Fall 2016]

November 14, 2016 TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma Institute of Technology, University of Washington - Tacoma

GROWING THE HEAP

MEMORY ALLOCATION STRATEGIES

= Start with small sized heap = Best fit
= Request more memory when full
= sbrk(), brk()

=Traverse free list
= |dentify all candidate free chunks

= Note which is smallest (has best fit)
Segmented hea e .
gl P = When splitting, “leftover” pieces are small
ot i (and potentially less useful)
Heap | Heap Heap Heap
l break sbrk()y N = Worst fit

break T (not in use) .

(not in use) =Traverse free list
Address Space Address Space Heap = |dentify largest free chunk
Physical Memory = Split largest free chunk, leaving a still large free chunk
TCSS422: 0 ting Syste Fall 2016] TCSS422: Of iting Syste Fall 2016]
November 14,2016 | L0 e ety of ashington- Tacoma | sy November 14,2015 | 10 e araty of Washington - Tacoma usae

Slides by Wes J. Lloyd L15.3

TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

MEMORY ALLOCATION STRATEGIES - 2

= First fit
= Start search at beginning of free list
= Find first chunk large enough for request
= Split chunk, returning a “fit” chunk, saving the remainder
= Avoids full free list traversal of best and worst fit

= Next fit
= Similar to first fit, but start search at last search location
= Maintain a pointer that “cycles” through the list
= Helps balance chunk distribution vs. first fit
= Find first chunk, that is large enough for the request, and split
= Avoids full free list traversal

11/14/2016

TCS5422: Operating Systems [Fall 2016]

November14, 2016 Institute of Technology, University of Washington - Tacoma

[e

EXAMPLES

= Allocation request for 15 bytes

head —> 10 —> 30 —> 20 —> NULL

= Result of Best Fit

head —> 10 —> 30 —> 5 —> NULL

= Result of Worst Fit

head —> 10 —> 15 —> 20 —> NULL

TCSS422: Operating Systems [Fall 2016]

November 14,2016 Institute of Technology, University of Washington - Tacoma

11520

SEGREGATED LISTS

For popular sized requests

e.g. for kernel objects such as locks, inodes, etc.
Manage as segregated free lists

Provide object caches: stores pre-initialized objects

How much memory should be dedicated for specialized
requests?

If a given cache is low in memory, can request “slabs” of
memory from the general allocator for caches.

General allocator will reclaim slabs when not used

TCS5422: Operating Systems [Fall 2016]

oie mberte 201 Institute of Technology, University of Washington - Tacoma

BUDDY ALLOCATION

= Binary buddy allocation

= Divides free space by two to find a block that is big enough to
accommodate the request; the next split is too small...

= Consider a 7KB request

64KB free space for 7KB request

TCS5422: Operating Systems [Fall 2016]

Wb, At Institute of Technology, University of Washington - Tacoma

us22

BUDDY ALLOCATION - 2

= Buddy allocation: suffers from internal fragmentation

= Allocated fragments, typically too large

= Coalescing is simple
=Two adjacent blocks are promoted up

TCS5422: Operating Systems [Fall 2016]

November14, 2016 Institute of Technology, University of Washington - Tacoma

[e

Slides by Wes J. Lloyd

QUESTIONS

TCSS422: Operating Systems [Fall 2016]
Institute of Technology, University of Washington - Tacoma

November 14, 2016

L15.4

