
TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

11/9/2016

Slides by Wes J. Lloyd L14.1

Address Translation

and Segmentation

Wes J. Lloyd
Institute of Technology
University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

� Address translation

� Base and bounds

� HW and OS Support

� Memory segments

� Memory fragmentation

November 9, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L14.2

OBJECTIVES

� Using hardware support provide virtualization that is:

� Efficient

� Flexible

� Secure and isolated

November 9, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L14.3

MEMORY VIRTUALIZATION

� For each and every memory reference…

address translation is performed

� Hardware transforms

� Virtual address � physical address

� OS tracks which memory locations are free / in-use

November 9, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L14.4

HARDWARE BASED
ADDRESS TRANSLATION

� Load value from memory

� Increment by three

� Store value back in memory

� In assembly…

November 9, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L14.5

EXAMPLE: ADDRESS TRANSLATION

� Load value at address into register (eax)

� Add (3) to eax register

� Store the value of eax back into memory

November 9, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L14.6

EXAMPLE: ADDRESS TRANSLATION - 2

TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

11/9/2016

Slides by Wes J. Lloyd L14.2

� Fetch instruction at address 128

� Execute this instruction (load from address 15KB)

� Fetch instruction at address 132

� Execute this instruction (no memory reference)

� Fetch the instruction at address 135

� Execute this instruction (store to address 15 KB)

� Program’s perspective:

� Address space starts at 0

� Machine’s perspective:

� Program is located somewhere, not at 0

November 9, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L14.7

EXAMPLE: ADDRESS TRANSLATION - 3

Int x

� 64KB

Address space
example

� Translation:
mapping
virtual to

physical

November 9, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L14.8

PLACEMENT IN PHYSICAL RAM

Virtual mapping

Address Space

� Dynamic relocation

� Two registers base & bounds: on the CPU

� OS places program in memory

� Sets base register

� Bounds register

� Stores size of program address space (16KB)

� OS verifies that every address:

November 9, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L14.9

BASE AND BOUNDS

0 ≤ 	�����	
		����

 < �����

� Base = 32768

� Bounds =16384

� Fetch instruction at 128 ↑

� Phy addr = virt addr + base reg

� 32896 = 128 + 32768 (base)

� Execute instruction

� Load from address

� 48128 = 15360 + 32768 (base)

� Bounds register – terminates process if

� Virtual address > bounds reg

November 9, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L14.10

INSTRUCTION EXAMPLE

Int x

� MMU

� Portion of the CPU dedicated to address translation

� Contains base & bounds registers

� Example:

� Consider address translation

� 4 KB (4096 bytes) address space, loaded at 16 KB physical location

November 9, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L14.11

MEMORY MANAGEMENT UNIT

Virtual Address Physical Address

0 16384

1024 17408

3000 19384

4400 20784 (out of bounds)FAULT

November 9, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L14.12

DYNAMIC RELOCATION OF PROGRAMS

� Hardware requirements:

Requirements HW support

Privileged mode CPU modes: kernel, user

Base / bounds registers Registers to support address translation

Translate virtual addr; check if in
bounds

Translation circuitry, check limits

Privileged instruction(s) to
update base / bounds regs

Instructions for modifying base/bound
registers

Privileged instruction(s)
to register exception handlers

Set code pointers to OS code to handle faults

Ability to raise exceptions For out-of-bounds memory access, or
attempts to access privileged instr.

TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

11/9/2016

Slides by Wes J. Lloyd L14.3

� For base and bounds OS support required

� When process starts running
� Allocate address space in physical memory

� When a process is terminated
� Reclaiming memory for use

� When context switch occurs
� Saving and storing the base-bounds pair

� Exception handlers

� Function pointers set at OS boot time

November 9, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L14.13

OS SUPPORT FOR MEMORY
VIRTUALIZATION

� OS searches for free space for new process

� Free list: data structure that tracks available memory slots

November 9, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L14.14

OS: WHEN PROCESS STARTS RUNNING

� OS places memory back on the free list

November 9, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L14.15

OS: WHEN PROCESS IS TERMINATED

� OS must save base and bounds registers

� Saved to the Process Control Block PCB (task_struct in Linux)

November 9, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L14.16

OS: WHEN CONTEXT SWITCH OCCURS

� OS can move process data when not running

1. OS deschedules process from scheduler

2. OS copies address space from current to new location

3. OS updates PCB (base and bounds registers)

4. OS reschedules process

� When process runs new base register is restored to CPU

� Process doesn’t know it was even moved!

November 9, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L14.17

DYNAMIC RELOCATION

SEGMENTATION

November 9, 2016
TCSS422: Operating Systems [Fall 2016]
Institute of Technology, University of Washington - Tacoma L14.18

TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

11/9/2016

Slides by Wes J. Lloyd L14.4

� Address space

� Contains significant unused memory

� Is relatively large

� Preallocates space to handle stack/heap growth

� Large address spaces

� Hard to fit in memory

November 9, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L14.19

BASE AND BOUNDS INEFFICIENCIES

�Address space has (3) segments

�Contiguous portions of address space

�Logically different: code, stack, heap

�Each segment can placed separately

�Base and bounds for each segment

November 9, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L14.20

SEGMENTATION

� Consider 3 segments:

November 9, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L14.21

SEGMENTS IN MEMORY

Much smaller

� Code segment - physically starts at 32KB (base)

� Starts at “0” in virtual address space

November 9, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L14.22

ADDRESS TRANSLATION: CODE SEGMENT

Bounds check:
Is virtual address within 2KB

address space?

� Heap star ts at vir tual address 4096

� The data is at 4200

� Offset= 4200 – 4096 = 104

� Physical address = 104 + 34816

November 9, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L14.23

ADDRESS TRANSLATION: HEAP

�������	�������+ ���� is not the correct physical address.

� Access beyond the address space

� Heap starts at virtual address: 4096

� Data pointer is to 7KB (7168)

� Heap starts at 4096 + 2 KB bounds = 6144

� Offset= 4096 + 7168 > 6144

November 9, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L14.24

SEGMENTATION FAULT

TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

11/9/2016

Slides by Wes J. Lloyd L14.5

� Used to dereference memory during translation

� First two bits identify segment type

� Remaining bits identify memory offset

� Example: virtual heap address 4200 (01000001101000)

November 9, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L14.25

SEGMENT REGISTERS

� VIRTUAL ADDRESS = 01000001101000

� SEG_MASK = 0x3000 (11000000000000)

� SEG_SHIFT = 01 � heap

� OFFSET_MASK = 0xFFF (00111111111111)

� OFFSET = 000001101000 = 104

� OFFSET < BOUNDS : 104 < 2048

November 9, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L14.26

SEGMENTATION DEREFERENCE

�Grows backwards (FILO)

�Requires hardware support:

�Direction bit: tracks direction segment grows

November 9, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L14.27

STACK SEGMENT

� Code sharing: enabled with HW support

� Protection bits: track permissions to segment

� Supports storing shared libraries in memory only once

� Many programs can access them

� DLL: dynamic linked library

� .so (l inux): shraed object in Linux (under /usr/lib)

November 9, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L14.28

SHARED SEGMENTS

�Coarse-grained

�Code segment

�Heap segment

�Stack segment

November 9, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L14.29

SEGMENTATION GRANULAITY

� Fine-grained

� Individual segments consisting of
multiple smaller segments

� Segment table

� On early systems

� Stored in memory

� Tracked large number of segments

November 9, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L14.30

SEGMENTATION GRANULARITY - 2

TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

11/9/2016

Slides by Wes J. Lloyd L14.6

� Consider how much free space?

� We’ll say about 24 KB

� Request arrives to allocate a 20 KB heap
segment

� Can we fulfi l the request for 20 KB of
contiguous memory?

November 9, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L14.31

MEMORY FRAGMENTATION

� Supports rearranging memory

� Can we fulfi l the request for 20 KB of

contiguous memory?

� Drawback: Compaction is slow

� Rearranging memory is time consuming

� 64KB is fast

� 4GB+ … slow

� Algorithms:

� Best fit: keep list of free spaces, allocate the
most snug segment for the request

� Others: worst fit, first fit… (in future chapters)

November 9, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L14.32

COMPACTION

QUESTIONS

November 7, 2016
TCSS422: Operating Systems [Fall 2016]
Institute of Technology, University of Washington - Tacoma L12.33

