TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

Address Spaces
and the Memory API

Wes J. Lloyd
Institute of Technology
University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

11/8/2016

MEMORY VIRTUALIZATION - 2

= Presentation of system memory to each process

= Appears as if each process can access the entire
machine’s address space

= Each process’s view of memory is isolated from others
= Everyone has their own sandbox

Process A Process B Process C

TCSS422: Operating Systems [Fall 2016]

November7, 2016 Institute of Technology, University of Washington - Tacoma

124

OBJECTIVES

= [ntroduction to memory virtualization
= The address space

= Goals of 0S memory virtualization

= Memory API

= Common memory errors

TCS5422: Operating Systems [Fall 2016]

RouenteyZnly Institute of Technology, University of Washington - Tacoma

122

MOTIVATION FOR

MEMORY VIRTUALIZATION

= Easier to program
= Programs don’t need to understand special memory models

= Abstraction enables sophisticated approaches to manage
and share memory among processes

= |solation
= From other processes: easier to code

= Protection
= From other processes
= From programmer error (segmentation fault)

TCS5422: Operating Systems [Fall 2016]

o¥emberZiale Institute of Technology, University of Washington - Tacoma

L125

MEMORY VIRTUALIZATION

= What is memory virtualization?

= This is not “virtual” memory,
= Classic use of disk space as additional RAM

=When available RAM was low

= Less common recently

TCS5422: Operating Systems [Fall 2016]

November7, 2016 Institute of Technology, University of Washington - Tacoma

[

EARLY MEMORY MANAGEMENT

= Load one process at a time into memory
= Poor memory utilization o8
Operating System

m Little abstraction " (code, data, etc)

Current
Program
(code, data, etc.)

x
Physical Memory

TCSS422: Operating Systems [Fall 2016]

November7, 2016 Institute of Technology, University of Washington - Tacoma

126

Slides by Wes J. Lloyd

L12.1

TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

11/8/2016

MULTIPROGRAMMING

WITH SHARED MEMORY

= Later machines supported running multiple KB

processes e D
= Swap out processes during |/0 waits to fee
increase system utilization and efficiency 12868 Process C
= Swap entire memory of a process to disk 102kp | ode data etc)
for context switch oocessB
= Too slow, especially for large processes wee ‘.
320KB
= Solution—> . <m:r:§§f§ fm
= Leave processes in memory P
448K8
= Need to protect from errant memory 166 e

accesses in a multiprocessing environment

Physical Memory

TCS5422: Operating Systems [Fall 2016]

November7, 2016 Institute of Technology, University of Washington - Tacoma

| w2 |

ADDRESS SPACE - 3

= Program code

icsi 0KB
= Static size Program Code
1K8
Heap
= Heap and stack %8
= Dynamic size l
= Grow and shrink during program execution
= Placed at opposite ends e
= Addresses are virtual T
151
= They must be physically mapped by the 0S @ Stack
16K8

Address Space

TCSS422: Operating Systems [Fall 2016]
Institute of Technology, University of Washington - Tacoma

November7, 2016

1210

ADDRESS SPACE

= Easy-to-use abstraction of physical

memory for a process Program Code
1KB
Heap
; 2KB
= Main elements: l
=Program code o
=Stack
="Hea T
p 15KkB
Stack
16K

=Example: 16 KB address space

B
Address Space

TCS5422: Operating Systems [Fall 2016]

RouenteyZnly Institute of Technology, University of Washington - Tacoma

28

VIRTUAL ADDRESSING

= Every address is virtual
=0S translates virtual to physical addresses

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv([]){

*) main);
*) malloc(l));:

printf("location of code : %p\n", (v
printf ("location of heap : $p\n",
int x = 3;

printf("location of stack : $p\n", (void *) &x);
return x;
}
November7, 2016 TCSS422: Operating Systems [Fall 2016] 211 |

Institute of Technology, University of Washington - Tacoma

ADDRESS SPACE - 2

= Code
* Program code o Program Code
1KB
Heap
= Stack KB
= Program counter (PC) l
= Local variables
= Parameter variables o
= Return values (for functions) T
158
® Heap Stack
16KB

= Dynamic storage
= Malloc() new()

Address Space

TCS5422: Operating Systems [Fall 2016]

November7, 2016 Institute of Technology, University of Washington - Tacoma

N

VIRTUAL ADDRESSING - 2

Address Space

0x400000

= Qutput from 64-bit Linux: Code

0x401000 (Tm)

location of code: 0x400686 Data

location of heap: 0x1129420 0xcf2000 Hoap
location of stack: 0x7ffe040d77e4 0xd13000

heap

(free)

stack

0x7fff9ca28000 Stack

TCSS422: Operating Systems [Fall 2016]

November7, 2016 Institute of Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

L12.2

TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

11/8/2016

GOALS OF

0S MEMORY VIRTUALIZATION

= Transparency

scenes

= Protection
= |solation among processes
= 0S itself must be isolated

=One program should not be able to affect another
(or the 0S)

= Memory shouldn’t appear virtualized to the program
= 0S multiplexes memory among different jobs behind the

TCS5422: Operating Systems [Fall 2016]

November7, 2016 Institute of Technology, University of Washington - Tacoma

[o

MALLOC

#include <stdlib.h>

void* malloc(size_t size)

= Allocates memory on the heap

" size_t unsigned integer (must be +)

= sjze size of memory allocation in bytes

= Returns
= SUCCESS: A void * to a memory address
= FAIL: NULL

= sizeof() often used to ask the system how large a given
datatype or struct is

TCSS422: Operating Systems [Fall 2016]

November7, 2016 Institute of Technology, University of Washington - Tacoma

1216

GOALS - 2

= Efficiency
=Time
= Performance: virtualization must be fast
=Space

= Virtualization must not waste space
= Consider data structures for organizing memory

= Goals considered when evaluation memory
virtualization schemes

= Hardware support TLB: Translation Lookaside Buffer

TCS5422: Operating Systems [Fall 2016]

NolentenZi201E) Institute of Technology, University of Washington - Tacoma

SIZEOF()

int *x = malloc (10 * sizeof(int)):

= Not safe to assume

. . intf(“sd\n”, sizeof(x)):
data type sizes using oy ul *
different compilers, \ 4
systems
= Dynamic array of 10 iny int x11017
printf (“%d\n”, sizeof(x)):
= Static array of 10 ints [e
November7, 2016 TCS5422: Operating Systems [Fall 2016] o1

Institute of Technology, University of Washington - Tacoma

THE

MEMORY API

TCS8422: Operating Systems [Fall 2016]

(T o 2015 Institute of Technology, University of Washington - Tacoma

FREE()

#include <stdlib.h>

void free(void* ptr)

= Free memory allocated with malloc()
= Provide: (void *) ptr to malloc’d memory

= Returns: nothing

TCSS422: Operating Systems [Fall 2016]

November7, 2016 Institute of Technology, University of Washington - Tacoma

1218

Slides by Wes J. Lloyd

L12.3

TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

‘ int *pi; // local variable

= Pointer is a local variable on the stack

VIRTUAL ADDRESS SPACE

(free)

11/8/2016

Institute of Technology, University of Washington - Tacoma

16K8 el
Address Space
- 2B <
Malloc returns space on the heap @ » 4 |__allocated i
)malloc(s ino) 4); 2KB + 8 a::“atj |
2B + 12 | oocd i
allocated i
(free)
2K8 [*pi
16KB
November7, 2016 TCSS422: Operating Systems [Fall 2016] | 1219

FORGETTING TO MALLOC

= C is not Java
= When forgetting to maloc:

- *src = “hello”; !
r *dst; a sted
strepy (dst, src);

— hellod 1<
dst has not been initialized. ¢ i
It has no place to store anything :
e
stropy (dst, src): (free) | unallocated
stack f ?
“dst : i
*src

‘ Segmentation fault (core dumped) Address Space

TCSS422: Operating Systems [Fall 2016]

November7, 2016 Institute of Technology, University of Washington - Tacoma

222

VIRTUAL ADDRESS SPACE

= Releases heap space pointed to szi freed
by the pointer on the stack x8 + 8 :’“:
2B + 12 f'ee -
(free)
16k 2KB(invalid)
Address Space
2KB
(free)
16k8 2KB(invalid) f€— *pi

Address Space

TCS5422: Operating Systems [Fall 2016]

RouenteyZnly Institute of Technology, University of Washington - Tacoma

CORRECTION

r *src = “hello”; ch er string c
*dst (char *)malloc(strlen(src) + 1);
strepy(dst, src); / /work properly

= Why do we malloc length + 1 ?

hellow0 hellow0
allocated helloW0
stropy(dst, src); heap heap
1 ! (free) (free)
i ! stack stack
; :
t- “dst “dst
*src *src
Address Space Address Space

November7, 2016 TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma

1223

COMMON MEMORY ERRORS

= Forgetting to malloc memory
= Unterminated string

= Uninitialized memory

= Memory leak

= Dangling pointer

TCS5422: Operating Systems [Fall 2016]

November7, 2016 Institute of Technology, University of Washington - Tacoma

=X

UNTERMINATED STRING

char *src = “hello”; //ch str ant
char *dst (char *)malloc(strlen(src)):; smal
strcpy (dst, src); //work properly
1} J--y
€ i
Malloc too little memory 6 bytes 5”‘9"1 I i
— H
777777 ki) H
WO is omitted sby‘esI hello#0 i
v
strcpy(dst, src); heap
! ! (free)
' : stack
: :
----q il *dst
B *src

Address Space

November7, 2016 TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma

1224

Slides by Wes J. Lloyd

L12.4

TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

11/8/2016

FORGETTING TO INITIAL

IZE

Address Space

int *x = (int *)malloc(siz
Printf(“*x = td\n”, *x); //
Valie used allocated
before jith value usedi<-
(free) before
heap heap
(free) (free) |
stack stack ;
= o ;

Address Space

TCS5422: Operating Systems [Fall 2016]

November7, 2016 Institute of Technology, University of Washington - Tacoma

=

#include<stdio.h>
What will this code do?

int * set_magic_number_a()

int a =53247;
return &a;

Output:

$./pointer_error

The magic number is=53247

void set_magic_number_b () N S P P PR Lk

int b = 11111;

We have not changed *x but
the value has changed!!
int * x = NULL;

Why?
X = set_magic_number_a()?

printf("The magic number is=%d\n“,*x);
set_magic_number_bQ);

printf("The magic number is=%d\n“,*x);
return 0;

int main()

MEMORY LEAK

: unused, but not freed

Program runs out of memory
and eventually dies...

unused

unused

unused

allocated

allocated < unused
l § allocated
heap J
i heap
(free) | (free)
stack | St“k
T | b
*a - 2
Address Space Address Space

Address Space

> run out of memory

TCS5422: Operating Systems [Fall 2016]

RouenteyZnly Institute of Technology, University of Washington - Tacoma

DANGLING POINTER (1/2)

= Dangling pointers arise when a variable referred (a) goes
“out of scope”, and it's memory is destroyed/overwritten
(by b) without modifying the value of the pointer (*x).

= The pointer still points to the original memory location
of the deallocated memory (a),
which has now been reclaimed for (b).

TCS5422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma 1229

November7, 2016

#include<stdio.h>

int * set_magic_number_a()

int a =53247;
return &a;

void set_magic_number_b()

int b = 11111;
}

int main()

int * x = NULL;

x = set_magic_number_a();

printf("The magic number is=%d\n“,*x);
set_magic_number_bQ);

printf(“The magic number is=%d\n“,*x);
return 0;

What will this code do?

DANGLING POINTER (2/2)

mFortunately in the case, a compiler warning
is generated:

$ g++ -0 pointer_error -std=c++0x pointer_error.cpp

pointer_error.cpp: In function ‘int¥
set_magic_number_a()’:

pointer_error.cpp:6:7: warning: address of Tlocal
variable ‘a’ returned [enabled by default]

®This is a common mistake - - -
accidentally referring to addresses that have
gone “out of scope”

TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma uz30

| November7, 2016

Slides by Wes J. Lloyd

L12.5

TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

11/8/2016

CALLOC()

#include <stdlib.h>

void *calloc(size_t num, size t size)

= Allocate “C”lear memory on the heap

= Calloc wipes memory in advance of use...

® size_t num :number of blocks to allocate
= size_t size :size of each block(in bytes)

= Calloc() prevents...

char *dest = malloc(20);
printf("dest string=%s\n", dest);

dest string=@@F

TCS5422: Operating Systems [Fall 2016]

November7, 2016 Institute of Technology, University of Washington - Tacoma

=X

SYSTEM CALLS

" brk(), sbrk()

= Used to change data segment size (the end of the heap)
= Don’t use these

= Mmap(), munmap()

= Can be used to create an extra independent “heap” of memory
for a user program

= See man page

TCSS422: Operating Systems [Fall 2016]

o
Institute of Technology, University of Washington - Tacoma 23

November7, 2016

REALLOC()

#include <stdlib.h>

void *realloc(void *ptr, size_t size)

= Resize an existing memory allocation

= New if memory allocation must move

calloc, or realloc

= Returned pointer may be same address, or a new address

= size_t size: New size for the memory block(in bytes)

" void *ptr: Pointer to memory block allocated with malloc,

TCS5422: Operating Systems [Fall 2016]

NolentenZi201E) Institute of Technology, University of Washington - Tacoma

QUESTIONS

TCSS422: Operating Systems [Fall 2016]
Institute of Technology, University of Washington - Tacoma

November 7, 2016

DOUBLE FREE

nt *x = (int *)malloc(sizeof(int)); // allocated
free (x);
free(x); // f1

= Can’t deallocate twice
= Second call core dumps

2KB 2KB

allocated freed |«
l Heap l Heap | |
free (x) I free(x)
(free) i — (free) i —
T Sack | | T suck | |
16 28 R g | 2KBOnvalid) o
Address Space Address Space

TCS5422: Operating Systems [Fall 2016]

November7, 2016 Institute of Technology, University of Washington - Tacoma

=

Slides by Wes J. Lloyd

L12.6

