
TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

11/8/2016

Slides by Wes J. Lloyd L12.1

Address Spaces

and the Memory API

Wes J. Lloyd

Institute of Technology
University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

� Introduction to memory virtualization

� The address space

� Goals of OS memory virtualization

� Memory API

� Common memory errors

November 7, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L12.2

OBJECTIVES

� What is memory virtualization?

� This is not “virtual” memory,

� Classic use of disk space as additional RAM

� When available RAM was low

� Less common recently

November 7, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L12.3

MEMORY VIRTUALIZATION

� Presentation of system memory to each process

� Appears as if each process can access the entire

machine’s address space

� Each process’s view of memory is isolated from others

� Everyone has their own sandbox

November 7, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L12.4

MEMORY VIRTUALIZATION - 2

Process A Process B Process C

� Easier to program
� Programs don’t need to understand special memory models

� Abstraction enables sophisticated approaches to manage
and share memory among processes

� Isolation

� From other processes: easier to code

� Protection

� From other processes

� From programmer error (segmentation fault)

November 7, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L12.5

MOTIVATION FOR

MEMORY VIRTUALIZATION

� Load one process at a time into memory

�Poor memory utilization

� Little abstraction

November 7, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L12.6

EARLY MEMORY MANAGEMENT

TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

11/8/2016

Slides by Wes J. Lloyd L12.2

� Later machines supported running multiple

processes

� Swap out processes during I/O waits to

increase system util ization and efficiency

� Swap entire memory of a process to disk

for context switch

� Too slow, especially for large processes

� Solution�

� Leave processes in memory

� Need to protect from errant memory

accesses in a multiprocessing environment

November 7, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L12.7

MULTIPROGRAMMING

WITH SHARED MEMORY

�Easy-to-use abstraction of physical

memory for a process

�Main elements:

�Program code

�Stack

�Heap

�Example: 16KB address space

November 7, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L12.8

ADDRESS SPACE

� Code

� Program code

� Stack

� Program counter (PC)

� Local variables

� Parameter variables

� Return values (for functions)

� Heap

� Dynamic storage

� Malloc() new()

November 7, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L12.9

ADDRESS SPACE - 2

� Program code

� Static size

� Heap and stack

� Dynamic size

� Grow and shrink during program execution

� Placed at opposite ends

� Addresses are virtual

� They must be physically mapped by the OS

November 7, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L12.10

ADDRESS SPACE - 3

�Every address is virtual

�OS translates virtual to physical addresses

November 7, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L12.11

VIRTUAL ADDRESSING

� Output from 64-bit Linux:

November 7, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L12.12

VIRTUAL ADDRESSING - 2

location of code: 0x400686
location of heap: 0x1129420
location of stack: 0x7ffe040d77e4

TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

11/8/2016

Slides by Wes J. Lloyd L12.3

� Transparency

� Memory shouldn’t appear virtualized to the program

� OS multiplexes memory among different jobs behind the

scenes

� Protection

� Isolation among processes

� OS itself must be isolated

� One program should not be able to affect another

(or the OS)

November 7, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L12.13

GOALS OF

OS MEMORY VIRTUALIZATION

�Efficiency

�Time

� Performance: virtualization must be fast

�Space

� Virtualization must not waste space

� Consider data structures for organizing memory

� Hardware support TLB: Translation Lookaside Buffer

�Goals considered when evaluation memory
virtualization schemes

November 7, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L12.14

GOALS - 2

THE

MEMORY API

November 7, 2016
TCSS422: Operating Systems [Fall 2016]
Institute of Technology, University of Washington - Tacoma L12.15

� Allocates memory on the heap

� size_t unsigned integer (must be +)

� size size of memory allocation in bytes

� Returns

� SUCCESS: A void * to a memory address

� FAIL: NULL

� sizeof() often used to ask the system how large a given

datatype or struct is

November 7, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L12.16

MALLOC

� Not safe to assume

data type sizes using

different compilers,

systems

� Dynamic array of 10 ints

� Static array of 10 ints

November 7, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L12.17

SIZEOF()

� Free memory allocated with malloc()

� Provide: (void *) ptr to malloc’d memory

� Returns: nothing

November 7, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L12.18

FREE()

TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

11/8/2016

Slides by Wes J. Lloyd L12.4

� Pointer is a local variable on the stack

� Malloc returns space on the heap

November 7, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L12.19

VIRTUAL ADDRESS SPACE

� Releases heap space pointed to

by the pointer on the stack

November 7, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L12.20

VIRTUAL ADDRESS SPACE - 2

� Forgetting to malloc memory

�Unterminated string

�Uninitialized memory

�Memory leak

�Dangling pointer

November 7, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L12.21

COMMON MEMORY ERRORS

� C is not Java

� When forgetting to maloc:

November 7, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L12.22

FORGETTING TO MALLOC

char *src = “hello”; //character string constant

char *dst; //unallocated

strcpy(dst, src); //segfault and die

dst has not been initialized.
It has no place to store anything

Segmentation fault (core dumped)

� Why do we malloc length + 1 ?

November 7, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L12.23

CORRECTION

November 7, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L12.24

UNTERMINATED STRING

Malloc too little memory

TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

11/8/2016

Slides by Wes J. Lloyd L12.5

November 7, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L12.25

FORGETTING TO INITIALIZE

November 7, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L12.26

MEMORY LEAK

Program runs out of memory
and eventually dies…

27

#include<stdio.h>

int * set_magic_number_a()
{

int a =53247;
return &a;

}

void set_magic_number_b()
{

int b = 11111;
}

int main()
{

int * x = NULL;
x = set_magic_number_a();
printf("The magic number is=%d\n“,*x);
set_magic_number_b();
printf(“The magic number is=%d\n“,*x);
return 0;

}

What will this code do?

28

#include<stdio.h>

int * set_magic_number_a()
{

int a =53247;
return &a;

}

void set_magic_number_b()
{

int b = 11111;
}

int main()
{

int * x = NULL;
x = set_magic_number_a();
printf("The magic number is=%d\n“,*x);
set_magic_number_b();
printf("The magic number is=%d\n“,*x);
return 0;

}

Output:
$./pointer_error
The magic number is=53247
The magic number is=11111

What will this code do?

We have not changed *x but
the value has changed!!

Why?

� Dangling pointers arise when a variable referred (a) goes

“out of scope”, and it’s memory is destroyed/overwritten

(by b) without modifying the value of the pointer (*x).

� The pointer still points to the original memory location

of the deallocated memory (a),

which has now been reclaimed for (b).

DANGLING POINTER (1/2)

November 7, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L12.29

�Fortunately in the case, a compiler warning
is generated:

$ g++ -o pointer_error -std=c++0x pointer_error.cpp

pointer_error.cpp: In function ‘int*
set_magic_number_a()’:

pointer_error.cpp:6:7: warning: address of local
variable ‘a’ returned [enabled by default]

�This is a common mistake - - -
accidentally referring to addresses that have
gone “out of scope”

DANGLING POINTER (2/2)

November 7, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L12.30

TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

11/8/2016

Slides by Wes J. Lloyd L12.6

� Allocate “C”lear memory on the heap

� Calloc wipes memory in advance of use…

� size_t num : number of blocks to allocate

� size_t size : size of each block(in bytes)

� Calloc() prevents…

November 7, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L12.31

CALLOC()

char *dest = malloc(20);
printf("dest string=%s\n", dest);

dest string=��F

� Resize an existing memory allocation

� Returned pointer may be same address, or a new address

� New if memory allocation must move

� void *ptr: Pointer to memory block allocated with malloc,

calloc, or realloc

� size_t size: New size for the memory block(in bytes)

November 7, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L12.32

REALLOC()

� Can’t deallocate twice

� Second call core dumps

November 7, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L12.33

DOUBLE FREE

�brk(), sbrk()

� Used to change data segment size (the end of the heap)

� Don’t use these

�Mmap(), munmap()

� Can be used to create an extra independent “heap” of memory

for a user program

� See man page

November 7, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L12.34

SYSTEM CALLS

QUESTIONS

November 7, 2016
TCSS422: Operating Systems [Fall 2016]
Institute of Technology, University of Washington - Tacoma L12.35

