TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

TCSS 422: OPERATING SYSTEMS

Concurrency
Problems

Wes J. Lloyd
Institute of Technology
University of Washington - Tacoma

11/2/2016

OBJECTIVES

= Non-deadlock concurrency bugs
= Deadlock causes

= Deadlock prevention

TCSS422: Operating Systems [Fall 2016]

November2, 2016 Institute of Technology, University of Washington - Tacoma

12

CONCURRENCY BUGS IN

OPEN SOURCE SOFTWARE

= “Learning from Mistakes - A Comprehensive Study on
Real World Concurrency Bug Characteristics”
=Shan Lu et al.
= Architectural Support For Programming Languages and
Operating Systems (ASPLOS 2008), Seattle WA

Application Whatit does Non-Deadlock Deadlock
MysQL Database Server 14 9
Apache Web Server 3 4
Mozilla Web Browser 41 16
Open Office Office Suite 6 2
Total 74 31
November2, 2016 TC55422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma s

NON-DEADLOCK BUGS

= Majority of concurrency bugs

= Most common:
=Atomicity violation
=Order violation

TCS5422: Operating Systems [Fall 2016]
o¥e mberaLE Institute of Technology, University of Washington - Tacoma

L11s

ATOMICITY VIOLATION - MYSQL

= Two threads access the proc_info field in struct thd

= NULLis O in C

= Serialized access to shared memory among separate
threads is not enforced (e.g. non-atomic)

= Simple example:

1 Threadl::
2 if (thd->proc_info) {
3
. 4 fputs (thd->proc_info , ..)7

Programmer intended 5 -

variable to be accessed 6 }

atomically... 7
8 Thread2::
9 thd->proc_info = NULL;

TCSS422: Operating Systems [Fall 2016]
November2, 2016 Institute of Technology, University of Washington - Tacoma | s

ATOMICITY VIOLATION - SOLUTION

= Add locks whereever thd->proc_info is used

pthread mutex_t lock = PTHREAD MUTEX INITIALIZER;

1
2
3 Threadi::

4 pthread_mutex_lock(slock) ;
5 if(thd->proc_info){

6

7

8

fputs (thd->proc_info , ..);

i
10 pthread mutex_unlock (slock)

12 Thread2::

13 pthread_mutex_lock(slock) ;
14 thd->proc_info = NULL:

15 pthread mutex_unlock (slock);

TCSS422: Operating Systems [Fall 2016]

November2, 2016 Institute of Technology, University of Washington - Tacoma

e

Slides by Wes J. Lloyd

L11.1

TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

ORDER VIOLATION BUGS

= Desired order between memory accesses is flipped
= E.g. something is checked before it is set
= Example:

mState = mThread->State

1 Threadi::

2 nit({

3 mThread = PR_CreateThread(mMain, ..);
4)

5

6 Thread2::

7 void mMain(..) {

8

9

i

= What if mThread is not initialized?

11/2/2016

TCS5422: Operating Systems [Fall 2016]

November2, 2016 Institute of Technology, University of Washington - Tacoma | w7

ORDER VIOLATION - SOLUTION

= Use condition variable to enforce order

pthread mutex_t mtLock = PTHREAD MUTEX INITIALIZER;
pthread_cond_t mtCond = PTHREAD_COND_INITIALIZER;
int mtInit = 0;

1

2

3

)

5 Thread 1::
6 init(){

7 -

8 mThread = PR_CreateThread (mMain,..);

9
10 / signa \at the ead has bee ate:
11 pthread mutex_lock (smtLock) ;
12 mtInit = 1;
13 pthread_cond_signal (smtCond) ;
14 pthread_mutex_unlock (&mtLock) ;
15
16)
17
18 Thread2::
19 void mMain(.){
20 .
November2, 2016 TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma

[o

ORDER VIOLATION - SOLUTION 2

21 / wait for the thread to &

22 pthread mutex_lock (emtLock)

23 while (mEInit == 0)

24 pthread_cond_wait (smtCond, &mtLock);
25 pthread mutex_unlock (smtLock);

26

27 mState = mThread->State;

28

29)

TCS5422: Operating Systems [Fall 2016]

EoucntezRl Institute of Technology, University of Washington - Tacoma

uts

NON-DEADLOCK BUGS - 1

=97% of Non-Deadlock Bugs were
=Atomicity
=Order violations

= Consider what is involved in “spotting” these
bugs in code

= Desire for automated tool support (IDE)

TCSS422: Operating Systems [Fall 2016]

o¥e mberaLE Institute of Technology, University of Washington - Tacoma

NON-DEADLOCK BUGS - 2

= Atomicity
=How can we tell if a given variable is shared?
Can search the code for uses
=How do we know if all instances of its use are shared?
Can some non-synchronized uses be legal?
Before threads are created, after threads exit
Must verify the scope

= Qrder violation
= Must consider all variable accesses
= Must known desired order

TCS5422: Operating Systems [Fall 2016]

e Institute of Technology, University of Washington - Tacoma | L |

DEADLOCK BUGS

= Presence of a cycle in code
= Thread 1 acquires lock L1, waits for lock L2
= Thread 2 acquires lock L2, waits for lock L1

Thread 1: Thread 2:
Holds
lock(Ll); lock(L2);
lock(L2); lock(L1);
z
= Both threads can block, unless ‘g
one manages to acquire both locks 2
Holds

H
H
7
2
T
g

TCSS422: Operating Systems [Fall 2016]

November2, 2016 Institute of Technology, University of Washington - Tacoma

uri

Slides by Wes J. Lloyd

L11.2

TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

= Complex code
= Must avoid circular dependencies
= Encapsulation hides potential locking conflicts
= Easy-to-use APls embed locks inside
= Programmer doesn’t know they are there
= Consider the Java Vector class:

1 vector vi,v2;

2 v1.AddAll (v2);
= Vector is thread safe (synchronized) by design

deadlock could result

REASONS FOR DEADLOCKS

= |f there is a v2.AddAll(v1); call at nearly the same time

11/2/2016

TCS5422: Operating Systems [Fall 2016]

November2, 2016 Institute of Technology, University of Washington - Tacoma

[o

CONDITIONS FOR DEADLOCK

= Four conditions are required for dead lock to occur

Condition Description

Mutual Exclusion | Threads claim exclusive control of resources that they require.

Threads hold resources allocated to them while waiting for additional

Hold-and-wait | | 0 "o

No preemption | Resources cannot be forcibly removed from threads that are holding them.

There exists a circular chain of threads such that each thread holds one more

Clreularwalt | ocources that are being requested by the next thread in the chain
TCS5422: Operating Systems [Fall 2016]
November2, 2016 Institute of Technology, University of Washington - Tacoma s

throughout code

=Always acquire locks in same order
=L1,L2, L3, ..

=Never mix: L2, L1, L3; L2, L3, L1; L3, L1,

program

PREVENTION - CIRCULAR WAIT

=Provide total ordering of lock acquisition

[E2

®Must carry out same ordering through entire

TCS5422: Operating Systems [Fall 2016]

| EoucntezRl Institute of Technology, University of Washington - Tacoma

PREVENTION - HOLD AND WAIT

= Acquire all locks atomically
= Use a “lock” “lock”

lock (prevention) ;
lock (L1) 7
lock (12) 7

RSP,

unlock (prevention) ;

= Effective solution - guarantees no race conditions while
acquiring L1, L2, etc.

= Order doesn’t matter for L1, L2

= Prevention (GLOBAL) lock decreases concurrency of code
= Acts Lowers lock granularity

= Encapsulation: consider the Java Vector class...

TCSS422: Operating Systems [Fall 2016]

o¥e mberaLE Institute of Technology, University of Washington - Tacoma

[EERT]

unavailable...
= pthread_mutex_trylock() - try once

PREVENTION - NO PREEMPTION

= When acquiring locks, don’t BLOCK forever if

= pthread_mutex_timedlock() - try and wait awhile

top:
lock (L)
1f(tryLock(L2) == -1){
unlock (L1)
joto top:

EEE

¥

= Eliminates deadlocks

NO
STOPPING

ANY
TIME

TCS5422: Operating Systems [Fall 2016]

November2, 2016 Institute of Technology, University of Washington - Tacoma

=

NO PREEMPTION - LIVELOCKS

= Can lead to livelock

top:
lock(L1) 7
£(tryLock(L2) == -1)
unlock (L1) 7
goto top;

e W e

}

= Two threads execute code in parallel >
always fail to obtain both locks

= Add random delay

=Allows one thread to win
livelock race!

TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma e

November2, 2016

Slides by Wes J. Lloyd

L11.3

TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

11/2/2016

PREVENTION - MUTUAL EXCLUSION

= Build wait-free data structures
= Eliminate locks altogether

= Build structures using CompareAndSwap atomic CPU (HW)
instruction

= C pseudo code for CompareAndSwap
= Hardware executes this code atomically

1 int CompareAndSwap(int *address, int expected, int new)(
2 £ (*address == expected) {

3 *address = new;

4 return 1;

5 }

6 return 0;

7

TCS5422: Operating Systems [Fall 2016]

November2, 2016 Institute of Technology, University of Washington - Tacoma

=

PREVENTION - MUTUAL EXCLUSION - 2

= Recall atomic increment

void AtomicIncrement (int *value, int amount) {
dof
int old = *value;
}uhile(CompareAndswap(value, old, old+amount)==0);

e wn e

= Compare and Swap tries over and over until
successful

= CompareAndSwap is guaranteed to be atomic
= When it runs it is ALWAYS atomic (at HW level)

TCSS422: Operating Systems [Fall 2016]
Institute of Technology, University of Washington - Tacoma

1120

November2, 2016

MUTUAL EXCLUSION: LIST INSERTION

MUTUAL EXCLUSION - LIST INSERTION - 2

= Consider list insertion

void insert(int value){
node t * n = malloc(sizeof (node t)):
assert(n != NULL);
n->value = value ;
n->next = head;
head =n;

STome wnm

TCS5422: Operating Systems [Fall 2016]

EoucntezRl Institute of Technology, University of Washington - Tacoma

= Lock based implementation

void insert(int value) {
node t * n = malloc(sizeof (node t));
assert(n != NULL);
n->value = value ;
lock(listlock); // begin critical section
n->next = head;
head = n;
unlock(listlock) ; //end critical section

e

TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma t2z2

November2, 2016

MUTUAL EXCLUSION - LIST INSERTION - 3

DEADLOCK AVOIDANCE

VIA INTELLIGENT SCHEDULING

= Wait free (no lock) implementation

i insert (int value) {
node_t *n = malloc(sizeof (node_t));
assert(n != NULL);

n->value = value;

n->next = head;
} (CompareAndSwap (shead, n->next, n));

@ o e W

}

= Assign &head to n (new node ptr)
=0nly when head = n->next

= Consider a smart scheduler
=Scheduler knows which locks threads use

= Consider this scenario:
=4 Threads (T4, T2, T3, T4)
=2 Locks (L1, L2)

= Lock requirements of threads:

[yes yes no no

o [e | v [s | ™]

TCS5422: Operating Systems [Fall 2016]

November2, 2016 Institute of Technology, University of Washington - Tacoma

=

TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma 2e

November2, 2016

Slides by Wes J. Lloyd

L11.4

TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

INTELLIGENT SCHEDULING - 2

mScheduler produces schedule:

CPU 1

= No deadlock can occur

= Consider:

11/2/2016

TCS5422: Operating Systems [Fall 2016]

November2, 2016 Institute of Technology, University of Washington - Tacoma

=

INTELLIGENT SCHEDULING - 3

= Scheduler produces schedule

CPU 1

= Scheduler must be conservative and not task risks

= Slows down execution - many threads

= There has been limited use of these approaches given the
difficulty having intimate lock knowledge about every
thread

TCSS422: Operating Systems [Fall 2016]

November2, 2016 Institute of Technology, University of Washington - Tacoma

1126

DETECT AND RECOVER

action.
= Example: When OS freezes, reboot...

= How often is acceptable?

recovery technique.

= Allow deadlock to occasionally occur and then take some

= Many database systems employ deadlock detection and

TCS5422: Operating Systems [Fall 2016]

Nolenke 20 1E) Institute of Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

QUESTIONS

TCSS422: Operating Systems [Fall 2016]
Institute of Technology, University of Washington - Tacoma

October 24,2016

L11.5

