
TCSS 422: Operating Systems [Fall 2016]  
Institute of Technology, UW-Tacoma

11/2/2016

Slides by Wes J. Lloyd L11.1

Concurrency 

Problems

Wes J. Lloyd

Institute of Technology
University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

� Non-deadlock concurrency bugs

� Deadlock causes

� Deadlock prevention 

November 2, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L11.2

OBJECTIVES

� “Learning from Mistakes – A Comprehensive Study on 

Real World Concurrency Bug Characteristics”

� Shan Lu et al.

� Architectural Support For Programming Languages and 

Operating Systems (ASPLOS 2008), Seattle WA

November 2, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L11.3

CONCURRENCY BUGS IN 

OPEN SOURCE SOFTWARE

�Majority of concurrency bugs

�Most common:

�Atomicity violation

�Order violation

November 2, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L11.4

NON-DEADLOCK BUGS

� Two threads access the proc_info field in struct thd

� NULL is 0 in C

� Serialized access to shared memory among separate 

threads is not enforced  (e.g. non-atomic)

� Simple example:

November 2, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L11.5

ATOMICITY VIOLATION - MYSQL

Programmer intended
variable to be accessed
atomically- 

� Add locks whereever thd->proc_info is used

November 2, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L11.6

ATOMICITY VIOLATION - SOLUTION



TCSS 422: Operating Systems [Fall 2016]  
Institute of Technology, UW-Tacoma

11/2/2016

Slides by Wes J. Lloyd L11.2

�Desired order between memory accesses is flipped

�E.g. something is checked before it is set

�Example:

�What if mThread is not initialized?

November 2, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L11.7

ORDER VIOLATION BUGS

� Use condition variable to enforce order

November 2, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L11.8

ORDER VIOLATION - SOLUTION

November 2, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L11.9

ORDER VIOLATION – SOLUTION 2

�97% of Non-Deadlock Bugs were

�Atomicity

�Order violations

�Consider what is involved in “spotting” these 

bugs in code

�Desire for automated tool support (IDE)

November 2, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L11.10

NON-DEADLOCK BUGS - 1

�Atomicity

� How can we tell if a given variable is shared?

� Can search the code for uses

� How do we know if all instances of its use are shared?

� Can some non-synchronized uses be legal?  

� Before threads are created, after threads exit

� Must verify the scope

�Order violation

� Must consider all variable accesses

� Must known desired order

November 2, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L11.11

NON-DEADLOCK BUGS - 2

� Presence of a cycle in code

� Thread 1 acquires lock L1, waits for lock L2

� Thread 2 acquires lock L2, waits for lock L1

� Both threads can block, unless 

one manages to acquire both locks

November 2, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L11.12

DEADLOCK BUGS



TCSS 422: Operating Systems [Fall 2016]  
Institute of Technology, UW-Tacoma

11/2/2016

Slides by Wes J. Lloyd L11.3

� Complex code

� Must avoid circular dependencies

� Encapsulation hides potential locking conflicts

� Easy-to-use APIs embed locks inside

� Programmer doesn’t know they are there

� Consider the Java Vector class:

� Vector is thread safe (synchronized) by design

� If there is a v2.AddAll(v1); call at nearly the same time 

deadlock could result

November 2, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L11.13

REASONS FOR DEADLOCKS

� Four conditions are required for dead lock to occur

November 2, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L11.14

CONDITIONS FOR DEADLOCK

�Provide total ordering of lock acquisition 

throughout code

�Always acquire locks in same order

�L1, L2, L3, …

�Never mix: L2, L1, L3; L2, L3, L1; L3, L1, L2….

�Must carry out same ordering through entire 

program

November 2, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L11.15

PREVENTION – CIRCULAR WAIT

� Acquire all  locks atomically

� Use a “lock” “lock”

� Effective solution – guarantees no race conditions while 

acquiring L1, L2, etc.

� Order doesn’t matter for L1, L2

� Prevention (GLOBAL) lock decreases concurrency of code

� Acts Lowers lock granularity 

� Encapsulation: consider the Java Vector class…

November 2, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L11.16

PREVENTION – HOLD AND WAIT

�When acquiring locks, don’t BLOCK forever if 

unavailable…

�pthread_mutex_trylock() - try once

�pthread_mutex_timedlock() - try and wait awhile

�Eliminates deadlocks

November 2, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L11.17

PREVENTION – NO PREEMPTION

�Can lead to livelock

� Two threads execute code in parallel �

always fail to obtain both locks

�Add random delay

�Allows one thread to win 

livelock race!

November 2, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L11.18

NO PREEMPTION - LIVELOCKS



TCSS 422: Operating Systems [Fall 2016]  
Institute of Technology, UW-Tacoma

11/2/2016

Slides by Wes J. Lloyd L11.4

� Build wait-free data structures

� Eliminate locks altogether 

� Build structures using CompareAndSwap atomic CPU (HW) 

instruction

� C pseudo code for CompareAndSwap

� Hardware executes this code atomically

November 2, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L11.19

PREVENTION – MUTUAL EXCLUSION

�Recall atomic increment

�Compare and Swap tries over and over until 

successful

�CompareAndSwap is guaranteed to be atomic

�When it runs it is ALWAYS atomic (at HW level)

November 2, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L11.20

PREVENTION – MUTUAL EXCLUSION - 2

�Consider list insertion

November 2, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L11.21

MUTUAL EXCLUSION: LIST INSERTION

� Lock based implementation

November 2, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L11.22

MUTUAL EXCLUSION – LIST INSERTION - 2

�Wait free (no lock) implementation

�Assign &head to n  (new node ptr)

�Only when head = n->next

November 2, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L11.23

MUTUAL EXCLUSION – LIST INSERTION - 3

1 void insert(int value) {

2 node_t *n = malloc(sizeof(node_t));

3 assert(n != NULL);

4 n->value = value;

5 do {

6 n->next = head;

7 } while (CompareAndSwap(&head, n->next, n));

8 }

�Consider a smart scheduler

�Scheduler knows which locks threads use

�Consider this scenario: 

�4 Threads (T1, T2, T3, T4)

�2 Locks (L1, L2)

� Lock requirements of threads:

November 2, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L11.24

DEADLOCK AVOIDANCE 

VIA INTELLIGENT SCHEDULING



TCSS 422: Operating Systems [Fall 2016]  
Institute of Technology, UW-Tacoma

11/2/2016

Slides by Wes J. Lloyd L11.5

�Scheduler produces schedule:

�No deadlock can occur

�Consider:

November 2, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L11.25

INTELLIGENT SCHEDULING - 2

� Scheduler produces schedule

� Scheduler must be conservative and not task risks

� Slows down execution – many threads 

� There has been limited use of these approaches given the 

difficulty having intimate lock knowledge about every 

thread

November 2, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L11.26

INTELLIGENT SCHEDULING - 3

� Allow deadlock to occasionally occur and then take some 

action.

� Example: When OS freezes, reboot…

� How often is acceptable?

� Many database systems employ deadlock detection and 

recovery technique.

November 2, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L11.27

DETECT AND RECOVER QUESTIONS

October 24, 2016
TCSS422: Operating Systems [Fall 2016]
Institute of Technology, University of Washington - Tacoma L10.28


