
TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

10/24/2016

Slides by Wes J. Lloyd L10.1

Semaphores

Wes J. Lloyd

Institute of Technology

University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

� Semaphores - API

� Uses

� Reader/Writer Locks

� Dining Philosophers

October 24, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L10.2

OBJECTIVES

� We’ve looked at Locks (ch. 28) and Conditions (ch. 30) to

provide atomicity in critical sections for concurrency

� Now we’ll look at “semaphores”

� Provide same functionality

� With different “packaging”

October 24, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L10.3

ANOTHER APPROACH TO CONCURRENCY

�Semaphores (struct in Linux):

�Contains:

� Lock

� Integer: (essentially a counter)

� List: (thread wait list)

October 24, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L10.4

THE SEMAPHORE

� sem_init():

� Initializes new semaphore:

� First param- address of a semaphore

Second param: 0- single process, 1- multiprocess

“1” can be used with fork() to synchronize processes

Third param: initial value of counter

October 24, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L10.5

SEMAPHORE API

� sem_wait():

� Decrements the value of the semaphore counter, and returns

� Adds thread to wait queue if counter <= 0 until and blocks it

� The negative value corresponds to the number of queued, waiting

threads

October 24, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L10.6

SEMAPHORE API - 2

TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

10/24/2016

Slides by Wes J. Lloyd L10.2

� sem_post():

� Increments the semaphore counter by 1.

� Awakens a thread on the wait queue (if any)

� (when counter < 0)

October 24, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L10.7

SEMAPHORE API - 3

� What should the value of X be below?

� Consider two threads entering this code, one immediately after the

other

� What should the first thread do?

� The second thread do?

October 24, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L10.8

SEMAPHORE AS A LOCK

sem_t m;
sem_init(&m, 0, X); // initialize semaphore to X

sem_wait(&m); // similar to lock
// critical section goes here

sem_post(&m); // similar to unlock

� Semaphore

as a lock:

October 24, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L10.9

TWO THREADS AND A SEMAPHORE

�Semaphores can be thought of as “mutants”

�They can be used as locks, or condition variables

�Consider an example

October 24, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L10.10

SEMAPHORE AS A CONDITION VARIABLE

� What should be the value of X ?

October 24, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L10.11

SEMAPHORE AS A CONDITION VARIABLE -2

� Parent calls sem_wait() before child calls sem_post()

October 24, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L10.12

ORDERING OF EXECUTION – 1 OF 2

TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

10/24/2016

Slides by Wes J. Lloyd L10.3

� Child runs, calls sem_post() before parent calls sem_wait()

October 24, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L10.13

ORDERING OF EXECUTION – 2 OF 2

� Producer: put()

� Consumer: get()

� With MAX=1, 1 consumer thread, 1 producer thread:

October 24, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L10.14

PRODUCER/CONSUMER W/ SEMAPHORES

October 24, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L10.15

PRODUCER/CONSUMER W/ SEMAPHORES - 2

� This code is sufficient for any size buffer with

1 producer, 1 consumer

� Try it out

� But what happens if we add multiple producers and

consumers?

� Try it out

� Must consider critical sections

October 24, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L10.16

PRODUCER/CONSUMER W/ SEMAPHORES - 3

� Which part of the code is the critical section?

October 24, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L10.17

MULTI THREAD P/C SEMAPHORES W/

MUTUAL EXCLUSION

October 24, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L10.18

MULTI THREAD P/C SEMAPHORES W/

MUTUAL EXCLUSION - 2

TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

10/24/2016

Slides by Wes J. Lloyd L10.4

� With one producer, one consumer

� Consumer acquires mutex (the lock)

� Consumer calls sem_wait() to wait for data

� No data available, consumer blocks are yields the CPU

� Still has mutex (the lock)

� Producer tries to acquire mutex (the lock)

� Producer becomes stuck in deadlock

� Consumer is waiting for data, and will never release the mutex

October 24, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L10.19

EXECUTION FLOW

� Lock should only protect put(), get()

October 24, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L10.20

MULTITHREAD P/C W/ SEMAPHORES

� Try it out…

October 24, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L10.21

MULTITHREAD P/C W/ SEMAPHORES - 2

� Concurrent data structures ideally will:

� Ensure atomicity of writes

� Enable multiple synchronous reads

� As long as elements being read are not concurrently changed

� Concurrent linked list, use a Reader-Writer Lock

� Insert

� Has traditional critical section which must not be multiply entered

� Read

� Should support concurrent reads if not being changed

� Semaphores: good for tracking concurrent reads

October 24, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L10.22

CONCURRENT DATA STRUCTURES

� Multiple readers can acquire a lock

� Writer must wait until all readers finish

October 24, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L10.23

CONCURRENT LIST WITH SEMAPHORES

October 24, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L10.24

CONCURRENT LIST WITH SEMAPHORES - 2

TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

10/24/2016

Slides by Wes J. Lloyd L10.5

� Fairness problem

� With many readers, it becomes difficult for a writer to

obtain the lock

� One improvement is to prevent more readers from reading

once a writer is waiting for the lock

� How could we implement this improvement?

October 24, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L10.25

READER-WRITER LOCK

� Classic computer science problem

� Possible job interview question

� Philosopher’s

1. Think

2. Pick up forks (wait if not available)

3. Eat

4. Put down forks

October 24, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L10.26

DINING PHILOSOPHERS PROBLEM

� P- Philosopher

� f- fork (eating utensil)

� Key challenges

� There is no deadlock

� No philosopher starves

� Concurrency is high

� Forks get used as much as possible

� Philosophers have plenty of eating

opportunities

October 24, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L10.27

DINING PHILOSOPHERS - 2

� Philosophers:

� Fork helper functions

� Fork on left: left(P1)

� Fork on right: right(P1)

October 24, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L10.28

DINING PHILOSOPHERS - 3

� If we just protect the forks with semaphores:

� Try this:

October 24, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L10.29

DINING PHILOSOPHERS - 4

Void getforks() {
sem_wait(forks[left(p)]);
sem_wait(forks[right(p)]);

}

Void putforks() {
sem_post(forks[left(p)]);
sem_post(forks[right(p)]);

}

Philosopher LEFT RIGHT

P0

P1

P2

P3

P4

October 24, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L10.30

DINING PHILOSOPHERS - 5

� Complete the table

Void getforks() {
sem_wait(forks[left(p)]);
sem_wait(forks[right(p)]);

}

Void putforks() {
sem_post(forks[left(p)]);
sem_post(forks[right(p)]);

}

TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

10/24/2016

Slides by Wes J. Lloyd L10.6

Philosopher LEFT RIGHT

P0 acquires f0 waits for f1

P1 acquires f1 waits for f2

P2 acquires f2 waits for f3

P3 acquires f3 waits for f4

P4 acquires f4 waits for f0

October 24, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L10.31

DINING PHILOSOPHERS - 5

� DEADLOCK: All Philosophers Starve!

Void getforks() {
sem_wait(forks[left(p)]);
sem_wait(forks[right(p)]);

}

Void putforks() {
sem_post(forks[left(p)]);
sem_post(forks[right(p)]);

}

� We need another approach to acquiring forks

� Consider which fork philosophers grab first

� What if we have a alternate-handed phi losopher?

� Solves the Dining Philosopher's problem !! !

� Remember that one philosopher grabs a different fork

October 24, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L10.32

ALTERNATE PHILOSOPHER

void getforks() {
if (p == 4) {

sem_wait(forks[right(p)]);
sem_wait(forks[left(p)]);

} else {
sem_wait(forks[left(p)]);
sem_wait(forks[right(p)]);

}
}

Philosopher LEFT RIGHT

P0 acquires f0 waits for f1

P1 acquires f1 waits for f2

P2 acquires f2 waits for f3

P3 acquires f3 acquires f4,

eats…

P4 Waits for f0

October 24, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L10.33

ALTERNATE PHILOSOPHER - 2

� P3 eats! Solves deadlock

void getforks() {
if (p == 4) {

sem_wait(forks[right(p)]);
sem_wait(forks[left(p)]);

} else {
sem_wait(forks[left(p)]);
sem_wait(forks[right(p)]);

}
}

� Semaphores can be built using locks and conditions

� pthread_mutex_t

� pthread_cond_t

� Linux implementation

� Does not track negative counter values

� Easier to implement

� Zemaphore

October 24, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L10.34

SEMAPHORE IMPLEMENTATION

October 24, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L10.35

SEMAPHORE IMPLEMENTATION - 2

� Provide one construct for both concurrency features

� Binary semaphore: provides basic mutex lock

� Ensures mutual exclusion in critical sections

� Condition semaphore: Synchronize one or more threads

which need to wait for something to happen

� Allows fewer concurrency related variables in your code

� Potentially makes code more ambiguous

� After seeing Locks, Conditions, and Semaphores,

Which do you like better?

October 24, 2016
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L10.36

SEMAPHORES SUMMARY

TCSS 422: Operating Systems [Fall 2016]
Institute of Technology, UW-Tacoma

10/24/2016

Slides by Wes J. Lloyd L10.7

QUESTIONS

October 24, 2016
TCSS422: Operating Systems [Fall 2016]
Institute of Technology, University of Washington - Tacoma L10.37

