
6

Mechanism: Limited Direct Execution

In order to virtualize the CPU, the operating system needs to somehow
share the physical CPU among many jobs running seemingly at the same
time. The basic idea is simple: run one process for a little while, then
run another one, and so forth. By time sharing the CPU in this manner,
virtualization is achieved.

There are a few challenges, however, in building such virtualization
machinery. The first is performance: how can we implement virtualiza-
tion without adding excessive overhead to the system? The second is
control: how can we run processes efficiently while retaining control over
the CPU? Control is particularly important to the OS, as it is in charge of
resources; without control, a process could simply run forever and take
over the machine, or access information that it should not be allowed to
access. Obtaining high performance while maintaining control is thus
one of the central challenges in building an operating system.

THE CRUX:
HOW TO EFFICIENTLY VIRTUALIZE THE CPU WITH CONTROL

The OS must virtualize the CPU in an efficient manner while retaining
control over the system. To do so, both hardware and operating-system
support will be required. The OS will often use a judicious bit of hard-
ware support in order to accomplish its work effectively.

6.1 Basic Technique: Limited Direct Execution

To make a program run as fast as one might expect, not surprisingly
OS developers came up with a technique, which we call limited direct
execution. The “direct execution” part of the idea is simple: just run the
program directly on the CPU. Thus, when the OS wishes to start a pro-
gram running, it creates a process entry for it in a process list, allocates
some memory for it, loads the program code into memory (from disk), lo-
cates its entry point (i.e., the main() routine or something similar), jumps

1

2 MECHANISM: LIMITED DIRECT EXECUTION

OS Program
Create entry for process list
Allocate memory for program
Load program into memory
Set up stack with argc/argv
Clear registers
Execute call main()

Run main()
Execute return from main

Free memory of process
Remove from process list

Figure 6.1: Direct Execution Protocol (Without Limits)

to it, and starts running the user’s code. Figure 6.1 shows this basic di-
rect execution protocol (without any limits, yet), using a normal call and
return to jump to the program’s main() and later to get back into the
kernel.

Sounds simple, no? But this approach gives rise to a few problems
in our quest to virtualize the CPU. The first is simple: if we just run a
program, how can the OS make sure the program doesn’t do anything
that we don’t want it to do, while still running it efficiently? The second:
when we are running a process, how does the operating system stop it
from running and switch to another process, thus implementing the time
sharing we require to virtualize the CPU?

In answering these questions below, we’ll get a much better sense of
what is needed to virtualize the CPU. In developing these techniques,
we’ll also see where the “limited” part of the name arises from; without
limits on running programs, the OS wouldn’t be in control of anything
and thus would be “just a library” — a very sad state of affairs for an
aspiring operating system!

6.2 Problem #1: Restricted Operations

Direct execution has the obvious advantage of being fast; the program
runs natively on the hardware CPU and thus executes as quickly as one
would expect. But running on the CPU introduces a problem: what if
the process wishes to perform some kind of restricted operation, such
as issuing an I/O request to a disk, or gaining access to more system
resources such as CPU or memory?

THE CRUX: HOW TO PERFORM RESTRICTED OPERATIONS

A process must be able to perform I/O and some other restricted oper-
ations, but without giving the process complete control over the system.
How can the OS and hardware work together to do so?

OPERATING

SYSTEMS

[VERSION 0.92] WWW.OSTEP.ORG

MECHANISM: LIMITED DIRECT EXECUTION 3

ASIDE: WHY SYSTEM CALLS LOOK LIKE PROCEDURE CALLS

You may wonder why a call to a system call, such as open() or read(),
looks exactly like a typical procedure call in C; that is, if it looks just like
a procedure call, how does the system know it’s a system call, and do all
the right stuff? The simple reason: it is a procedure call, but hidden in-
side that procedure call is the famous trap instruction. More specifically,
when you call open() (for example), you are executing a procedure call
into the C library. Therein, whether for open() or any of the other sys-
tem calls provided, the library uses an agreed-upon calling convention
with the kernel to put the arguments to open in well-known locations
(e.g., on the stack, or in specific registers), puts the system-call number
into a well-known location as well (again, onto the stack or a register),
and then executes the aforementioned trap instruction. The code in the
library after the trap unpacks return values and returns control to the
program that issued the system call. Thus, the parts of the C library that
make system calls are hand-coded in assembly, as they need to carefully
follow convention in order to process arguments and return values cor-
rectly, as well as execute the hardware-specific trap instruction. And now
you know why you personally don’t have to write assembly code to trap
into an OS; somebody has already written that assembly for you.

One approach would simply be to let any process do whatever it wants
in terms of I/O and other related operations. However, doing so would
prevent the construction of many kinds of systems that are desirable. For
example, if we wish to build a file system that checks permissions before
granting access to a file, we can’t simply let any user process issue I/Os
to the disk; if we did, a process could simply read or write the entire disk
and thus all protections would be lost.

Thus, the approach we take is to introduce a new processor mode,
known as user mode; code that runs in user mode is restricted in what it
can do. For example, when running in user mode, a process can’t issue
I/O requests; doing so would result in the processor raising an exception;
the OS would then likely kill the process.

In contrast to user mode is kernel mode, which the operating system
(or kernel) runs in. In this mode, code that runs can do what it likes, in-
cluding privileged operations such as issuing I/O requests and executing
all types of restricted instructions.

We are still left with a challenge, however: what should a user pro-
cess do when it wishes to perform some kind of privileged operation,
such as reading from disk? To enable this, virtually all modern hard-
ware provides the ability for user programs to perform a system call.
Pioneered on ancient machines such as the Atlas [K+61,L78], system calls
allow the kernel to carefully expose certain key pieces of functionality to
user programs, such as accessing the file system, creating and destroy-
ing processes, communicating with other processes, and allocating more

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

4 MECHANISM: LIMITED DIRECT EXECUTION

TIP: USE PROTECTED CONTROL TRANSFER

The hardware assists the OS by providing different modes of execution.
In user mode, applications do not have full access to hardware resources.
In kernel mode, the OS has access to the full resources of the machine.
Special instructions to trap into the kernel and return-from-trap back to
user-mode programs are also provided, as well as instructions that allow
the OS to tell the hardware where the trap table resides in memory.

memory. Most operating systems provide a few hundred calls (see the
POSIX standard for details [P10]); early Unix systems exposed a more
concise subset of around twenty calls.

To execute a system call, a program must execute a special trap instruc-
tion. This instruction simultaneously jumps into the kernel and raises the
privilege level to kernel mode; once in the kernel, the system can now per-
form whatever privileged operations are needed (if allowed), and thus do
the required work for the calling process. When finished, the OS calls a
special return-from-trap instruction, which, as you might expect, returns
into the calling user program while simultaneously reducing the privi-
lege level back to user mode.

The hardware needs to be a bit careful when executing a trap, in that it
must make sure to save enough of the caller’s registers in order to be able
to return correctly when the OS issues the return-from-trap instruction.
On x86, for example, the processor will push the program counter, flags,
and a few other registers onto a per-process kernel stack; the return-from-
trap will pop these values off the stack and resume execution of the user-
mode program (see the Intel systems manuals [I11] for details). Other
hardware systems use different conventions, but the basic concepts are
similar across platforms.

There is one important detail left out of this discussion: how does the
trap know which code to run inside the OS? Clearly, the calling process
can’t specify an address to jump to (as you would when making a pro-
cedure call); doing so would allow programs to jump anywhere into the

kernel which clearly is a Very Bad Idea1. Thus the kernel must carefully
control what code executes upon a trap.

The kernel does so by setting up a trap table at boot time. When the
machine boots up, it does so in privileged (kernel) mode, and thus is free
to configure machine hardware as need be. One of the first things the OS
thus does is to tell the hardware what code to run when certain excep-
tional events occur. For example, what code should run when a hard-
disk interrupt takes place, when a keyboard interrupt occurs, or when
a program makes a system call? The OS informs the hardware of the
locations of these trap handlers, usually with some kind of special in-

1Imagine jumping into code to access a file, but just after a permission check; in fact, it is
likely such an ability would enable a wily programmer to get the kernel to run arbitrary code
sequences [S07]. In general, try to avoid Very Bad Ideas like this one.

OPERATING

SYSTEMS

[VERSION 0.92] WWW.OSTEP.ORG

MECHANISM: LIMITED DIRECT EXECUTION 5

OS @ boot Hardware
(kernel mode)
initialize trap table

remember address of...
syscall handler

OS @ run Hardware Program
(kernel mode) (user mode)
Create entry for process list
Allocate memory for program
Load program into memory
Setup user stack with argv
Fill kernel stack with reg/PC
return-from-trap

restore regs from kernel stack
move to user mode
jump to main

Run main()
...
Call system call
trap into OS

save regs to kernel stack
move to kernel mode
jump to trap handler

Handle trap
Do work of syscall

return-from-trap
restore regs from kernel stack
move to user mode
jump to PC after trap

...
return from main
trap (via exit())

Free memory of process
Remove from process list

Figure 6.2: Limited Direct Execution Protocol

struction. Once the hardware is informed, it remembers the location of
these handlers until the machine is next rebooted, and thus the hardware
knows what to do (i.e., what code to jump to) when system calls and other
exceptional events take place.

To specify the exact system call, a system-call number is usually as-
signed to each system call. The user code is thus responsible for placing
the desired system-call number in a register or at a specified location on
the stack; the OS, when handling the system call inside the trap handler,
examines this number, ensures it is valid, and, if it is, executes the corre-
sponding code. This level of indirection serves as a form of protection;
user code cannot specify an exact address to jump to, but rather must
request a particular service via number.

One last aside: being able to execute the instruction to tell the hard-
ware where the trap tables are is a very powerful capability. Thus, as you
might have guessed, it is also a privileged operation. If you try to exe-
cute this instruction in user mode, the hardware won’t let you, and you

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

6 MECHANISM: LIMITED DIRECT EXECUTION

can probably guess what will happen (hint: adios, offending program).
Point to ponder: what horrible things could you do to a system if you
could install your own trap table? Could you take over the machine?

The timeline (with time increasing downward, in Figure 6.2) summa-
rizes the protocol. We assume each process has a kernel stack where reg-
isters (including general purpose registers and the program counter) are
saved to and restored from (by the hardware) when transitioning into and
out of the kernel.

There are two phases in the LDE protocol. In the first (at boot time),
the kernel initializes the trap table, and the CPU remembers its location
for subsequent use. The kernel does so via a privileged instruction (all
privileged instructions are highlighted in bold).

In the second (when running a process), the kernel sets up a few things
(e.g., allocating a node on the process list, allocating memory) before us-
ing a return-from-trap instruction to start the execution of the process;
this switches the CPU to user mode and begins running the process.
When the process wishes to issue a system call, it traps back into the OS,
which handles it and once again returns control via a return-from-trap
to the process. The process then completes its work, and returns from
main(); this usually will return into some stub code which will properly
exit the program (say, by calling the exit() system call, which traps into
the OS). At this point, the OS cleans up and we are done.

6.3 Problem #2: Switching Between Processes

The next problem with direct execution is achieving a switch between
processes. Switching between processes should be simple, right? The
OS should just decide to stop one process and start another. What’s the
big deal? But it actually is a little bit tricky: specifically, if a process is
running on the CPU, this by definition means the OS is not running. If
the OS is not running, how can it do anything at all? (hint: it can’t) While
this sounds almost philosophical, it is a real problem: there is clearly no
way for the OS to take an action if it is not running on the CPU. Thus we
arrive at the crux of the problem.

THE CRUX: HOW TO REGAIN CONTROL OF THE CPU
How can the operating system regain control of the CPU so that it can

switch between processes?

A Cooperative Approach: Wait For System Calls

One approach that some systems have taken in the past (for example,
early versions of the Macintosh operating system [M11], or the old Xerox
Alto system [A79]) is known as the cooperative approach. In this style,

OPERATING

SYSTEMS

[VERSION 0.92] WWW.OSTEP.ORG

MECHANISM: LIMITED DIRECT EXECUTION 7

TIP: DEALING WITH APPLICATION MISBEHAVIOR

Operating systems often have to deal with misbehaving processes, those
that either through design (maliciousness) or accident (bugs) attempt to
do something that they shouldn’t. In modern systems, the way the OS
tries to handle such malfeasance is to simply terminate the offender. One
strike and you’re out! Perhaps brutal, but what else should the OS do
when you try to access memory illegally or execute an illegal instruction?

the OS trusts the processes of the system to behave reasonably. Processes
that run for too long are assumed to periodically give up the CPU so that
the OS can decide to run some other task.

Thus, you might ask, how does a friendly process give up the CPU in
this utopian world? Most processes, as it turns out, transfer control of
the CPU to the OS quite frequently by making system calls, for example,
to open a file and subsequently read it, or to send a message to another
machine, or to create a new process. Systems like this often include an
explicit yield system call, which does nothing except to transfer control
to the OS so it can run other processes.

Applications also transfer control to the OS when they do something
illegal. For example, if an application divides by zero, or tries to access
memory that it shouldn’t be able to access, it will generate a trap to the
OS. The OS will then have control of the CPU again (and likely terminate
the offending process).

Thus, in a cooperative scheduling system, the OS regains control of
the CPU by waiting for a system call or an illegal operation of some kind
to take place. You might also be thinking: isn’t this passive approach less
than ideal? What happens, for example, if a process (whether malicious,
or just full of bugs) ends up in an infinite loop, and never makes a system
call? What can the OS do then?

A Non-Cooperative Approach: The OS Takes Control

Without some additional help from the hardware, it turns out the OS can’t
do much at all when a process refuses to make system calls (or mistakes)
and thus return control to the OS. In fact, in the cooperative approach,
your only recourse when a process gets stuck in an infinite loop is to
resort to the age-old solution to all problems in computer systems: reboot
the machine. Thus, we again arrive at a subproblem of our general quest
to gain control of the CPU.

THE CRUX: HOW TO GAIN CONTROL WITHOUT COOPERATION

How can the OS gain control of the CPU even if processes are not being
cooperative? What can the OS do to ensure a rogue process does not take
over the machine?

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

8 MECHANISM: LIMITED DIRECT EXECUTION

TIP: USE THE TIMER INTERRUPT TO REGAIN CONTROL

The addition of a timer interrupt gives the OS the ability to run again
on a CPU even if processes act in a non-cooperative fashion. Thus, this
hardware feature is essential in helping the OS maintain control of the
machine.

The answer turns out to be simple and was discovered by a number
of people building computer systems many years ago: a timer interrupt
[M+63]. A timer device can be programmed to raise an interrupt every
so many milliseconds; when the interrupt is raised, the currently running
process is halted, and a pre-configured interrupt handler in the OS runs.
At this point, the OS has regained control of the CPU, and thus can do
what it pleases: stop the current process, and start a different one.

As we discussed before with system calls, the OS must inform the
hardware of which code to run when the timer interrupt occurs; thus,
at boot time, the OS does exactly that. Second, also during the boot
sequence, the OS must start the timer, which is of course a privileged
operation. Once the timer has begun, the OS can thus feel safe in that
control will eventually be returned to it, and thus the OS is free to run
user programs. The timer can also be turned off (also a privileged opera-
tion), something we will discuss later when we understand concurrency
in more detail.

Note that the hardware has some responsibility when an interrupt oc-
curs, in particular to save enough of the state of the program that was
running when the interrupt occurred such that a subsequent return-from-
trap instruction will be able to resume the running program correctly.
This set of actions is quite similar to the behavior of the hardware during
an explicit system-call trap into the kernel, with various registers thus
getting saved (e.g., onto a kernel stack) and thus easily restored by the
return-from-trap instruction.

Saving and Restoring Context

Now that the OS has regained control, whether cooperatively via a sys-
tem call, or more forcefully via a timer interrupt, a decision has to be
made: whether to continue running the currently-running process, or
switch to a different one. This decision is made by a part of the operating
system known as the scheduler; we will discuss scheduling policies in
great detail in the next few chapters.

If the decision is made to switch, the OS then executes a low-level
piece of code which we refer to as a context switch. A context switch is
conceptually simple: all the OS has to do is save a few register values
for the currently-executing process (onto its kernel stack, for example)
and restore a few for the soon-to-be-executing process (from its kernel
stack). By doing so, the OS thus ensures that when the return-from-trap

OPERATING

SYSTEMS

[VERSION 0.92] WWW.OSTEP.ORG

MECHANISM: LIMITED DIRECT EXECUTION 9

OS @ boot Hardware
(kernel mode)
initialize trap table

remember addresses of...
syscall handler
timer handler

start interrupt timer
start timer
interrupt CPU in X ms

OS @ run Hardware Program
(kernel mode) (user mode)

Process A
...

timer interrupt
save regs(A) to k-stack(A)
move to kernel mode
jump to trap handler

Handle the trap
Call switch() routine

save regs(A) to proc-struct(A)
restore regs(B) from proc-struct(B)
switch to k-stack(B)

return-from-trap (into B)
restore regs(B) from k-stack(B)
move to user mode
jump to B’s PC

Process B
...

Figure 6.3: Limited Direct Execution Protocol (Timer Interrupt)

instruction is finally executed, instead of returning to the process that was
running, the system resumes execution of another process.

To save the context of the currently-running process, the OS will exe-
cute some low-level assembly code to save the general purpose registers,
PC, as well as the kernel stack pointer of the currently-running process,
and then restore said registers, PC, and switch to the kernel stack for the
soon-to-be-executing process. By switching stacks, the kernel enters the
call to the switch code in the context of one process (the one that was in-
terrupted) and returns in the context of another (the soon-to-be-executing
one). When the OS then finally executes a return-from-trap instruction,
the soon-to-be-executing process becomes the currently-running process.
And thus the context switch is complete.

A timeline of the entire process is shown in Figure 6.3. In this example,
Process A is running and then is interrupted by the timer interrupt. The
hardware saves its registers (onto its kernel stack) and enters the kernel
(switching to kernel mode). In the timer interrupt handler, the OS decides
to switch from running Process A to Process B. At that point, it calls the
switch() routine, which carefully saves current register values (into the
process structure of A), restores the registers of Process B (from its process
structure entry), and then switches contexts, specifically by changing the

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

10 MECHANISM: LIMITED DIRECT EXECUTION

1 # void swtch(struct context **old, struct context *new);

2 #

3 # Save current register context in old

4 # and then load register context from new.

5 .globl swtch

6 swtch:

7 # Save old registers

8 movl 4(%esp), %eax # put old ptr into eax

9 popl 0(%eax) # save the old IP

10 movl %esp, 4(%eax) # and stack

11 movl %ebx, 8(%eax) # and other registers

12 movl %ecx, 12(%eax)

13 movl %edx, 16(%eax)

14 movl %esi, 20(%eax)

15 movl %edi, 24(%eax)

16 movl %ebp, 28(%eax)

17

18 # Load new registers

19 movl 4(%esp), %eax # put new ptr into eax

20 movl 28(%eax), %ebp # restore other registers

21 movl 24(%eax), %edi

22 movl 20(%eax), %esi

23 movl 16(%eax), %edx

24 movl 12(%eax), %ecx

25 movl 8(%eax), %ebx

26 movl 4(%eax), %esp # stack is switched here

27 pushl 0(%eax) # return addr put in place

28 ret # finally return into new ctxt

Figure 6.4: The xv6 Context Switch Code

stack pointer to use B’s kernel stack (and not A’s). Finally, the OS returns-
from-trap, which restores B’s registers and starts running it.

Note that there are two types of register saves/restores that happen
during this protocol. The first is when the timer interrupt occurs; in this
case, the user registers of the running process are implicitly saved by the
hardware, using the kernel stack of that process. The second is when the
OS decides to switch from A to B; in this case, the kernel registers are ex-
plicitly saved by the software (i.e., the OS), but this time into memory in
the process structure of the process. The latter action moves the system
from running as if it just trapped into the kernel from A to as if it just
trapped into the kernel from B.

To give you a better sense of how such a switch is enacted, Figure 6.4
shows the context switch code for xv6. See if you can make sense of it
(you’ll have to know a bit of x86, as well as some xv6, to do so). The
context structures old and new are found in the old and new process’s
process structures, respectively.

6.4 Worried About Concurrency?

Some of you, as attentive and thoughtful readers, may be now think-
ing: “Hmm... what happens when, during a system call, a timer interrupt

OPERATING

SYSTEMS

[VERSION 0.92] WWW.OSTEP.ORG

MECHANISM: LIMITED DIRECT EXECUTION 11

ASIDE: HOW LONG CONTEXT SWITCHES TAKE

A natural question you might have is: how long does something like a
context switch take? Or even a system call? For those of you that are cu-
rious, there is a tool called lmbench [MS96] that measures exactly those
things, as well as a few other performance measures that might be rele-
vant.

Results have improved quite a bit over time, roughly tracking processor
performance. For example, in 1996 running Linux 1.3.37 on a 200-MHz
P6 CPU, system calls took roughly 4 microseconds, and a context switch
roughly 6 microseconds [MS96]. Modern systems perform almost an or-
der of magnitude better, with sub-microsecond results on systems with
2- or 3-GHz processors.

It should be noted that not all operating-system actions track CPU per-
formance. As Ousterhout observed, many OS operations are memory
intensive, and memory bandwidth has not improved as dramatically as
processor speed over time [O90]. Thus, depending on your workload,
buying the latest and greatest processor may not speed up your OS as
much as you might hope.

occurs?” or “What happens when you’re handling one interrupt and an-
other one happens? Doesn’t that get hard to handle in the kernel?” Good
questions — we really have some hope for you yet!

The answer is yes, the OS does indeed need to be concerned as to what
happens if, during interrupt or trap handling, another interrupt occurs.
This, in fact, is the exact topic of the entire second piece of this book, on
concurrency; we’ll defer a detailed discussion until then.

To whet your appetite, we’ll just sketch some basics of how the OS
handles these tricky situations. One simple thing an OS might do is dis-
able interrupts during interrupt processing; doing so ensures that when
one interrupt is being handled, no other one will be delivered to the CPU.
Of course, the OS has to be careful in doing so; disabling interrupts for
too long could lead to lost interrupts, which is (in technical terms) bad.

Operating systems also have developed a number of sophisticated
locking schemes to protect concurrent access to internal data structures.
This enables multiple activities to be on-going within the kernel at the
same time, particularly useful on multiprocessors. As we’ll see in the
next piece of this book on concurrency, though, such locking can be com-
plicated and lead to a variety of interesting and hard-to-find bugs.

6.5 Summary

We have described some key low-level mechanisms to implement CPU
virtualization, a set of techniques which we collectively refer to as limited
direct execution. The basic idea is straightforward: just run the program
you want to run on the CPU, but first make sure to set up the hardware
so as to limit what the process can do without OS assistance.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

12 MECHANISM: LIMITED DIRECT EXECUTION

TIP: REBOOT IS USEFUL

Earlier on, we noted that the only solution to infinite loops (and similar
behaviors) under cooperative preemption is to reboot the machine. While
you may scoff at this hack, researchers have shown that reboot (or in gen-
eral, starting over some piece of software) can be a hugely useful tool in
building robust systems [C+04].

Specifically, reboot is useful because it moves software back to a known
and likely more tested state. Reboots also reclaim stale or leaked re-
sources (e.g., memory) which may otherwise be hard to handle. Finally,
reboots are easy to automate. For all of these reasons, it is not uncommon
in large-scale cluster Internet services for system management software
to periodically reboot sets of machines in order to reset them and thus
obtain the advantages listed above.

Thus, next time you reboot, you are not just enacting some ugly hack.
Rather, you are using a time-tested approach to improving the behavior
of a computer system. Well done!

This general approach is taken in real life as well. For example, those
of you who have children, or, at least, have heard of children, may be
familiar with the concept of baby proofing a room: locking cabinets con-
taining dangerous stuff and covering electrical sockets. When the room is
thus readied, you can let your baby roam freely, secure in the knowledge
that the most dangerous aspects of the room have been restricted.

In an analogous manner, the OS “baby proofs” the CPU, by first (dur-
ing boot time) setting up the trap handlers and starting an interrupt timer,
and then by only running processes in a restricted mode. By doing so, the
OS can feel quite assured that processes can run efficiently, only requir-
ing OS intervention to perform privileged operations or when they have
monopolized the CPU for too long and thus need to be switched out.

We thus have the basic mechanisms for virtualizing the CPU in place.
But a major question is left unanswered: which process should we run at
a given time? It is this question that the scheduler must answer, and thus
the next topic of our study.

OPERATING

SYSTEMS

[VERSION 0.92] WWW.OSTEP.ORG

MECHANISM: LIMITED DIRECT EXECUTION 13

References

[A79] “Alto User’s Handbook”
Xerox Palo Alto Research Center, September 1979
Available: http://history-computer.com/Library/AltoUsersHandbook.pdf
An amazing system, way ahead of its time. Became famous because Steve Jobs visited, took notes, and
built Lisa and eventually Mac.

[C+04] “Microreboot — A Technique for Cheap Recovery”
George Candea, Shinichi Kawamoto, Yuichi Fujiki, Greg Friedman, Armando Fox
OSDI ’04, San Francisco, CA, December 2004
An excellent paper pointing out how far one can go with reboot in building more robust systems.

[I11] “Intel 64 and IA-32 Architectures Software Developer’s Manual”
Volume 3A and 3B: System Programming Guide
Intel Corporation, January 2011

[K+61] “One-Level Storage System”
T. Kilburn, D.B.G. Edwards, M.J. Lanigan, F.H. Sumner
IRE Transactions on Electronic Computers, April 1962
The Atlas pioneered much of what you see in modern systems. However, this paper is not the best one
to read. If you were to only read one, you might try the historical perspective below [L78].

[L78] “The Manchester Mark I and Atlas: A Historical Perspective”
S. H. Lavington
Communications of the ACM, 21:1, January 1978
A history of the early development of computers and the pioneering efforts of Atlas.

[M+63] “A Time-Sharing Debugging System for a Small Computer”
J. McCarthy, S. Boilen, E. Fredkin, J. C. R. Licklider
AFIPS ’63 (Spring), May, 1963, New York, USA
An early paper about time-sharing that refers to using a timer interrupt; the quote that discusses it:
“The basic task of the channel 17 clock routine is to decide whether to remove the current user from core
and if so to decide which user program to swap in as he goes out.”

[MS96] “lmbench: Portable tools for performance analysis”
Larry McVoy and Carl Staelin
USENIX Annual Technical Conference, January 1996
A fun paper about how to measure a number of different things about your OS and its performance.
Download lmbench and give it a try.

[M11] “Mac OS 9”
January 2011
Available: http://en.wikipedia.org/wiki/Mac OS 9

[O90] “Why Aren’t Operating Systems Getting Faster as Fast as Hardware?”
J. Ousterhout
USENIX Summer Conference, June 1990
A classic paper on the nature of operating system performance.

[P10] “The Single UNIX Specification, Version 3”
The Open Group, May 2010
Available: http://www.unix.org/version3/
This is hard and painful to read, so probably avoid it if you can.

[S07] “The Geometry of Innocent Flesh on the Bone:
Return-into-libc without Function Calls (on the x86)”
Hovav Shacham
CCS ’07, October 2007
One of those awesome, mind-blowing ideas that you’ll see in research from time to time. The author
shows that if you can jump into code arbitrarily, you can essentially stitch together any code sequence
you like (given a large code base); read the paper for the details. The technique makes it even harder to
defend against malicious attacks, alas.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

14 MECHANISM: LIMITED DIRECT EXECUTION

Homework (Measurement)

ASIDE: MEASUREMENT HOMEWORKS

Measurement homeworks are small exercises where you write code to
run on a real machine, in order to measure some aspect of OS or hardware
performance. The idea behind such homeworks is to give you a little bit
of hands-on experience with a real operating system.

In this homework, you’ll measure the costs of a system call and context
switch. Measuring the cost of a system call is relatively easy. For example,
you could repeatedly call a simple system call (e.g., performing a 0-byte
read), and time how long it takes; dividing the time by the number of
iterations gives you an estimate of the cost of a system call.

One thing you’ll have to take into account is the precision and accu-
racy of your timer. A typical timer that you can use is gettimeofday();
read the man page for details. What you’ll see there is that gettimeofday()
returns the time in microseconds since 1970; however, this does not mean
that the timer is precise to the microsecond. Measure back-to-back calls
to gettimeofday() to learn something about how precise the timer re-
ally is; this will tell you how many iterations of your null system-call
test you’ll have to run in order to get a good measurement result. If
gettimeofday() is not precise enough for you, you might look into
using the rdtsc instruction available on x86 machines.

Measuring the cost of a context switch is a little trickier. The lmbench
benchmark does so by running two processes on a single CPU, and set-
ting up two UNIX pipes between them; a pipe is just one of many ways
processes in a UNIX system can communicate with one another. The first
process then issues a write to the first pipe, and waits for a read on the
second; upon seeing the first process waiting for something to read from
the second pipe, the OS puts the first process in the blocked state, and
switches to the other process, which reads from the first pipe and then
writes to the second. When the second process tries to read from the first
pipe again, it blocks, and thus the back-and-forth cycle of communication
continues. By measuring the cost of communicating like this repeatedly,
lmbench can make a good estimate of the cost of a context switch. You
can try to re-create something similar here, using pipes, or perhaps some
other communication mechanism such as UNIX sockets.

One difficulty in measuring context-switch cost arises in systems with
more than one CPU; what you need to do on such a system is ensure that
your context-switching processes are located on the same processor. For-
tunately, most operating systems have calls to bind a process to a partic-
ular processor; on Linux, for example, the sched setaffinity() call
is what you’re looking for. By ensuring both processes are on the same
processor, you are making sure to measure the cost of the OS stopping
one process and restoring another on the same CPU.

OPERATING

SYSTEMS

[VERSION 0.92] WWW.OSTEP.ORG

