TCSS 422 A — Spring 2025 4/29/2025
School of Engineering and Technology

TCSS 422: OPERATING SYSTEMS

Intro to Concurrency,
Linux Thread API, Locks,
Lock-based data structures %

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS422: Operating Systems [Spring 2025]

Apali2932025 School of Engineering and Technology, University of Washington jll Tacoma

TCSS 422 - OFFICE HRS - SPRING 2025

= Office Hours plan for Spring (by Zoom):

= Monday 11:30am - 12:30p GTA Xinghan

= Tuesday 11:30am - 12:30p GTA Xinghan

= Wednesday 11:00am - 12:00p Instructor Wes

= Friday 12:00pm - 1:00p Instructor Wes or GTA Xinghan
= THIS FRIDAY: Wes

® [nstructor is available after class at 6pm in CP 229
each day

TCSS422: Operating Systems [Spring 2025]

School of Engineering and Technology, University of Washington - Tacoma 182

April 29, 2025

Slides by Wes J. Lloyd L9.1

TCSS 422 A — Spring 2025
School of Engineering and Technology

OBJECTIVES - 4/29

| = Questions from 4/24 |
® C Tutorial - Pointers, Strings, Exec in C - Due Wed Apr 30 AOE
= Assighment O - Closes Tue Apr 29 AOE | Assignment 1
® Quiz 1 (Due Thur May 1 AOE) - Quiz 2 (Due Tue May 6 AOE)
® Chapter 26: Concurrency: An Introduction
= Race condition
= Critical section
® Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
= Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table

TCSS422: Operating Systems [Spring 2025] | 193

April 29)12025 School of Engineering and Technology, University of Washington - Tacoma

ONLINE DAILY FEEDBACK SURVEY

= Daily Feedback Quiz in Canvas - Available After Each Class
= Extra credit available for completing surveys ON TIME
® Tuesday surveys: due by ~ Wed @ 11:59p

® Thursday surveys: due ~ Mon @ 11:59p
— TC55422 A » Assignments

Spring 2021
Home

Announcements

* Upcoming Assignments

Zoom

Syllabus TCSS 422 - Online Daily Feedback Survey - 4/1
** Available until Apr 5 at 11:59pm | Due Apr 5 at 10pm | -/1 pts
Dicruccinng P Y S WO o S0 | [e

TCSS422: Computer Operating Systems [Spring 2025] 94
School of Engineering and Technology, University of Washington - Tacoma :

April 29, 2025

Slides by Wes J. Lloyd

4/29/2025

L9.2

TCSS 422 A — Spring 2025 4/29/2025
School of Engineering and Technology

TCSS 422 - Online Daily Feedback Survey - 4/1
Quiz Instructions

[C | Question1 0.5 pts

On a scale of 1 to 10, please classify your perspective on material covered in today’s
class:

el 2 3 4 5 6 7 9 10
Mostly Equal Mostly
Review To Me New and Review New to Me

O Question 2 0.5 pts

Please rate the pace of today’s class:

1 2 3 4 5 6 7 8 9 160

Slow Just Right Fast

TCSS422: Computer Operating Systems [Spring 2025]

Aprili29,2025 School of Engineering and Technology, University of Washington - Tacoma L9.5

MATERIAL / PACE

= Please classify your perspective on material covered in today’s
class (45 respondents):

= 1-mostly review, 5-equal new/review, 10-mostly new
= Average - 6.33 (! - previous 6.55)

= Please rate the pace of today’s class:
m 1-slow, 5-just right, 10-fast
= Average - 5.11 ({ - previous 5.19)

TCSS422: Computer Operating Systems [Spring 2025] | 196 |

Byl 2, 2P School of Engineering and Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd L9.3

TCSS 422 A — Spring 2025 4/29/2025
School of Engineering and Technology

FEEDBACK FROM 4/24

= Two questions were received on Question 2 from the Quiz.
The starter graph should have been drawn as:

|
|
CPU |AAABBB|AAAB

I
I
I
I |
—
0 6

® For this RR queue, when jobs arrive, they are added at the back of
the runqueue. This RR does not context switch when a new job
arrives, but continues to run each job for the 3-sec time slice.

= Graph solution: note the line after each RR-cycle

| | | |
| | |

AAABBB IAAABEB(C(IAAAEBBCC(DDD I ABBBCCDDD I
| | | |
6 15 27 36

CPU

[Y—

® All students received credit “CR” for attempting Q2 & Q3

TCSS422: Operating Systems [Spring 2025] | 9.8 |

April 29)12025 School of Engineering and Technology, University of Washington - Tacoma

OBJECTIVES - 4/29

= Questions from 4/24
| = C Tutorial - Pointers, Strings, Exec in C - Due Wed Apr 30 AOE |
® Assignment O - Closes Tue Apr 29 AOE | Assignment 1
® Quiz 1 (Due Thur May 1 AOE) - Quiz 2 (Due Tue May 6 AOE)
= Chapter 26: Concurrency: An Introduction
= Race condition
= Critical section
= Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast
® Chapter 28: Locks
= Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
® Chapter 29: Lock Based Data Structures
= Sloppy Counter

= Concurrent Structures: Linked List, Queue, Hash Table

TCSS422: Operating Systems [Spring 2025] 9.9
School of Engineering and Technology, University of Washington - Tacoma .

April 29, 2025

Slides by Wes J. Lloyd L9.4

TCSS 422 A — Spring 2025 4/29/2025
School of Engineering and Technology

OBJECTIVES - 4/29

B Questions from 4/24
® C Tutorial - Pointers, Strings, Exec in C - Due Wed Apr 30 AOE
= Assignment O - Closes Tue Apr 29 AOE | Assignment 1
® Quiz 1 (Due Thur May 1 AOE) - Quiz 2 (Due Tue May 6 AOE)
® Chapter 26: Concurrency: An Introduction
= Race condition
= Critical section
® Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
= Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures
= Sloppy Counter

= Concurrent Structures: Linked List, Queue, Hash Table

TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

April 29, 2025

L9.10 |

10

OBJECTIVES - 4/29

= Questions from 4/24
® C Tutorial - Pointers, Strings, Exec in C - Due Wed Apr 30 AOE
= Assignment O - Closes Tue Apr 29 AOE |[Assignment 1 |
® Quiz 1 (Due Thur May 1 AOE) - Quiz 2 (Due Tue May 6 AOE)
= Chapter 26: Concurrency: An Introduction
= Race condition
= Critical section
= Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast
® Chapter 28: Locks
= Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
® Chapter 29: Lock Based Data Structures
= Sloppy Counter

= Concurrent Structures: Linked List, Queue, Hash Table

TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

19.11

April 29, 2025

11

Slides by Wes J. Lloyd L9.5

TCSS 422 A — Spring 2025 4/29/2025
School of Engineering and Technology

OBJECTIVES - 4/29

B Questions from 4/24
= C Tutorial - Pointers, Strings, Exec in C - Due Wed Apr 30 AOE
u Assignment 0 - Closes Tue Apr 29 AOE | Assignment 1
| = Quiz 1 (Due Thur May 1 AOE) - Quiz 2 (Due Tue May 6 AOE) |
® Chapter 26: Concurrency: An Introduction
= Race condition
= Critical section
® Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
= |Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures
= Sloppy Counter

= Concurrent Structures: Linked List, Queue, Hash Table

TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

April 29, 2025 19.12

12

QuiZ 1

= Active reading on Chapter 9 - Proportional Share Schedulers

= Posted in Canvas
= Due Thursday May 1st AOE

= Link:
= https://faculty.washington.edu/wlloyd/courses/tcss422/quiz/
TCSS422 s2025_quiz_1.pdf

TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

19.13

April 29, 2025

13

Slides by Wes J. Lloyd L9.6

https://faculty.washington.edu/wlloyd/courses/tcss422/quiz/TCSS422_s2025_quiz_1.pdf
https://faculty.washington.edu/wlloyd/courses/tcss422/quiz/TCSS422_s2025_quiz_1.pdf

TCSS 422 A — Spring 2025 4/29/2025
School of Engineering and Technology

QuIZ 2

® Canvas Quiz - Practice CPU Scheduling Problems

= Posted in Canvas

® Unlimited attempts permitted

= Provides CPU scheduling practice problems
= FIFO, SJF, STCF, RR, MLFQ (Ch. 7 & 8)

= Multiple choice and fill-in the blank

= Quiz automatically scored by Canvas
= Please report any grading problems

= Due Tuesday May 6t" AOE

= Link:
= https://canvas.uw.edu/courses/1809484/assignments/10329061

TCSS422: Operating Systems [Spring 2025]

April 29)12025 School of Engineering and Technology, University of Washington - Tacoma

19.14

14

OBJECTIVES - 4/29

= Questions from 4/24
® C Tutorial - Pointers, Strings, Exec in C - Due Wed Apr 30 AOE
= Assignment O - Closes Tue Apr 29 AOE | Assignment 1
® Quiz 1 (Due Thur May 1 AOE) - Quiz 2 (Due Tue Mar 6 AOE)
= Chapter 26: Concurrency: An Introduction
= Race condition
= Critical section
= Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast
® Chapter 28: Locks
= Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
® Chapter 29: Lock Based Data Structures
= Sloppy Counter

= Concurrent Structures: Linked List, Queue, Hash Table

TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

April 29, 2025

L9.15

15

Slides by Wes J. Lloyd L9.7

https://canvas.uw.edu/courses/1809484/assignments/10329061

TCSS 422 A — Spring 2025 4/29/2025
School of Engineering and Technology

CATCH UP FROM LECTURE 8

= Switch to Lecture 8 Slides
m Slides L8.27 to L8.38 (through Critical Section)

TCSS422: Operating Systems [Spring 2025]

L6.11
School of Engineering and Technology, University of Washington - Tacoma 6.16

April 17, 2025

16

LOCKS

" To demonstrate how critical section(s) can be executed
“atomically-as a unit” Chapter 27 & beyond introduce LOCKS

lock_t mutex:

lock (smutex) :
balance = balance + 1; | Critical section
unlock (&mutex) ;

U W b

= (DEMO) Counter example revisited

TCSS422: Operating Systems [Spring 2025]

School of Engineering and Technology, University of Washington - Tacoma 17

April 29, 2025

17

Slides by Wes J. Lloyd L9.8

TCSS 422 A — Spring 2025

School of Engineering and Technology

COUNTER EXAMPLE

= With locks

= 2 threads count to 16 million
= ~1.4 seconds
= COUNT IS CORRECT - no data loss

® Without locks

= 2 threads count to 16 million
= ~0.03 seconds
= COUNT IS INCORRECT - DATA IS LOST

® Correct version is 46.6 x slower

= Cost is ~16 million Lock & Unlock API calls

TCSS422: Operating Systems [Spring 2025]

April 29)12025 School of Engineering and Technology, University of Washington - Tacoma

19.18

18

CHAPTER 27 -

LINUX
THREAD API

TCSS422: Operating Systems [Spring 2025]

eyl 22, 2 School of Engineering and Technology, University of Washington -

19

Slides by Wes J. Lloyd

4/29/2025

L9.9

TCSS 422 A — Spring 2025 4/29/2025
School of Engineering and Technology

OBJECTIVES - 4/29

B Questions from 4/24
= C Tutorial - Pointers, Strings, Exec in C - Due Wed Apr 30 AOE
= Assighment O - Closes Tue Apr 29 AOE | Assignment 1
® Quiz 1 (Due Thur May 1 AOE) - Quiz 2 (Due Tue May 6 AOE)
® Chapter 26: Concurrency: An Introduction
= Race condition
= Critical section
® Chapter 27: Linux Thread API
| = pthread_create/_join |
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
= Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures
= Sloppy Counter

= Concurrent Structures: Linked List, Queue, Hash Table

TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

April 29, 2025 19.20

20

THREAD CREATION

= pthread_create

#include <pthread.h>

int
pthread create(pthread t* thread,
const pthread attr t* attr,
void* (*start_routine) (void*),
void* arqg) ;

= thread: thread struct

= attr: stack size, scheduling priority... (optional)

® start_routine: function pointer to thread routine

= arg: argument to pass to thread routine (optional)

TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

19.21

April 29, 2025

21

Slides by Wes J. Lloyd L9.10

TCSS 422 A — Spring 2025

4/29/2025
School of Engineering and Technology

PTHREAD_CREATE - PASS ANY DATA

#include <pthread.h>
typedef struct _ myarg t {
» int a;
int b;
} myarg t;
vold *mythread(void *arg) {
myarg_t *m = (myarg_t *) arg;
» printf (“%d $d\n”, m->»a, m->b);
NULL;?
1
int main(int arge, char *argv([]) {
pthread t p;
int rec;
myarg t args:
» args.a = 10;
args.b = 20;
rc = pthread create(&p, NULL, mythread, &args):

}

TCSS422: Operating Systems [Spring 2025]

| April 29)12025 School of Engineering and Technology, University of Washington - Tacoma

19.22

22

PASSING A SINGLE VALUE

Using this approach on your Ubuntu VM,

How large (in bvtes) can the primitive data type be?

prin BCONIL , M) 7

How large (in bytes) can the primitive data type
be on a 32-bit operating system?

int rc, m;

pthread create (¢p, NULL, my‘thread,lOO) :

11 pthread join(p, (void **) &m);

printf (“returned %d\n”, m);
0;

April 29, 2025 TCSS422: Operating Systems [Spring 2025]

School of Engineering and Technology, University of Washington - Tacoma 1023

23

Slides by Wes J. Lloyd L9.11

TCSS 422 A — Spring 2025
School of Engineering and Technology

WAITING FOR THREADS TO FINISH

int pthread join(pthread t thread, void **value ptr):

® thread: which thread?

® value_ptr: pointer to return value
type is dynamic / agnostic

® Returned values *must* be on the heap

® Thread stacks destroyed upon thread termination (join)

® Pointers to thread stack memory addresses are invalid
= May appear as gibberish or lead to crash (seg fault)

= Not all threads join - What would be Examples ??

TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

April 29, 2025

19.24

24

}

struct myarg {

int main (int argc, char * argv[])

it What will this code do?

void *worker(void *arg)

struct myarg *input = (struct myarg *) arg;

printf("a=%d b=%d\n",input->a, input->b);

gﬁ;;ﬁz_gyir%; output; Data on thread stack

output.b = 2;

return (void *) &output; $./pthread_struct
a=10 b=20

pthread_t pl;

struct myarg args;
struct myarg *ret_args;
args.a = 10;

args.b = 20;

pthread_
gaeern How can this code be fixed?
return 0

TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

April 29, 2025

Segmentation fault (core dumped)

L9.25

25

Slides by Wes J. Lloyd

4/29/2025

L9.12

TCSS 422 A — Spring 2025
School of Engineering and Technology

struct myarg {
int a;

How about this code?

int b;
b
void *worker(void *arg)
{

struct myarg *input = (struct myarg *) arg;
printf("a=%d b=%d\n",input->a, input->b);
input->a = 1;

input->b = 2;

return (void *) &input;

3 $./pthread_struct
a=10 b=20

%

int main (int argc, char argv[])

returned 1 2

pthread_t pl;

struct myarg args;

struct myarg *ret_args;

args.a 10;

args.b = 20;

pthread_create(&pl, NULL, worker, &args);
pthread_join(pl, (void *)&ret_args);

printf("returned %d %d\n", ret_args->a, ret_args->b);
return 0;

TCSS422: Operating Systems [Spring 2025]

April 29, 2025 School of Engineering and Technology, University of Washington - Tacoma

L9.26

26

ADDING CASTS

m Casting

B Suppresses compiler warnings when passing “typed” data
where (void) or (void *) is called for

= Example: uncasted capture in pthread_join
pthread_int.c: In function ‘main’:

pthread_int.c:34:20: warning: passing argument 2 of ‘pthread_join’
from incompatible pointer type [-Wincompatible-pointer-types]

pthread_join(pl, &plval);

= Example: uncasted return
In file included from pthread_int.c:3:0:

/usr/include/pthread.h:250:12: note: expected ‘void **’ but argument

is of type ‘int **’
extern int pthread_join (pthread_t __th, void **__thread_return);

TCSS422: Operating Systems [Spring 2025]

Byl 2, 2P School of Engineering and Technology, University of Washington - Tacoma

19.27

27

Slides by Wes J. Lloyd

4/29/2025

L9.13

TCSS 422 A — Spring 2025
School of Engineering and Technology

ADDING CASTS - 2

= pthread_join
int * plval;
int * p2val;
pthread_join(pl, (void *)&plval);
pthread_join(p2, (void *)&p2val);

® return from thread function
int * counterval = malloc(sizeof(int));
*counterval = counter;
return (void *) counterval;

TCSS422: Operating Systems [Spring 2025]

April 29)12025 School of Engineering and Technology, University of Washington - Tacoma

19.28

28

OBJECTIVES - 4/29

= Questions from 4/24

= Assignment O - Closes Tue Apr 29 AOE | Assignment 1
[|
= Chapter 26: Concurrency: An Introduction
= Race condition
= Critical section
= Chapter 27: Linux Thread API
= pthread_create/_join
| = pthread_mutex_lock/_unlock/_trylock/_timelock |
= pthread_cond_wait/_signal/_broadcast
® Chapter 28: Locks
= Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
® Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table

® C Tutorial - Pointers, Strings, Exec in C - Due Wed Apr 30 AOE

Quiz 1 (Due Thur May 1 AOE) - Quiz 2 (Due Tue May 6 AOE)

TCSS422: Operating Systems [Spring 2025]

Byl 2, 2P School of Engineering and Technology, University of Washington - Tacoma

19.29

29

Slides by Wes J. Lloyd

4/29/2025

L9.14

TCSS 422 A — Spring 2025
School of Engineering and Technology

// Global Address
static volatile i

void *worker(void

{

int i;

assert(rc==0)
counter = cou

}

return NULL;

}

LOCKS

= pthread_mutex_t data type
® /usr/include/bits/pthread_types.h

Space
nt counter = 0;

*arg)

for (i=0;1<10000000;1i++) {

nter + 1;

April 29, 2025

TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

19.30

30

= API

LOCKS - 2

= Ensure critical sections are executed atomically-as a unit
= Provides implementation of “Mutual Exclusion”

int pthread mutex_ lock(pthread mutex t *mutex);
int pthread mutex_unlock (pthread mutex t *mutex);

= Example w/o initialization & error checking

x =x + 1;

pthread_mutex_t lock;
pthread mutex lock (&lock) ;

// or whatever your critical section is

pthread mutex unlock(&lock) ;

= Blocks forever
= Enters critical
= Releases lock

until lock can be obtained
section once lock is obtained

April 29, 2025

TCSS422: Operating Systems [Spring 2025]

School of Engineering and Technology, University of Washington - Tacoma

19.31

31

Slides by Wes J. Lloyd

4/29/2025

L9.15

TCSS 422 A — Spring 2025
School of Engineering and Technology

LOCK INITIALIZATION

m Assigning the constant

| pthread mutex t lock = PTHREAD MUTEX TINITIALIZER;

u API call:

int rc = pthread mutex_init (&lock, NULL);
assert(rc == 0); // alway

s check success!

= |nitializes mutex with attributes specified by 2"? argument

= |[f NULL, then default attributes are used

= Upon initialization, the mutex is initialized and unlocked

TCSS422: Operating Systems [Spring 2025]

April 29)12025 School of Engineering and Technology, University of Washington - Tacoma

19.32

32

LOCKS - 3

= Error checking wrapper

// Only use if exiting program is OK upon failure
void Pthread mutex_lock (pthread mutex t *mutex) {
int rc = pthread mutex lock(mutex);

assert (rc == 0);

// Use this to keep your code clean but check for failures

® What if lock can’t be obtained?

int pthread mutex_ trylock(pthread mutex_t *mutex);
int pthread mutex timelock (pthread mutex_t *mutex,
struct timespec *abs timeout):;

m trylock - returns immediately (fails) if lock is unavailable
= timelock - tries to obtain a lock for a specified duration

TCSS422: Operating Systems [Spring 2025]

Byl 2, 2P School of Engineering and Technology, University of Washington - Tacoma

19.33

33

Slides by Wes J. Lloyd

4/29/2025

L9.16

TCSS 422 A — Spring 2025 4/29/2025
School of Engineering and Technology

“u "

@ When poll is active, respond at pollev.com/wesleylloyd641
% Text WESLEYLLOYD641 to 22333 once to join

Which NON-BLOCKING API call can be used to
W obtain a lock without BLOCKING the calling

thread?

pthread_mutex_lock()

)
pthread_mutex_trylock()

(
pthread_mutex_unlock()
pthread_join(

(

None of the above

.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app ..

34

POLL EV

= Which NON-BLOCKING API call can be used to obtain a lock
without BLOCKING the calling thread ?

= (A) pthread_mutex_lock()

= (B) pthread_mutex_unlock()
= (C) pthread_join()

= (D) pthread_mutex_trylock()
= (E) None of the above

TCSS422: Operating Systems [Spring 2025]

School of Engineering and Technology, University of Washington - Tacoma 1935

April 29, 2025

35

Slides by Wes J. Lloyd L9.17

TCSS 422 A — Spring 2025 4/29/2025
School of Engineering and Technology

.. & When pollis active, respond at pollev.com/wesleylloyd641 f
% Text WESLEYLLOYD641 to 22333 once to join

Which API call BLOCKS temporarily for a

W specified amount of time while trying to obtain
a lock before giving up?

.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app ..

36

POLL EV

= Whichi API call BLOCKS temporarily for a specified amount of
time while trying to obtain a lock before giving up ?

= (A) pthread_join()

= (B) pthread_cond_wait()

® (C) pthread_mutex_timelock()
= (D) pthread_mutex_lock()

= (E) None of the above

TCSS422: Operating Systems [Spring 2025]

Byl 2, 2P School of Engineering and Technology, University of Washington - Tacoma

19.37

37

Slides by Wes J. Lloyd L9.18

TCSS 422 A — Spring 2025 4/29/2025
School of Engineering and Technology

OBJECTIVES - 4/29

B Questions from 4/24
= C Tutorial - Pointers, Strings, Exec in C - Due Wed Apr 30 AOE
= Assighment O - Closes Tue Apr 29 AOE | Assignment 1
Quiz 1 (Due Thur May 1 AOE) - Quiz 2 (Due Tue May 6 AOE)
Chapter 26: Concurrency: An Introduction
= Race condition
= Critical section
® Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
|__= pthread_cond_wait/_signal/_broadcast |
= Chapter 28: Locks
= Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures
= Sloppy Counter

= Concurrent Structures: Linked List, Queue, Hash Table

TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

April 29, 2025 19.38

38

CONDITIONS AND SIGNALS

= Condition variables support “signaling”
between threads

int pthread cond wait (pthread cond t *cond,
pthread mutex t *mutex);
int pthread cond signal (pthread cond t *cond):

= pthread_cond_t datatype

= pthread_cond_wait()
= Puts thread to “sleep” (waits) (THREAD is BLOCKED)
= Threads added to >FIFO queue<, lock is released
= Waits (listens) for a “signal” (NON-BUSY WAITING, no polling)

= When signal occurs, interrupt fires, wakes up first thread,
(THREAD is RUNNING), lock is provided to thread

TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

19.39

April 29, 2025

39

Slides by Wes J. Lloyd L9.19

TCSS 422 A — Spring 2025
School of Engineering and Technology

CONDITIONS AND SIGNALS -2

int pthread_cond_signal (pthread_cond_t * cond);
int pthread_cond_broadcast(pthread_cond_t * cond);

= pthread_cond_signal ()
= Called to send a “signal” to wake-up first thread in FIFO “wait” queue
= The goal is to unblock a thread to respond to the signal

= pthread_cond_broadcast()

= Unblocks all threads in FIFO “wait” queue, currently blocked on the
specified condition variable

= Broadcast is used when all threads should wake-up for the signal

® Which thread is unblocked first?
= Determined by OS scheduler (based on priority)
= Thread(s) awoken based on placement order in FIFO wait queue
= When awoken threads acquire lock as in pthread_mutex_lock ()

TCSS422: Operating Systems [Spring 2025]

April 29)12025 School of Engineering and Technology, University of Washington - Tacoma

L9.40

40

CONDITIONS AND SIGNALS -3

= Wait example:

pthread mutex_t lock = PTHREAD MUTEX INITIALIZER;
pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

while (initialized == 0)
pthread cond wait(&cond, &lock);

// Perform work that requires lock

a=a+ b;

pthread mutex_unlock (&lock) ;

| pthread _mutex_lock (&lock) ;

= wait puts thread to sleep, releases lock
= when awoken, lock reacquired (but then released bv this co

e)

® When initialized, another thread signals Ensti?éiﬁ?ﬁfﬂﬁéiﬁ(s)

pthread_mutex_lock (&lock) ; to proceed above.

initialized = 1;
pthread cond signal (&init);
pthread mutex unlock(slock):;

TCSS422: Operating Systems [Spring 2025]

Byl 2, 2P School of Engineering and Technology, University of Washington - Tacoma

19.41

41

Slides by Wes J. Lloyd

4/29/2025

L9.20

TCSS 422 A — Spring 2025

School of Engineering and Technology

CONDITION AND SIGNALS - 4

pthread mutex t lock = PTHREAD MUTEX INITIALIZER;

pthread cond t cond = PTHREAD_EOND_INITIALIZER;

pthread mutex lock(&lock) ;
rhile (initialized == 0)

pthread cond wait(&cond, &lock) ;
// Perform work that requires lock
a=a+b;
pthread mutex unlock (&lock) ;

have not been met.

= Why do we wait inside a while loop?

= The while ensures upon awakening the condition is rechecked

= A signal is raised, but the pre-conditions required to proceed may
**MUST CHECK STATE VARIABLE* *

= Without checking the state variable the thread may proceed to
execute when it should not. (e.g. too early)

q TCSS422: Operating Systems [Spring 2025]
April 29)12025 School of Engineering and Technology, University of Washington - Tacoma

19.42

42

WE WILL RETURN AT

5:00PM

April 29, 2025 TCSS422: Operating Systems [Spring 2025]

School of Engineering and Technology, University of Washington -

43

Slides by Wes J. Lloyd

4/29/2025

L9.21

TCSS 422 A — Spring 2025
School of Engineering and Technology

PTHREADS LIBRARY

= Compilation:
gcc requires special option to require programs with pthreads:
= gcc —pthread pthread.c -o pthread
= Explicitly links library with compiler flag
= RECOMMEND: using makefile to provide compiler arguments

® List of pthread manpages
" man -k pthread

TCSS422: Operating Systems [Spring 2025]

April 29)12025 School of Engineering and Technology, University of Washington - Tacoma

L9.44

44

SAMPLE MAKEFILE

CC=gcc
CFLAGS=-pthread -I. -wall

binaries=pthread pthread_int pthread_lock_cond pthread_struct
all: $(binaries)

pthread_mult: pthread.c pthread_int.c
$(cc) $(CFLAGS) $A -0 $@

clean:
$(RM) -f $(binaries) *.o

= Example builds multiple single file programs

= All target
= pthread_mult

= Example if multiple source files should produce a single executable
® clean target

TCSS422: Operating Systems [Spring 2025]

Byl 2, 2P School of Engineering and Technology, University of Washington - Tacoma

L9.45

45

Slides by Wes J. Lloyd

4/29/2025

L9.22

TCSS 422 A — Spring 2025
School of Engineering and Technology

"

w What key feature differentiates condition variables from mutex_locks in C .
?

"

Condition variables provide only NON-BLOCKING API calls.

Locks can not be used without condition variables.

will receive the lock which provides fairness.

the program.

None of the above

0%

0%

Condition variables introduce a FIFO queue enabling control of the order that threads

0%

Condition variables must first be initialized to a non-NULL value before being used in

0%

0%

.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

46

POLLEV

mutex_locks in C?

provides fairness

value before being used in the program
= (E) None of the above

= What key feature differentiates condition variables from

= (A) Condition variables provide only NON-BLOCKING API calls
= (B) Locks can not be used without condition variables

® (C) Condition variables introduce a FIFO queue enabling
control of the order that threads will receive the lock which

= (D) Condition variables must first be initialized to a non-NULL

April 29, 2025 TCSS422: Operating Systems [Spring 2025]

School of Engineering and Technology, University of Washington -

Tacoma

19.47

47

Slides by Wes J. Lloyd

4/29/2025

L9.23

TCSS 422 A — Spring 2025 4/29/2025
School of Engineering and Technology

CHAPTER 28 -
LOCKS m;m

TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington -

April 29, 2025

48

OBJECTIVES - 4/29

= Questions from 4/24
® C Tutorial - Pointers, Strings, Exec in C - Due Wed Apr 30 AOE
= Assighment O - Closes Tue Apr 29 AOE | Assighment 1
Quiz 1 (Due Thur May 1 AOE) - Quiz 2 (Due Tue May 6 AOE)
Chapter 26: Concurrency: An Introduction
= Race condition
= Critical section
= Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
|- Introduction| Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
® Chapter 29: Lock Based Data Structures
= Sloppy Counter

= Concurrent Structures: Linked List, Queue, Hash Table

TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L9.49

| April 29, 2025

49

Slides by Wes J. Lloyd L9.24

TCSS 422 A — Spring 2025 4/29/2025
School of Engineering and Technology

®m Ensure critical section(s) are executed atomically-as a unit
= Only one thread is allowed to execute a critical section at any given
time
= Ensures the code snippets are “mutually exclusive”

= Protect a global counter:

| balance = balance + 1;

m A “critical section”:

lock t mutex; // some globally-allocated lock ‘mutex’

lock (&mutex) ;
balance = balance + 1;
unlock (amutex) ;

[O S N

TCSS422: Operating Systems [Spring 2025]

Lo.
School of Engineering and Technology, University of Washington - Tacoma 9-50

April 29, 2025

50

LOCKS - 2

= | ock variables are called “MUTEX”
= Short for mutual exclusion (that’s what they guarantee)

® Lock variables store the state of the lock
® States
= Locked (acquired or held)

= Unlocked (available or free)

= Only 1 thread can hold a lock

TCSS422: Operating Systems [Spring 2025]

School of Engineering and Technology, University of Washington - Tacoma L9:51

April 29, 2025

51

Slides by Wes J. Lloyd L9.25

TCSS 422 A — Spring 2025 4/29/2025
School of Engineering and Technology

LOCKS - 3

"pthread mutex lock (&lock)
= Try to acquire lock
= |If lock is free, calling thread will acquire the lock

= Thread with lock enters critical section
Thread “owns” the lock

® No other thread can acquire the lock before the owner
releases it.

TCSS422: Operating Systems [Spring 2025]

April 29)12025 School of Engineering and Technology, University of Washington - Tacoma

L9.52 |

52

OBJECTIVES - 4/29

= Questions from 4/24
® C Tutorial - Pointers, Strings, Exec in C - Due Wed Apr 30 AOE
= Assignment O - Closes Tue Apr 29 AOE | Assignment 1
Quiz 1 (Due Thur May 1 AOE) - Quiz 2 (Due Tue May 6 AOE)
Chapter 26: Concurrency: An Introduction
= Race condition
= Critical section
= Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast
® Chapter 28: Locks
= Introduction,|Lock Granularity/|
= Spin Locks, Test and Set, Compare and Swap
® Chapter 29: Lock Based Data Structures
= Sloppy Counter

= Concurrent Structures: Linked List, Queue, Hash Table

TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

April 29, 2025 19.53 |

53

Slides by Wes J. Lloyd L9.26

TCSS 422 A — Spring 2025 4/29/2025
School of Engineering and Technology

LOCKS - 4

= Program can have many mutex (lock) variables to
“serialize” many critical sections

® L ocks are also used to protect data structures

= Prevent multiple threads from changing the same data
simultaneously
= Programmer can make sections of code “granular”

Fine grained - means just one grain of sand at a time through an
hour glass

= Similar to relational database transactions

DB transactions prevent multiple users from modifying a table,
row, field

TCSS422: Operating Systems [Spring 2025]

April 29)12025 School of Engineering and Technology, University of Washington - Tacoma

L9.54 |

54

FINE GRAINED?

m |s this code a good example of “fine grained parallelism”?

pthread_mutex_Tock(&lock);
a = b++;
b=a*c;
*d = a + b +c;
FILE * fp = fopen ("file.txt", “r");
fscanf(fp, "%s %s %s %d", strl, str2, str3, &e);
ListNode *node = mylist->head;
Int i=0
while (node) {
node->title = strl;
node->subheading = str2;
node->desc = str3;
node->end = *e;
node = node->next;
i++
} .
e=¢e-1;
pthread_mutex_unlock (&lock);

TCSS422: Operating Systems [Spring 2025]

Byl 2, 2P School of Engineering and Technology, University of Washington - Tacoma

L9.55

55

Slides by Wes J. Lloyd L9.27

TCSS 422 A — Spring 2025
School of Engineering and Technology

FINE GRAINED PARALLELISM

pthread_mutex_lock(&lock_a);
pthread_mutex_lock(&lock_b);

a = b++;
pthread_mutex_unlock(&lock_b);
pthread_mutex_unlock(&lock_a);

pthread_mutex_lock(&lock_b);
b=a*c;
pthread_mutex_unTock(&lock_b);

pthread_mutex_lock(&lock_d) ;
*d = a + b +c;
pthread_mutex_unlock(&lock_d);

FILE * fp = fopen ("file.txt", “r");
pthread_mutex_lock(&lock_e);

fscanf(fp, "%s %s %s %d", strl, str2, str3, &e);
pthread_mutex_unlock(&lock_e);

ListNode *node = mylist->head;
int i=0 . .

April 29, 2025 TCSS422: Operating Systems [Spring 2025]

School of Engineering and Technology, University of Washington - Tacoma

L9.56

56

FINE-GRAINED

Many Lock (kernel) calls

More overhead from
excessive locking

More parallelism
Higher code complexity

LOCK GRANULARITY TRADE-OFF SPACE

COARSE-GRAINED

Few Lock (kernel) calls

Low overhead from
minimal locking

Less parallelism
Low code complexity

School of Engineering and Technology, University of Washington - Tacoma

& debugging & simpler debugging
Every program
implementation

lies someplace along
the trade-off space...
April 29, 2025 TCSS422: Operating Systems [Spring 2025] L4.57

57

Slides by Wes J. Lloyd

4/29/2025

L9.28

TCSS 422 A — Spring 2025
School of Engineering and Technology

EVALUATING LOCK IMPLEMENTATIONS

What makes a
= Correctness good lock?

= Does the lock work?

= Are critical sections mutually exclusive?
(atomic-as a unit?)

= Fairness

= Do all threads that compete for a lock have a fair chance
of acquiring it?

® Qverhead

TCSS422: Operating Systems [Spring 2025]

April 29)12025 School of Engineering and Technology, University of Washington - Tacoma

L9.58

58

BUILDING LOCKS

® Locks require hardware support
= To minimize overhead, ensure fairness and correctness

= Special “atomic-as a unit” instructions to support lock
implementation

= Atomic-as a unit exchange instruction
XCHG

= Compare and exchange instruction
CMPXCHG
CMPXCHGS8B
CMPXCHG16B

TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

April 29, 2025 19.59

59

Slides by Wes J. Lloyd

4/29/2025

L9.29

TCSS 422 A — Spring 2025 4/29/2025
School of Engineering and Technology

HISTORICAL IMPLEMENTATION

® To implement mutual exclusion
= Disable interrupts upon entering critical sections

void lock () {
DisableInterrupts () ;

}

void unlock() {
EnableInterrupts() ;

o U W N

}

= Any thread could disable system-wide interrupt
= What if lock is never released?

® On a multiprocessor processor each CPU has its own interrupts
= Do we disable interrupts for all cores simultaneously?

= While interrupts are disabled, they could be lost
= |If not queued...

TCSS422: Operating Systems [Spring 2025]

April 29)12025 School of Engineering and Technology, University of Washington - Tacoma

L9.60

60

OBJECTIVES - 4/29

Questions from 4/24
C Tutorial - Pointers, Strings, Exec in C - Due Wed Apr 30 AOE
Assignment O - Closes Tue Apr 29 AOE | Assignment 1
Quiz 1 (Due Thur May 1 AOE) - Quiz 2 (Due Tue May 6 AOE)
Chapter 26: Concurrency: An Introduction
= Race condition
= Critical section
= Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast
® Chapter 28: Locks
= Introduction, Lock Granularity
|- Spin Locks :Test and Set, Compare and Swap
® Chapter 29: Lock Based Data Structures
= Sloppy Counter

= Concurrent Structures: Linked List, Queue, Hash Table

TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L9.61

| April 29, 2025

61

Slides by Wes J. Lloyd L9.30

TCSS 422 A — Spring 2025
School of Engineering and Technology

SPIN LOCK IMPLEMENTATION

® Operate without atomic-as a unit assembly instructions
= “Do-it-yourself” Locks

= |s this lock implementation: (1)Correct? (2)Fair? (3)Performant?

‘\‘“\“ﬁg"% 1 typedef struct _ lock t { int flag; } lock t:
o 0 iy 2
:_s‘g 3 vold init(lock_t *mutex) {
ZE:O 4 // 0 = lock is available, 1 = held
%,:’12;9 - “:\“‘5 2 mutex->flag = 0;
el }
7
8 vold lock(lock_t *mutex) {
9 == 1) // TEST the flag
10 it (do nothing)
11 !
12}
13
14 wvoild unlock(lock t *mutex) {
15 mutex->flag = 0;
16}
April 29, 2025 TCSS422: Operating Systems [Spring 2025]

L9.62

School of Engineering and Technology, University of Washington - Tacoma

62

DIY: CORRECT?

® Correctness requires luck... (e.g. DIY lock is incorrect)

Threadl Thread2

call lock()

while (flag == 1)

interrupt: switch to Thread 2
call 1ock ()
while (flag == 1)
flag = 1;

interrupt: switch to Thread 1
flag = 1; // set flag to 1 (tool)

= Here both threads have “acquired” the lock simultaneously

" TCSS422: Operating Systems [Spring 2025]
Byl 2, 2P School of Engineering and Technology, University of Washington - Tacoma

L9.63 |

63

Slides by Wes J. Lloyd

4/29/2025

L9.31

TCSS 422 A — Spring 2025 4/29/2025
School of Engineering and Technology

DIY: PERFORMANT?

void Tock(lock_t *mutex)

// while Tock is unavailable, wait..
mutex->flag = 1;

}

= What is wrong with while(<cond>); ?

® Spin-waiting wastes time actively waiting for another thread
= while (1); will “peg” a CPU core at 100%

= Continuously loops, and evaluates mutex->flag value...

= Generates heat...

TCSS422: Operating Systems [Spring 2025]

April 29)12025 School of Engineering and Technology, University of Washington - Tacoma

L9.64 |

64

OBJECTIVES - 4/29

= Questions from 4/24
® C Tutorial - Pointers, Strings, Exec in C - Due Wed Apr 30 AOE
= Assignment O - Closes Tue Apr 29 AOE | Assignment 1
Quiz 1 (Due Thur May 1 AOE) - Quiz 2 (Due Tue May 6 AOE)
Chapter 26: Concurrency: An Introduction
= Race condition
= Critical section
= Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast
® Chapter 28: Locks
= Introduction, Lock Granularity
= Spin LocksJ Test and Set]Compare and Swap
® Chapter 29: Lock Based Data Structures
= Sloppy Counter

= Concurrent Structures: Linked List, Queue, Hash Table

TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

April 29, 2025 19.65 |

65

Slides by Wes J. Lloyd L9.32

TCSS 422 A — Spring 2025
School of Engineering and Technology

TEST-AND-SET INSTRUCTION

= Hardware support required for working locks

= Book presents pseudo code of C implementation
= TEST-and-SET adds a simple check to the basic spin lock
= Assumption is this “C code” runs atomically on CPU:

1 int TestAndSet (int *ptr, int new) {

2 int old = *ptr; // 1d val
3 *ptr = new; //
4

5

old;

}

= Jock() method checks that TestAndSet doesn’t return 1
= Comparison is in the caller

= Can implement the C version (non-atomic) and have some
success on a single-core VM

TCSS422: Operating Systems [Spring 2025]

April 29)12025 School of Engineering and Technology, University of Washington - Tacoma

L9.66 |

66

DIY: TEST-AND-SET - 2

m C version: requires preemptive scheduler on single core system
= Lock is never released without a context switch
® single-core VM: occasionally will deadlock, doesn’t miscount

1 typedef struct _ lock t {

2 int flag;

3 } lock t;

4

5 void init(leck t *lock) {

[0 lock is available,
7

g

9 }

10

11 wvoid lock(lock_t *lock) {

12 (Testandset (slock->flag, 1) == 1)
13 ; // spin-wait

14}

15

16 wvoid unlock(lock_t *lock) {

17 lock->flag = 0;

18}

TCSS422: Operating Systems [Spring 2025]

School of Engineering and Technology, University of Washington - Tacoma L9.67

April 29, 2025

67

Slides by Wes J. Lloyd

4/29/2025

L9.33

TCSS 422 A — Spring 2025 4/29/2025
School of Engineering and Technology

SPIN LOCK EVALUATION

= Correctness:

= Spin locks with atomic Test-and-Set:
Critical sections won’t be executed simultaneously by (2) threads

= Fairness:

= No fairness guarantee. Once a thread has a lock, nothing forces it to
relinquish it...

= Performance:
= Spin locks perform “busy waiting”
= Spin locks are best for short periods of waiting (< 1 time quantum)
= Performance is slow when multiple threads share a CPU
Especially if “spinning” for long periods

TCSS422: Operating Systems [Spring 2025]

April 29)12025 School of Engineering and Technology, University of Washington - Tacoma

L9.68 |

68

OBJECTIVES - 4/29

= Questions from 4/24
® C Tutorial - Pointers, Strings, Exec in C - Due Wed Apr 30 AOE
= Assignment O - Closes Tue Apr 29 AOE | Assignment 1
Quiz 1 (Due Thur May 1 AOE) - Quiz 2 (Due Tue May 6 AOE)
Chapter 26: Concurrency: An Introduction
= Race condition
= Critical section
= Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast
® Chapter 28: Locks
= Introduction, Lock Granularity
= Spin Locks, Test and Set,Compare and Swap|
® Chapter 29: Lock Based Data Structures
= Sloppy Counter

= Concurrent Structures: Linked List, Queue, Hash Table

TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L9.69

April 29, 2025

69

Slides by Wes J. Lloyd L9.34

TCSS 422 A — Spring 2025 4/29/2025

School of Engineering and Technology

COMPARE AND SWAP

® Checks that the lock variable has the expected value FIRST,
before changing its value
= If so, make assignment
= Return value at location

m Adds a comparison to TestAndSet
= Textbook presents C pseudo code
= Assumption is that the compare-and-swap method runs atomically

= Useful for wait-free synchronization
= Supports implementation of shared data structures which can be
updated atomically (as a unit) using the HW support
CompareAndSwap instruction
= Shared data structure updates become “wait-free”

= Upcoming in Chapter 32

TCSS422: Operating Systems [Spring 2025]

April 29, 2025 School of Engineering and Technology, University of Washington - Tacoma 1970 |

70

COMPARE AND SWAP

= Compare and Swap

1 int CompareAndSwap (int *ptr, int expected, int new) {
2 int actual = *ptr;

3 (actual == expected)

4 *ptr = new;

5 actual;

C implementation 1-core VM:
Count is correct, no deadlock

® Spin loc

3 : // spin

'

= X86 provides “cmpxchgl” compare-and-exchange instruction
= cmpxchg8b
* cmpxchgléb

TCSS422: Operating Systems [Spring 2025]

(il 2, 20 School of Engineering and Technology, University of Washington - Tacoma .71 |

71

Slides by Wes J. Lloyd L9.35

TCSS 422 A — Spring 2025 4/29/2025
School of Engineering and Technology

When implementing locks in a high-level language
(e.g. C), what is missing that prevents
implementation of CORRECT locks?

Shared state variable
Condition variables
ATOMIC instructions

Fairness

None of the above

.. Start the presentation to see live content. For sereen share software, share the entire screen. Get help at pollev.com/app -

72

TWO MORE “LOCK BUILDING”

CPU INSTRUCTIONS

® Cooperative instructions used together to support
synchronization on RISC systems

= No support on x86 processors
= Supported by RISC: Alpha, PowerPC, ARM

® | oad-linked (LL)
= Loads value into register
= Same as typical load
= Used as a mechanism to track competition

m Store-conditional (SC)
= Performs “mutually exclusive” store
= Allows only one thread to store value

TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

19.73

April 29, 2025

73

Slides by Wes J. Lloyd L9.36

TCSS 422 A — Spring 2025
School of Engineering and Technology

LL/SC LOCK

int LoadLinked (int *ptr) {
*ptr;
}

(no one has updated *ptr since the LoadLinked to this address) {
*ptr = value;

1; // success!

1
2
3
4
5 int StoreConditional (int *ptr, int value) {
3
7
8

S } {

10 0; // failed to update
11 }

12}

® L instruction loads pointer value (ptr)
® SC only stores if the load link pointer has not changed
® Requires HW support

= C code is psuedo code

TCSS422: Operating Systems [Spring 2025]

April 29)12025 School of Engineering and Technology, University of Washington - Tacoma

L9.74

74

LL/SC LOCK - 2

1 void lock(lock_t *lock) {

2 (1) {

3 (LoadLinked (slock->flag) == 1)
4 ; // spin until it’s zero
5 (StoreConditional (slock->flag, 1) ==
3 ; // if set-it-to-1 w
7

8 }

s}

10

11 void unlock(lock t *lock) {

12 lock->flag = 0;

13}

® Two instruction lock

TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

April 29, 2025

L9.75

75

Slides by Wes J. Lloyd

4/29/2025

L9.37

TCSS 422 A — Spring 2025 4/29/2025
School of Engineering and Technology

CHAPTER 29 -
LOCK BASED
DATA STRUCTURES

TCSS422: Operating Systems [Spring 2025]

il e Ak School of Engineering and Technology, University of Washington -

OBJECTIVES - 4/29

= Questions from 4/24
® C Tutorial - Pointers, Strings, Exec in C - Due Wed Apr 30 AOE
= Assighment O - Closes Tue Apr 29 AOE | Assighment 1
Quiz 1 (Due Thur May 1 AOE) - Quiz 2 (Due Tue May 6 AOE)
Chapter 26: Concurrency: An Introduction
= Race condition
= Critical section
= Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast
® Chapter 28: Locks
= Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
= Sloppy Counter

= Concurrent Structures: Linked List, Queue, Hash Table

TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L9.77

| April 29, 2025

77

Slides by Wes J. Lloyd L9.38

TCSS 422 A — Spring 2025
School of Engineering and Technology

LOCK-BASED

CONCURRENT DATA STRUCTURES

= Adding locks to data structures make them
thread safe.

= Considerations:
=Correctness
=Performance
=Lock granularity

TCSS422: Operating Systems [Spring 2025]

April 29)12025 School of Engineering and Technology, University of Washington - Tacoma

19.78

78

COUNTER STRUCTURE W/0O LOCK

®m Synchronization weary --- not thread safe

1 typedef struct _ counter t {
2 int value;

3 } counter_t:

4

5 void init (counter t *c) {

[c->value = 0;

7 }

8

9 void increment (counter t *c) {
10 c->vValue++;

11 }

12

13 vold decrement (counter t *c) |
14 c->value--;

15 }

16

17 int get(counter_t *c) {

18 return c->value;

19 }

TCSS422: Operating Systems [Spring 2025]

Byl 2, 2P School of Engineering and Technology, University of Washington - Tacoma

19.79

79

Slides by Wes J. Lloyd

4/29/2025

L9.39

TCSS 422 A — Spring 2025
School of Engineering and Technology

CONCURRENT COUNTER

1 typedef struct _ counter t {

2 int value;

3 pthread lock t lock;

4 } counter_t:

5

[3 void init (counter t *c) {

7 c->»value = 0;

8 Pthread mutex init(&c->lock, NULL);
9 }

10

11 void increment (counter t *c) {

12 Pthread mutex lock(&c->lock);
13 c->valuet++;

14 Pthread mutex unlock(&c->lock);
15 1

16

= Add lock to the counter
= Require lock to change data

April 29, 2025 TCSS422: Operating Systems [Spring 2025]

School of Engineering and Technology, University of Washington - Tacoma

19.80

80

= Decrease counter
®m Get value

CONCURRENT COUNTER - 2

(Cont.)

17 void decrement (counter_t *c) {

18 Pthread mutex lock(ac->lock);
19 c->value--;

20 Pthread mutex unlock(&c->lock);
21 }

22

23 int get(counter t *c) {

24 Pthread mutex lock(ac->lock);
25 int rc = c-»value;

26 Pthread mutex unlock(&c->lock);
27 return rc;

28 1

April 29, 2025 TCSS422: Operating Systems [Spring 2025]

School of Engineering and Technology, University of Washington - Tacoma

19.81

81

Slides by Wes J. Lloyd

4/29/2025

L9.40

TCSS 422 A — Spring 2025

4/29/2025
School of Engineering and Technology

CONCURRENT COUNTERS - PERFORMANCE

= iMac: four core Intel 2.7 GHz i5 CPU
® Each thread increments counter 1,000,000 times

154
X Precise
© Sloppy

5
.

Time (seconds)
w
L

0 # o ¢ . Traditional vs. sloppy counter

1 2 3 4 Sloppy Threshold (S) = 1024
Threads

scales poorly

TCSS422: Operating Systems [Spring 2025]

| April 29)12025 School of Engineering and Technology, University of Washington - Tacoma

19.82

82

PERFECT SCALING

= Achieve (N) performance gain with (N) additional resources

= Throughput:
= Transactions per second (tps)

= 1 core
mN =100 tps
= 10 cores (x10)
= N =1000 tps (x10)
April 29, 2025 TCSS422: Operating Systems [Spring 2025]

School of Engineering and Technology, University of Washington - Tacoma 1983

83

Slides by Wes J. Lloyd L9.41

TCSS 422 A — Spring 2025 4/29/2025
School of Engineering and Technology

OBJECTIVES - 4/29

B Questions from 4/24
= C Tutorial - Pointers, Strings, Exec in C - Due Wed Apr 30 AOE
= Assighment O - Closes Tue Apr 29 AOE | Assignment 1
Quiz 1 (Due Thur May 1 AOE) - Quiz 2 (Due Tue May 6 AOE)
Chapter 26: Concurrency: An Introduction
= Race condition
= Critical section
® Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
= Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap

® Chapter 29: Lock Based Data Structures
| = Sloppy Counter |
= Concurrent Structures: Linked List, Queue, Hash Table

TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

| April 29, 2025

L9.84 |

84

SLOPPY COUNTER

= Provides single logical shared counter

= Implemented using local counters for each ~CPU core
4 CPU cores = 4 local counters & 1 global counter
Local counters are synchronized via local locks

= Global counter is updated periodically

Global counter has lock to protect global counter value

Sloppiness threshold (S):
Update threshold of global counter with local values

Small (S): more updates, more overhead
Large (S): fewer updates, more performant, less synchronized
® Why this implementation?
Why do we want counters local to each CPU Core?

TCSS422: Operating Systems [Spring 2025]

Byl 2, 2P School of Engineering and Technology, University of Washington - Tacoma

19.85

85

Slides by Wes J. Lloyd L9.42

TCSS 422 A — Spring 2025 4/29/2025
School of Engineering and Technology

SLOPPY COUNTER - MAIN POINTS

® |dea of Sloppy Counter is to RELAX the synchronization
requirement for counting
= Instead of synchronizing global count variable each time:
counter=counter+1

= Synchronization occurs only every so often:
e.g. every 1000 counts

® Relaxing the synchronization requirement drastically
reduces locking APl overhead by trading-off split-second
accuracy of the counter

® Sloppy counter: trade-off accuracy for speed
= |t’s sloppy because it’s nhot so accurate (until the end)

TCSS422: Operating Systems [Spring 2025]

Lo.
School of Engineering and Technology, University of Washington - Tacoma 986

April 29, 2025

86

SLOPPY COUNTER - 2

= Update threshold (S) = 5
®m Synchronized across four CPU cores
® Threads update local CPU counters

Time Ly | Ls Ls G
0 0 0 0 0 0
1 0 0 1 1 0
2 1 0 2 1 0
3 2 0 3 1 0
4 3 0 3 2 0
5 4 1 3 3 0
6 5=2>0 1 3 4 5 (from L;)
7 0 2 4 5=>0 10 (from L,)

(il 2, 20 ;E:Zﬁlzgf gr?gei':etienrignsgy::\ednﬂ"l'seg':\rzi)rl‘sgi?ai]iversity of Washington - Tacoma 1987

87

Slides by Wes J. Lloyd L9.43

TCSS 422 A — Spring 2025 4/29/2025
School of Engineering and Technology

THRESHOLD VALUE S

® Consider 4 threads increment a counter 1000000 times each
= Low S > What is the consequence?
= High S - What is the consequence?

151

0 T T T T T ¥ Y X Y X
1 2 4 8 16 32 64 128 256 5121024

Sloppiness

TCSS422: Operating Systems [Spring 2025]

Lo.
School of Engineering and Technology, University of Washington - Tacoma 988

April 29, 2025

88

SLOPPY COUNTER - EXAMPLE

= Example implementation

m Also with CPU affinity

TCSS422: Operating Systems [Spring 2025]

School of Engineering and Technology, University of Washington - Tacoma 1989

April 29, 2025

89

Slides by Wes J. Lloyd L9.44

TCSS 422 A — Spring 2025
School of Engineering and Technology

OBJECTIVES - 4/29

Questions from 4/24

= C Tutorial - Pointers, Strings, Exec in C - Due Wed Apr 30 AOE

Assignment O - Closes Tue Apr 29 AOE | Assighment 1

Quiz 1 (Due Thur May 1 AOE) - Quiz 2 (Due Tue May 6 AOE)

Chapter 26: Concurrency: An Introduction

= Race condition

= Critical section

Chapter 27: Linux Thread API

= pthread_create/_join

= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast
Chapter 28: Locks

= Introduction, Lock Granularity

= Spin Locks, Test and Set, Compare and Swap
Chapter 29: Lock Based Data Structures

= Sloppy Counter

= Concurrent Structures: Linked List,/Queue, Hash Table

TCSS422: Operating Systems [Spring 2025]

April 29)12025 School of Engineering and Technology, University of Washington - Tacoma

L9.90

90

CONCURRENT LINKED LIST - 1

School of Engineering and Technology, University of Washington - Tacoma

= Simplification - only basic list operations shown
= Structs and initialization:

1 node structure

2 struct _ node t {

3 int keys

4 struct _ node t *next;

5 } node_t;

3

7 ist structure (one used per list)

8 _ list t [

9 node_t *head;

10 pthread mutex_t lock;

11 } list ts

12

13 vold List_Init(list_t *L) {

14 L->head = NULL;

15 pthread mutex init (&L->lock, NULL);

16 }

17

(Cont.)

April 29, 2025 TCSS422: Operating Systems [Spring 2025] L9.91

91

Slides by Wes J. Lloyd

4/29/2025

L9.45

TCSS 422 A — Spring 2025

School of Engineering and Technology

CONCURRENT LINKED LIST - 2

® |[nsert - adds item to list
m Everything is critical!
= There are two unlocks

(Cont.)

int List Imsert(list t *L, int key) {
pthread mutex lock(&L->lock);
node_t *new = malloc(sizeof(nodeit)):
if (new == NULL) {
perror ("malloc™);
pthread mutex unlock(&L->lock);
return -1; // fail }
new->key = key;
new->next = L->head;
L->head = new;
pthread mutex unlock(&L->lock);

return 0; // success

April 29, 2025

TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

19.92

92

CONCURRENT LINKED LIST - 3

= Lookup - checks list for existence of item with key
® Once again everything is critical
= Note - there are also two unlocks

(Cont.)

int List Lookup(list t *L, int key) {
pthread mutex lock(sL->lock);
node_t *curr = L->head;
while {(curr) {

if (curr->key == key) {
pthread mutex unlock(&L->lock);
return 0; // success

}

curr = curr->next;
}
pthread mutex unlock(&L->1ock);
return -1; // failure

April 29, 2025

TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

19.93

93

Slides by Wes J. Lloyd

4/29/2025

L9.46

TCSS 422 A — Spring 2025 4/29/2025
School of Engineering and Technology

CONCURRENT LINKED LIST

® First Implementation:
= Lock everything inside Insert() and Lookup()

= |f malloc() fails lock must be released

Research has shown “exception-based control flow” to be error
prone

40% of Linux OS bugs occur in rarely taken code paths

Unlocking in an exception handler is considered a poor coding
practice

There is nothing specifically wrong with this example however

® Second Implementation ...

TCSS422: Operating Systems [Spring 2025]

19.94
School of Engineering and Technology, University of Washington - Tacoma 99

April 29, 2025

94

CCL - SECOND IMPLEMENTATION

® |nit and Insert

1 void List_Init(list_t *L) {

2 L->head = NULL?

3 pthread mutex init (&L->lock, NULL);
4 }

5

[3 vold List_Insert(list_t *L, int key) {
7 // synchronization not needed
8 node_t *new = malloc(sizeof (node_t)):
9 if (new == NULL) {

10 perror ("malloc");

11 return;

12 }

13 new->key = key;

14

15 // just lock critical section
16 pthread mutex lock(&L->lock):
17 new->next = L->head;

18 L->head = new;

19 pthread mutex unlock (&L->1ock);
20 1

21

TCSS422: Operating Systems [Spring 2025]

School of Engineering and Technology, University of Washington - Tacoma 19.95

April 29, 2025

95

Slides by Wes J. Lloyd L9.47

TCSS 422 A — Spring 2025
School of Engineering and Technology

CCL - SECOND IMPLEMENTATION - 2

= L ookup
(cont.)
22 int List Lookup(list t *L, int key) {
23 int rv = -1;
24 pthread mutex lock(&L—>lock);
25 node t *curr = L->head;
26 while (curr) {
27 if (curr-skey == key) {
28 rv = 07
29 break;
30 }
31 curr = curr->next;
32 }
33 pthread mutex unlock(&L->lock);
34 return rv; // now both success and failure
35 }

TCSS422: Operating Systems [Spring 2025]

April 29)12025 School of Engineering and Technology, University of Washington - Tacoma

L9.96

96

CONCURRENT LINKED LIST PERFORMANCE

m Using a single lock for entire list is not very performant

= Users must “wait” in line for a single lock to access/modify
any item

® Hand-over-hand-locking (lock coupling)
= Introduce a lock for each node of a list

= Traversal involves handing over previous node’s lock,
acquiring the next node’s lock...

= Improves lock granularity
= Degrades traversal performance

= Consider hybrid approach
= Fewer locks, but more than 1
= Best lock-to-node distribution?

TCSS422: Operating Systems [Spring 2025]

Byl 2, 2P School of Engineering and Technology, University of Washington - Tacoma

97

Slides by Wes J. Lloyd

4/29/2025

L9.48

TCSS 422 A — Spring 2025 4/29/2025
School of Engineering and Technology

OBJECTIVES - 4/29

B Questions from 4/24
= C Tutorial - Pointers, Strings, Exec in C - Due Wed Apr 30 AOE
= Assighment O - Closes Tue Apr 29 AOE | Assignment 1
Quiz 1 (Due Thur May 1 AOE) - Quiz 2 (Due Tue May 6 AOE)
Chapter 26: Concurrency: An Introduction
= Race condition
= Critical section
® Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
= |Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures
= Sloppy Counter

= Concurrent Structures: Linked List,Queue| Hash Table

TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

April 29, 2025

19.98 |

98

MICHAEL AND SCOTT CONCURRENT QUEUES

= Improvement beyond a single master lock for a queue (FIFO)
= Two locks:

= One for the head of the queue

= One for the tail
®m Synchronize enqueue and dequeue operations

= Add a dummy node
= Allocated in the queue initialization routine
= Supports separation of head and tail operations

= |[tems can be added and removed by separate threads at the
same time

TCSS422: Operating Systems [Spring 2025]

Byl 2, 2P School of Engineering and Technology, University of Washington - Tacoma

19.99

99

Slides by Wes J. Lloyd L9.49

TCSS 422 A — Spring 2025
School of Engineering and Technology

CONCURRENT QUEUE

= Remove from queue

£ struct _ node t {
int value;
struct _ node t *next:
} node_t;

struct _ queue_t {

node t *head;

node_t *tail;

pthread mutex t headLock;
pthread mutex_t tailLock;
} queue t;

void Queue Init (queue t *q) {
node t *tmp = malloc(sizeof (node t));:
tmp->next = NULL;
g->head = g->tail = tmp:
pthread_mutex_inlt(&q7>headLock, NULL) ;
pthread mutex init(&g->taillock, NULL);

April 29, 2025

TCSS422: Operating Systems [Spring 2025]

School of Engineering and Technology, University of Washington - Tacoma

19.100

100

CONCURRENT QUEUE - 2

= Add to queue

d Queue Enqueue(queue t *g, int value) {
node t *tmp = malloc(sizeof (node t));
assert (tmp != NULL);

tmp->value = value;
tmp->next = NULL;

pthread mutex lock(ag->taillock);
g->tail->next = tmp;

g->tail = tmp;

pthread mutex unlock(&ag->tailLock);

April 29, 2025

TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

19.101

101

Slides by Wes J. Lloyd

4/29/2025

L9.50

TCSS 422 A — Spring 2025 4/29/2025
School of Engineering and Technology

OBJECTIVES - 4/29

B Questions from 4/24
= C Tutorial - Pointers, Strings, Exec in C - Due Wed Apr 30 AOE
= Assighment O - Closes Tue Apr 29 AOE | Assignment 1
Quiz 1 (Due Thur May 1 AOE) - Quiz 2 (Due Tue May 6 AOE)
Chapter 26: Concurrency: An Introduction
= Race condition
= Critical section
® Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
= |Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue,lHash Tablel

TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

April 29, 2025

19.102

102

CONCURRENT HASH TABLE

mConsider a simple hash table
=Fixed (static) size
=Hash maps to a bucket
Bucket is implemented using a concurrent linked list

One lock per hash (bucket)
Hash bucket is a linked lists

TCSS422: Operating Systems [Spring 2025]

School of Engineering and Technology, University of Washington - Tacoma 19103

April 29, 2025

103

Slides by Wes J. Lloyd L9.51

TCSS 422 A — Spring 2025
School of Engineering and Technology

INSERT PERFORMANCE -

CONCURRENT HASH TABLE

® Four threads - 10,000 to 50,000 inserts
= iMac with four-core Intel 2.7 GHz CPU

15 1
O Simple Concurrent List
X Concurrent Hash Table
o
© 10+
Q
o
@
&
]
E 51
=
U T T

I ol
0 10 20 30 40
Inserts (Thousands)

scales
magnificently

TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

April 29, 2025

104

CONCURRENT HASH TABLE

1 #define BUCKETS (101)

2

3 struct _ hash t {

4 list_t 1ists[BUCKETS];

5 } hash_t;

3

7 void Hash Init(hash t *H) {

8 int is

9 for (i = 0; 1 < BUCKETS; i++) {
10 List Init (&H->1ists[i])s
11 }

12 }

13

14 int Hash Insert(hash t *H, int key) {

15 int bucket = key % BUCKETS;

16 return List_Insert(&H->lists[bucket], key):
17 }

18

19 int Hash Lookup(hash t *H, int key) {

20 int bucket = key % BUCKETS;

21 return List_Lookup (sH->lists([bucket], key):
22 }

TCSS422: Operating Systems [Spring 2025]

Byl 2, 2P School of Engineering and Technology, University of Washington - Tacoma

19.105

105

Slides by Wes J. Lloyd

4/29/2025

L9.52

TCSS 422 A — Spring 2025
School of Engineering and Technology

"u

Which is a major advantage of using concurrent data structures in your
programs?

Locks are encapsulated within data structure code ensuring thread safety.
Lock granularity tradeoff already optimized inside data structure

Multiple threads can more easily share data

All of the above

None of the above

April 29, 2025, _ TCSS422: Operating Systems [Spring 2025]
.. P! ’ the presentationdg pRsAive f I BTG BB TREITHBIS Gy 2B TS raity BropraSHifrytct PoUTAESHPP

0%

0%

0%

0%

0%

Lgé1 -

106

POLL EV

® Which is a major advantage of using concurrent data
structures in your programs?

= (A) Locks are encapsulated within data structure code
ensuring thread safety

structure
® (C) Multiple threads can more easily share data
= (D) All of the above
= (E) None of the above

= (B) Lock granularity tradeoff already optimized inside data

TCSS422: Operating Systems [Spring 2025]

Byl 2, 2P School of Engineering and Technology, University of Washington - Tacoma

19.107

107

Slides by Wes J. Lloyd

4/29/2025

L9.53

TCSS 422 A — Spring 2025 4/29/2025
School of Engineering and Technology

LOCK-FREE DATA STRUCTURES

= Lock-free data structures in Java

= Java.util.concurrent.atomic package
= Classes:

= AtomicBoolean

= Atomiclnteger

= AtomiclntegerArray

= AtomicintegerFieldUpdater

= AtomicLong

= AtomicLongArray

= AtomicLongFieldUpdater

= AtomicReference

L] See https: //docs oracle com/en/lavazmvase[ii[docs[aplz

TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

April 29, 2025

108

QUESTIONS

109

Slides by Wes J. Lloyd L9.54

	Slide 1: TCSS 422: Operating Systems
	Slide 2: Tcss 422 – office hrs – Spring 2025
	Slide 3: OBJECTIVES – 4/29
	Slide 4: Online daily feedback survey
	Slide 5
	Slide 6: Material / pace
	Slide 8: Feedback from 4/24
	Slide 9: OBJECTIVES – 4/29
	Slide 10: OBJECTIVES – 4/29
	Slide 11: OBJECTIVES – 4/29
	Slide 12: OBJECTIVES – 4/29
	Slide 13: Quiz 1
	Slide 14: Quiz 2
	Slide 15: OBJECTIVES – 4/29
	Slide 16: Catch up from lecture 8
	Slide 17: locks
	Slide 18: Counter example
	Slide 19: Chapter 27 - Linux Thread API
	Slide 20: OBJECTIVES – 4/29
	Slide 21: Thread creation
	Slide 22: Pthread_create – pass any data
	Slide 23: Passing a single value
	Slide 24: Waiting for threads to finish
	Slide 25
	Slide 26
	Slide 27: ADDING CASTS
	Slide 28: Adding casts - 2
	Slide 29: OBJECTIVES – 4/29
	Slide 30: locks
	Slide 31: Locks - 2
	Slide 32: Lock initialization
	Slide 33: Locks - 3
	Slide 34
	Slide 35: POLL EV
	Slide 36
	Slide 37: Poll ev
	Slide 38: OBJECTIVES – 4/29
	Slide 39: Conditions and signals
	Slide 40: Conditions and signals - 2
	Slide 41: conditions and signals - 3
	Slide 42: Condition and SIGNALS - 4
	Slide 43: We will return at 5:00pm
	Slide 44: Pthreads library
	Slide 45: Sample Makefile
	Slide 46
	Slide 47: pollev
	Slide 48: Chapter 28 – LOCKS
	Slide 49: OBJECTIVES – 4/29
	Slide 50: Locks
	Slide 51: Locks - 2
	Slide 52: Locks - 3
	Slide 53: OBJECTIVES – 4/29
	Slide 54: Locks - 4
	Slide 55: Fine grained?
	Slide 56: Fine grained parallelism
	Slide 57: Lock granularity trade-off space
	Slide 58: Evaluating lock implementations
	Slide 59: Building locks
	Slide 60: Historical implementation
	Slide 61: OBJECTIVES – 4/29
	Slide 62: Spin lock implementation
	Slide 63: DIY: Correct?
	Slide 64: DIY: PERFORMANT?
	Slide 65: OBJECTIVES – 4/29
	Slide 66: Test-and-set instruction
	Slide 67: DIY: Test-and-set - 2
	Slide 68: Spin Lock evaluation
	Slide 69: OBJECTIVES – 4/29
	Slide 70: Compare and Swap
	Slide 71: Compare and swap
	Slide 72
	Slide 73: Two more “lock Building” CPU instructions
	Slide 74: LL/SC Lock
	Slide 75: LL/SC lock - 2
	Slide 76: Chapter 29 – LOCK Based data structures
	Slide 77: OBJECTIVES – 4/29
	Slide 78: Lock-based concurrent data structures
	Slide 79: Counter structure w/o lock
	Slide 80: concurrent counter
	Slide 81: Concurrent counter - 2
	Slide 82: Concurrent counters - Performance
	Slide 83: Perfect scaling
	Slide 84: OBJECTIVES – 4/29
	Slide 85: Sloppy counter
	Slide 86: Sloppy counter – main points
	Slide 87: Sloppy counter - 2
	Slide 88: Threshold value S
	Slide 89: Sloppy counter - example
	Slide 90: OBJECTIVES – 4/29
	Slide 91: Concurrent linked list - 1
	Slide 92: Concurrent linked list - 2
	Slide 93: Concurrent linked list - 3
	Slide 94: Concurrent linked list
	Slide 95: Ccl – second implementation
	Slide 96: Ccl – second implementation - 2
	Slide 97: Concurrent Linked list performance
	Slide 98: OBJECTIVES – 4/29
	Slide 99: Michael and scott concurrent queues
	Slide 100: Concurrent queue
	Slide 101: Concurrent queue - 2
	Slide 102: OBJECTIVES – 4/29
	Slide 103: Concurrent hash table
	Slide 104: Insert performance – concurrent hash table
	Slide 105: Concurrent hash table
	Slide 106
	Slide 107: Poll ev
	Slide 108: Lock-free data structures
	Slide 109: Questions

