TCSS 422 A — Spring 2025
School of Engineering and Technology

Intro to Concurrency,
Linux Thread API, Locks,
Lock-based data structures

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS422: Operating Systems [Spring 2025

Al s School of Engine Technology, University of Washingtor

TCSS 422: OPERATING SYSTEMS

4/29/2025

TCSS 422 - OFFICE HRS - SPRING 2025

= Office Hours plan for Spring (by Zoom):

= Monday 11:30am - 12:30p GTA XIinghan

= Tuesday 11:30am - 12:30p GTA Xinghan

= Wednesday 11:00am - 12:00p Instructor Wes

= Friday 12:00pm - 1:00p Instructor Wes or GTA Xinghan
= THIS FRIDAY: Wes

= Instructor is available after class at 6pm in CP 229
each day

‘TCSS422: Operating Systems [Spring 2025)

School of Engineering and Technology, University of Washington - Tacoma o2

‘ April 29, 2025

OBJECTIVES - 4/29

| = Questions from 4/24

= Assignment O - Closes Tue Apr 29 AOE | Assignment 1
® Quiz 1 (Due Thur May 1 AOE) - Quiz 2 (Due Tue May 6 AOE)
= Chapter 26: Concurrency: An Introduction

= Race condition

= Critical section
= Chapter 27: Linux Thread API

= pthread_create/_join

= pthread_mutex_lock/_unlock/_trylock/_timelock

= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks

= Introduction, Lock Granularity

= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures

= Sloppy Counter

= Concurrent Structures: Linked List, Queue, Hash Table

|
= C Tutorial - Pointers, Strings, Exec in C - Due Wed Apr 30 AOE

‘TCSS422: Operating Systems [Spring 2025]
‘ [Anl29,2025) School of Engineering and Technology, University of Washington - Tacoma.

ONLINE DAILY FEEDBACK SURVEY

= Daily Feedback Quiz in Canvas - Available After Each Class
= Extra credit available for completing surveys ON TIME
= Tuesday surveys: due by ~ Wed @ 11:59p
= Thursday surveys: due ~ Mon @ 11:59p
= TCS5422A > Assignments

Spring 2021
Home

Announcements

Joom * Upcoming Assignments
Syllabus s TCSS422 - Online Daily Feedback Survey - 4/1

. - Available until Apr 5 at 11:5%pm | DueApr 5 at 10pm | -/1pts
Dicceesinns Ao e .

‘TCS5422: Computer Operating Systems [Spring 2025)

‘ April 29,2025 School of Engineering and Technology, University of Washington - Tacoma

TCSS 422 - Online Daily Feedback Survey - 4/1

Quiz Instructions

Question 1 asps
On a sealeof 1ta 10, p perspective g in today's
class:
1z 3 a4 s s 7T 8 3 w
aciy ot sty
nevsea 1a e e and nevie e o
Question 2 osps

Piease rate the pace of today's class:

1 2 3 a4 5 & 7T 8 8 18

TCSS422: Computer Operating Systems [Spring 2025]

LillzEh e School of Engineering and Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

MATERIAL / PACE

= Please classify your perspective on material covered in today’s
class (45 respondents):

= 1-mostly review, 5-equal new/review, 10-mostly new

= Average - 6.33 - previous 6.55)

= Please rate the pace of today’s class:
= 1-slow, 5-just right, 10-fast
= Average - 5.11 ({ - previous 5.19)

TCS5422: Computer Operating Systems [Spring 20251

‘ i School of Engineering and Technology, University of Washington - Tacoma

L9.1

TCSS 422 A — Spring 2025
School of Engineering and Technology

4/29/2025

FEEDBACK FROM 4/24

= Tw lons were recelv n lon 2 from th Iz.
= The starter graph should have been drawn as:

CPU | AMABEE | AME

|
|
|
|
|
o 3

= For this RR queue, when jobs arrive, they are added at the back of
the runqueue. This RR does not context switch when a new job
arrives, but continues to run each job for the 3-sec time slice.

= Graph solution: note the line after each RR-cycle

| | | |
| | | |
CFU | AMBHS | AMASBICCC | AAABBECCCODD | ABRBCEOZD |

| | |
o 3 18 77 36

= All students received credit “CR” for attempting Q2 & Q3
TCSS422: Operating Systems [Spring 2025]
‘ Lnllek) ks School of Engineering and Technology, University of Washington - Tacoma L8

OBJECTIVES - 4/29

® Questions from 4/24
|=_C Tutorlal - Polnters, Strings, Exec In C - Due Wed Apr 30 AOE |
= Assignment O - Closes Tue Apr 29 AOE | Assignment 1
®= Quiz 1 (Due Thur May 1 AOE) - Quiz 2 (Due Tue May 6 AOE)
= Chapter 26: Concurrency: An Introduction
= Race condition
= Critical section
= Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
= Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table

‘TCSS422: Operating Systems [Spring 2025) 199
School of Engineering and Technology, University of Washington - Tacoma

‘ April 29,2025

OBJECTIVES - 4/29

= Questions from 4/24
= C Tutorial - Pointers, Strings, Exec in C - Due Wed Apr 30 AOE
Assignment 1
® Quiz 1 (Due Thur May 1 AOE) - Quiz 2 (Due Tue May 6 AOE)
= Chapter 26: Concurrency: An Introduction
= Race condition
= Critical section
= Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
= Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table

‘TCSS422: Operating Systems [Spring 2025] 19.10
School of Engineering and Technology, University of Washington - Tacoma

‘ April 29,2025

OBJECTIVES - 4/29

= Questions from 4/24
= C Tutorial - Pointers, Strings, Exec in C - Due Wed Apr 30 AOE
= Assignment O - Closes Tue Apr 29 AOE [[Assignment 1 |
Quiz 1 (Due Thur May 1 AOE) - Quiz 2 (Due Tue May 6 AOE)
Chapter 26: Concurrency: An Introduction
= Race condition
= Critical section
= Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
= Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table

‘TCS5422: Operating Systems [Spring 2025] 911
School of Engineering and Technology, University of Washington - Tacoma

‘ April 29,2025

10

11

OBJECTIVES - 4/29

= Questions from 4/24
= C Tutorial - Pointers, Strings, Exec in C - Due Wed Apr 30 AOE
= Assignment O - Closes Tue Apr 29 AOE | Assignment 1
= Chapter 26: Concurrency: An Introduction
= Race condition
= Critical section
= Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
= Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table

TCS5422: Operating Systems [Spring 2025] 12
School of Engineering and Technology, University of Washington - Tacoma

‘ April 29, 2025

(0] V] A §

= Active reading on Chapter 9 - Proportional Share Schedulers

= Posted in Canvas
= Due Thursday May 1st AOE

= Link:
= https://faculty.washington.edu/wlloyd/courses/tcss422/quiz,
TCSS422_s2025_qulz_1.pdf

. 7CS5422: Operating Systems [Spring 2025]
‘ REDEELET School of Engineering and Technology, University of Washington - Tacoma 1013

12

Slides by Wes J. Lloyd

13

L9.2

https://faculty.washington.edu/wlloyd/courses/tcss422/quiz/TCSS422_s2025_quiz_1.pdf
https://faculty.washington.edu/wlloyd/courses/tcss422/quiz/TCSS422_s2025_quiz_1.pdf

TCSS 422 A — Spring 2025
School of Engineering and Technology

Quiz 2

= Canvas Quiz - Practice CPU Scheduling Problems

= Posted in Canvas

= Unlimited attempts permitted

= Provides CPU scheduling practice problems
= FIFO, SJF, STCF, RR, MLFQ (Ch. 7 & 8)

= Multiple choice and fill-in the blank

= Quiz automatically scored by Canvas
= Please report any grading problems

= Due Tuesday May 6" AOE

= Link:
L] R 484/ /10329061
TCSS422: Operating Systems [Spring 2025]
‘ Lnllek) ks School of Engineering and Technology, University of Washington - Tacoma Lo-14

OBJECTIVES - 4/29

= Questions from 4/24
= C Tutorial - Pointers, Strings, Exec in C - Due Wed Apr 30 AOE
= Assignment O - Closes Tue Apr 29 AOE | Assignment 1

= Critical section
= Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
* Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table

‘TCSS422: Operating Systems [Spring 2025)

‘ (Bpal29/2025 School of Engineering and Technology, University of Washington - Tacoma

15

CATCH UP FROM LECTURE 8

= Switch to Lecture 8 Slides
= Slides L8.27 to L8.38 (through Critical Section)

‘TCSS422: Operating Systems [Spring 2025]

‘ April 17, 2025 School of Engineering and Technology, University of Washington - Tacoma

16,16

LOCKS

= To demonstrate how critical section(s) can be executed
“atomically-as a unit” Chapter 27 & beyond introduce LOCKS

lock_t mutexs

balance = balance + 1;

unlock (smutex) ;

Critical section

= (DEMO) Counter example revisited

‘TCS5422: Operating Systems [Spring 2025]

‘ April 29, 2025 School of Engineering and Technology, University of Washington - Tacoma

16

17

COUNTER EXAMPLE

= With locks
= 2 threads count to 16 million
= ~1.4 seconds
= COUNT IS CORRECT - no data loss

= Without locks
= 2 threads count to 16 million
= ~0.03 seconds
= COUNT IS INCORRECT - DATA IS LOST

= Correct version is 46.6 x slower
= Cost is ~16 million Lock & Unlock API calls

TCS5422: Operating Systems [Spring 2025]

‘ e School of Engineering and Technology, University of Washington - Tacoma

1918

CHAPTER 27 -

LINUX
THREAD API

TCSS422: Operating Systems [Spring 2025]

i)]
Aerlzep2020 School of Engineering and Technology, University of Washington -

18

Slides by Wes J. Lloyd

19

4/29/2025

L9.3

https://canvas.uw.edu/courses/1809484/assignments/10329061

TCSS 422 A — Spring 2025
School of Engineering and Technology

4/29/2025

OBJECTIVES - 4/29

= Questions from 4/24
= C Tutorial - Pointers, Strings, Exec in C - Due Wed Apr 30 AOE
= Assignment O - Closes Tue Apr 29 AOE | Assignment 1
®= Quiz 1 (Due Thur May 1 AOE) - Quiz 2 (Due Tue May 6 AOE)
= Chapter 26: Concurrency: An Introduction
= Race condition
= Critical section
= Chapter 27: Linux Thread API
|__* pthread_create/_loin |
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
= Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table

TCSS422: Operating Systems [Spring 2025]
‘ Lnllek) ks School of Engineering and Technology, University of Washington - Tacoma L9-20

THREAD CREATION

= pthread_create

#include <pthread.h>

pthread create(pth

read _t* thread,

pthread _attr t* attr,
i+ (*start_routine) (void*),
i+ arg);

= thread: thread struct

= attr: stack size, scheduling priority... (optional)

= start_routine: function pointer to thread routine

= arg: argument to pass to thread routine (optional)

‘TCSS422: Operating Systems [Spring 2025) 1921

‘ (Bpal29/2025 School of Engineering and Technology, University of Washington - Tacoma

20

21

PTHREAD_CREATE - PASS ANY DATA

tinclude <pthread.h»

t _myarg t {
ai

} myarg t:
*mythread(void *arg) {
*m - (myarg_t *) arg:
", m>a, m->b);

*argv(]) {

myarg_t arga:
‘ args.a = 10
args.b -

re = pthread c

eate (&p, , mythread, &args);

]

‘TCSS422: Operating Systems [Spring 2025] 1922
School of Engineering and Technology, University of Washington - Tacoma

‘ April 29,2025

PASSING A SINGLE VALUE

Using this approach on your Ubuntu VM,
How large (in bvtes) can the primitive data type be?

How large (in bytes) can the primitive data type
be on a 32-bit operating system?

IS, m;

pthread create (ép, NULL, my\.h:euc.l..');
pthread_join(p, (void **) &m};
12 Printf(returned Fd\n", m);

i

‘TCS5422: Operating Systems [Spring 2025] 1923

‘ April 29,2025 School of Engineering and Technology, University of Washington - Tacoma

22

WAITING FOR THREADS TO FINISH

t pthread_join(pthread t thread, “syalue ptr):

= thread: which thread?

= value_ptr: pointer to return value
type is dynamic / agnostic

= Returned values *must* be on the heap

= Thread stacks destroyed upon thread termination (join)

= Pointers to thread stack memory addresses are invalid
= May appear as gibberish or lead to crash (seg fault)

= Not all threads join - What would be Examples ??

TCS5422: Operating Systems [Spring 2025]
‘ e School of Engineering and Technology, University of Washington -Tacoma 102

24

Slides by Wes J. Lloyd

23

struct myarg {
v hat will this code do?
}

void *worker(void *arg)

struct myarg *input = (struct myarg *) arg;

printf("a=%d b=%d\n",input->a, input->b);

zﬁ;:ﬁz ,’;yirg;"”“’“t' « Data on thread stack

output.b = 2;

return (void *) &output; $./pthread_struct
} a=10 b=20

Segmentation fault (core dumped)

int main (int argc, char * argv[])

pthread_t pl;
struct myarg args;
struct myarg *ret_args;

args.a = 10;
args.b = 20;
pthread_

sy How can this code be fixed?

return 0

TCSS422: Operating Systems [Spring 2025
School of Engineering and Technology, University of Washington - Tacoma L9225

April 29, 2025

25

L9.4

TCSS 422 A — Spring 2025
School of Engineering and Technology

struct myarg {

it How about this code?

b
void *worker(void *arg)
struct myarg *input = (struct myarg *) arg;
printf("a=%d b=%d\n",input->a, input->b);
input->a = 1;
input->b = 2;
return (void *) &input;

a=10 b=20

int main (int argc, char * argv[])
{

returned 1 2

pthread_t pl;

struct myarg args;
struct myarg *ret_args;
args.a = 1
args.b ;

pthread_create(&pl, NULL, worker, &args);
pthread_join(pl, (void *)&ret_args);
printf("returned %d %d\n", ret_args->a, ret_args->b);
return 0;

TCSS422: Operating Systems [Spring 2025

deri2e 202s School of Engineering and Technology, University of Washington - Tacoma

$./pthread_struct

19.26

26

ADDING CASTS - 2

= pthread_join
int * plval;
int * p2val;
pthread_join(pl, (void *)&plval);
pthread_join(p2, (void *)&p2val);

= return from thread function
int * counterval = malloc(sizeof(int));
*counterval = counter;
return (void *) counterval;

‘TCSS422: Operating Systems [Spring 2025]

‘ [Anl29,2025) School of Engineering and Technology, University of Washington - Tacoma.

19.28

28

LOCKS

= pthread_mutex_t data type

= /usr/include/bits/pthread_types.h
// Global Address Space

static volatile int counter = 0;

\{/oid *worker(void *arg)

int i;
for (i=0;1<10000000;i++) {

assert(rc==0);
counter = counter + 1;

¥
return NULL;

TCS5422: Operating Systems [Spring 2025]

‘ e School of Engineering and Technology, University of Washington - Tacoma

19.30

30

Slides by Wes J. Lloyd

4/29/2025

ADDING CASTS

= Casting

= Suppresses compiler warnings when passing “typed” data
where (void) or (void *) is called for

= Example: uncasted capture in pthread_join

pthread_int.c: In function ‘main’:

pthread_int.c:34:20: warning: passing argument 2 of ‘pthread_join’

from incompatible pointer type [-wincompatible-pointer-types]
pthread_join(pl, &plval);

= Example: uncasted return
In file included from pthread_int.c:3:0:

Jusr/include/pthread.h:250:12: note: expected ‘void **’ but argument
is of type 'int **
extern int pthread_join (pthread_t __th, void **__thread_return);

‘TCSS422: Operating Systems [Spring 2025)

‘ Speil2572025) School of Engineering and Technology, University of Washington - Tacoma

27

OBJECTIVES - 4/29

= Questions from 4/24
= C Tutorial - Pointers, Strings, Exec in C - Due Wed Apr 30 AOE
= Assignment O - Closes Tue Apr 29 AOE | Assignment 1
® Quiz 1 (Due Thur May 1 AOE) - Quiz 2 (Due Tue May 6 AOE)
= Chapter 26: Concurrency: An Introduction
= Race condition
= Critical section
= Chapter 27: Linux Thread API
thread_create/_joi
thread_mutex_lock/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
= Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table

‘TCS5422: Operating Systems [Spring 2025]

‘ April 25,2025 School of Engineering and Technology, University of Washington - Tacoma

29

= Ensure critical sections are executed atomically-as a unit
= Provides implementation of “Mutual Excluslon”

= API

pthread mutex_lock(pthread mutex_t *mutex);
nt pthread mutex_unlock (pthread mutex_t *mutex);

= Example w/o initialization & error checking

read mutex t lock:
d_mutex_lock (slock) ;

= Blocks forever until lock can be obtained
= Enters critical section once lock is obtained
= Releases lock

. 7CS5422: Operating Systems [Spring 2025]
‘ REDEELET School of Engineering and Technology, University of Washington - Tacoma 1031

31

L9.5

TCSS 422 A — Spring 2025 4/29/2025
School of Engineering and Technology

LOCK INITIALIZATION

= Assigning the constant = Error checking wrapper

| pthread_mutex_t lock = FTHREAD MUTEX_INITIALIZER; ‘

i Pthread mutex lock (pthread mutex_t *mutex) {

= API call: t rc = p ad_mutex_lock (mutex) ;
int rc = pthread mutex_init(slock, NULL); assertire == 0):
assert (r)i d
o . . o . i ' ined?
= |nitializes mutex with attributes specified by 2" argument What if lock can’t be obtained?
. pthread mutex trylo thread mutex t *mutex);
= |f NULL, then default attributes are used pthread mutex_timel pthread mutex t *mutex,
struct timespec *abs_timeout);

= Upon initialization, the mutex is initialized and unlocked u trylook 2 returns immediately (fails) it Iock islunavailable

= timelock - tries to obtain a lock for a specified duration

TCSS422: Operating Systems [Spring 2025] ‘TCSS422: Operating Systems [Spring 2025)
‘ Lnllek) ks School of Engineering and Technology, University of Washington - Tacoma 1932 Speil2572025) School of Engineering and Technology, University of Washington - Tacoma 1933

32 33

& When poll is active, respond at pollev.com/wesleylloyd641 -
@ Text WESLEYLLOYD641 to 22333 once to join Po LL EV

Which NON-BLOCKING API call can be used to

W obtain alock without BLOCKING the calling = WhISNON-BLOCKING AP call can b used i obtaln a lock

thread?

= (A) pthread_mutex_lock()
pthread mutex lOCk() = (B) pthread_mutex_unlock()
- - = (C) pthread_join()
pthread_mutex_unlock() = (D) pthread_mutex_trylock()
)
)

pthread_join(= (E) None of the above
pthread_mutex_trylock(

None of the above

‘TCS5422: Operating Systems [Spring 2025]
-~ e S L ‘ CEHIELED School of Engineering and Technology, University of Washington - Tacoma L3

34 35

L @ When poll is active, respond at pollev.com/wesleylloyd641 u
& Text WESLEYLLOYD641 to 22333 once to join

POLL EV

Which API call BLOCKS temporarily for a

W specified amount of time while trying to obtain = Whichi API call BLOCKS temporarily for a specified amount of
. . time while trying to obtain a lock before givin ?
a lock before giving up? O TS UFATE : Mg e

= (A) pthread_join()

= (B) pthread_cond_wait()

= (C) pthread_mutex_timelock()
= (D) pthread_mutex_lock()

= (E) None of the above

. 7CS5422: Operating Systems [Spring 2025] 037
.. e T el e et l. ‘ Rl 2D School of Engineering and Technology, University of Washington - Tacoma

36 37

Slides by Wes J. Lloyd L9.6

TCSS 422 A — Spring 2025
School of Engineering and Technology

OBJECTIVES - 4/29

= Questions from 4/24
C Tutorial - Pointers, Strings, Exec in C - Due Wed Apr 30 AOE
Assignment O - Closes Tue Apr 29 AOE | Assignment 1
Quiz 1 (Due Thur May 1 AOE) - Quiz 2 (Due Tue May 6 AOE)
Chapter 26: Concurrency: An Introduction
= Race condition
= Critical section
= Chapter 27: Linux Thread API
= pthread_create/_join

= Chapter 28: Locks
= Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table

TCSS422: Operating Systems [Spring 2025]
‘ Lnllek) ks School of Engineering and Technology, University of Washington - Tacoma 1938

38

CONDITIONS AND SIGNALS -2

int pthread_cond_signal(pthread_cond_t cond);
int pthread_cond_broadcast(pthread_cond_t * cond);

= pthread_cond_signal()
= Called to send a “signal” to wake-up first thread in FIFQ “wait” queue
= The goal is to unblock a thread to respond to the signal

= pthread_cond_broadcast()

= Unblocks all threads in FIFO “walt” queue, currently blocked on the
specified condition variable

= Broadcast is used when all threads should wake-up for the signal

= Which thread is unblocked first?
= Determined by OS scheduler (based on priority)
= Thread(s) awoken based on placement order in FIFQ walt queue
= When awoken threads acquire lock as in pthread_mutex_Tock ()

TCS5422: Operating Systems [Spring 2025 L9.40
School of Engineering and Technology, University of Washington - Tacoma

‘ April 29,2025

40

CONDITION AND SIGNALS - 4

pthread mutex_t lock = PTHREAD_MUTEX INITIALIZER;
pthread_cond t cond = PTHREAD_COND_INITIALIZER;

pthread cond wait(&cond, &lock);
// Perform work that requires lock
a=a+

pthread_mutex_unlock (slock) ;

= Why do we wait inside a while loop?

= The while ensures upon awakening the condition is rechecked
= A signal is raised, but the pre-conditions required to proceed may
have not been met. **MUST CHECK STATE VARIABLE* *
= Without checking the state variable the thread may proceed to
execute when it should not. (e.g. too early)

TCS5422: Operating Systems [Spring 2025]
‘ e School of Engineering and Technology, University of Washington - Tacoma Loz

42

Slides by Wes J. Lloyd

4/29/2025

CONDITIONS AND SIGNALS

= Condition variables support “signaling”
between threads

t pthread cond wait (pthread cond t *cond,
pthread mutex t *mutex);
t pthread cond signal (pthread cond t *cond);

= pthread_cond_t datatype

= pthread_cond_wait()
= Puts thread to “sleep” (waits) (THREAD is BLOCKED)
= Threads added to >FIFO queue<, lock is released
= Waits (listens) for a “signal” (NON-BUSY WAITING, no polling)
= When signal occurs, interrupt fires, wakes up first thread,
(THREAD is RUNNING), lock is provided to thread

‘TCSS422: Operating Systems [Spring 2025)

‘ (Bpal29/2025 School of Engineering and Technology, University of Washington - Tacoma

39

CONDITIONS AND SIGNALS -3

= Wait example:

pthread mutex_t lock = PTHREAD_MUTEX INITIALIZER;
pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

while (initialized ==
pthread_cond wait (scond, &lock);

// Perform work that requires lock

a=a+b;

pthread mutex_unlock (&lock) ;

pthread_mutex_lock (&lock) ;
‘)

= wait puts thread to sleep, releases lock

= when awoken, lock reacquired (but then released bv this code)
State variable set,

Enables other thread(s)
to proceed above.

= When initialized, another thread signals

pthread mutex_lock(slock);
ivianT . &
initialized = 1;

ead_cond_signal (8init);
pthread mutex_unlock(slock) ;

‘TCS5422: Operating Systems [Spring 2025]

‘ April 29, 2025 School of Engineering and Technology, University of Washington - Tacoma

41

WE WILL RETURN AT

5:00PM

TCSS422: Operating Systems [Spring 2025]

i)]
Aerlzep2020 School of Engineering and Technology, University of Washington -

43

L9.7

TCSS 422 A — Spring 2025
School of Engineering and Technology

4/29/2025

PTHREADS LIBRARY

= Compilation:
gcc requires special option to require programs with pthreads:
= gcc -pthread pthread.c -o pthread
= Explicitly links library with compiler flag
= RECOMMEND: using makefile to provide compiler arguments

= List of pthread manpages
= man -k pthread

l April 29,2025

TCSS422: Operating Systems [Spring 2025] 19.44
School of Engineering and Technology, University of Washington - Tacoma

SAMPLE MAKEFILE

cc=gcc
CFLAGS=-pthread -I. -wall

binaries=pthread pthread_int pthread_lock_cond pthread_struct
all: $(binaries)

pthread_mult: pthread.c pthread_int.c
$(CC) $(CFLAGS) $A -0 $@

cl

ean:
$(RM) -f $(binaries) *.o
= Example builds multiple single file programs
= All target
= pthread_mult
= Example if multiple source files should produce a single executable
= clean target

‘TCSS422: Operating Systems [Spring 2025) 19.45

l (Bpal29/2025 School of Engineering and Technology, University of Washington - Tacoma

44

What key feature differentiates condition variables from mutex_locks in C -
?

Condition variables provide only NON-BLOCKING AP calls.

0%
Locks can not be used without condition variables.

0%
Condition variables intraduce a FIFO queue enabling control of the order that threads
will recaive the lock which provides faimass

0%

Condition variables must first be inftialized to a non-NULL value before being used in
the program.

G 0%

None of the above
0%

u : . for share ety

46

TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington -

April 29, 2025

48

Slides by Wes J. Lloyd

45

POLLEV

= What key feature differentiates condition variables from
mutex_locks in C?

= (A) Condition variables provide only NON-BLOCKING API calls

= (B) Locks can not be used without condition variables

= (C) Condition variables introduce a FIFO queue enabling
control of the order that threads will receive the lock which
provides fairness

= (D) Condition variables must first be initialized to a non-NULL
value before being used in the program

= (E) None of the above

‘TCS5422: Operating Systems [Spring 2025] 19.47

l April 29, 2025 School of Engineering and Technology, University of Washington - Tacoma

a7

OBJECTIVES - 4/29

= Questions from 4/24
= C Tutorial - Pointers, Strings, Exec in C - Due Wed Apr 30 AOE
= Assignment O - Closes Tue Apr 29 AOE | Assignment 1
Quiz 1 (Due Thur May 1 AOE) - Quiz 2 (Due Tue May 6 AOE)
Chapter 26: Concurrency: An Introduction
= Race condition
= Critical section
= Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table

TC55422: Operating Systems [Spring 2025] 1949
School of Engineering and Technology, University of Washington - Tacoma

l April 29, 2025

49

L9.8

TCSS 422 A — Spring 2025
School of Engineering and Technology

4/29/2025

= Ensure critical section(s) are executed atomically-as a unit
= Only one thread is allowed to execute a critical section at any given
time
= Ensures the code snippets are “mutually exclusive”

= Protect a global counter:

[balance = balance + 1;

= A “critical section”:

1 lock_t mutesx;

3 lock (&mutex) ;

4 balance = balance + 1
5 unlock (&mutex) ;

TCSS422: Operating Systems [Spring 2025]
‘ Lnllek) ks School of Engineering and Technology, University of Washington - Tacoma Lo:s0

= Lock variables are called “MUTEX”
= Short for mutual exclusion (that’s what they guarantee)

= Lock variables store the state of the lock
= States
= Locked (acquired or held)

= Unlocked (available or free)

= Only 1 thread can hold a lock

‘TCSS422: Operating Systems [Spring 2025) 1951

‘ Speil2572025) School of Engineering and Technology, University of Washington - Tacoma

LOCKS - 3

" pthread_mutex_lock (&lock)
=Try to acquire lock
= If lock is free, calling thread will acquire the lock

=Thread with lock enters critical section
Thread “owns” the lock

= No other thread can acquire the lock before the owner
releases it.

‘TCSS422: Operating Systems [Spring 2025]
‘ April 29,2025 School of Engineering and Technology, University of Washington - Tacoma L9-52

LOCKS - 4

= Program can have many mutex (lock) variables to
“serialize” many critical sections

= Locks are also used to protect data structures
= Prevent multiple threads from changing the same data
simultaneously
= Programmer can make sections of code “granular”
Fine gralned - means just one grain of sand at a time through an
hour glass
= Similar to relational database transactions

DB transactions prevent multiple users from modifying a table,
row, field

TCS5422: Operating Systems [Spring 2025]
‘ e School of Engineering and Technology, University of Washington - Tacoma 1954

54

Slides by Wes J. Lloyd

51

OBJECTIVES - 4/29

= Questions from 4/24
= C Tutorial - Pointers, Strings, Exec in C - Due Wed Apr 30 AOE
= Assignment O - Closes Tue Apr 29 AOE | Assignment 1
Quiz 1 (Due Thur May 1 AOE) - Quiz 2 (Due Tue May 6 AOE)
Chapter 26: Concurrency: An Introduction
= Race condition
= Critical section
= Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
4 Intmduction,
= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table

‘TCS5422: Operating Systems [Spring 2025] 1953
School of Engineering and Technology, University of Washington - Tacoma

‘ April 29,2025

53

FINE GRAINED?

= |s this code a good example of “fine grained parallelism”?

pthread_mutex_Tock(&lock);

a = b+

b=a*c;

*d =a+ b +c;

FILE * fp = fopen ("file.txt", “r");

fscanf(fp, "%s %s %s %d", strl, str2, str3, &e);
ListNode *node = mylist->head;
Int i=0
while (node) {
node->title = strl;
node->subheading = str2;
node->desc = str3;
node->end = *e;
node = node->next;

fn
} N
e=e-1;
pthread_mutex_unlock (&lock) ;
. TCS5422: Operating Systems [Spring 2025]
‘ REDEELET School of Engineering and Technology, University of Washington - Tacoma 1955

55

L9.9

TCSS 422 A — Spring 2025
School of Engineering and Technology

4/29/2025

FINE GRAINED PARALLELISM

pthread_mutex_lock(&lock_a);
pthread_mutex_lock (&lock_b);

a = b++;
pthread_mutex_unlock(&lock_b);
pthread_mutex_unlock (&lock_a);

pthread_mutex_lock (&lock_b);
b=a=*c;
pthread_mutex_unlock(&lock_b);

pthread_mutex_Tlock (&lock_d);

LOCK GRANULARITY TRADE-OFF SPACE

FINE-GRAINED
Many Lock (kernel) calls

COARSE-GRAINED
Few Lock (kernel) calls

Low overhead from
minimal locking

More overhead from
excessive locking

More parallelism
Higher code complexity

Less parallelism
Low code complexity

*d =a+ b +c; & debuggin & simpler debuggin

pthread_mutex_unlock (&lock_d); R BRI
Every program

FILE * fp = fopen ("file.txt", “r"); implgrr?entgation

pthread_mutex_lock (&lock_e); lies someplace along

fscanf(fp, "%s %s %s %d", strl, str2, str3, &e); the trade-off space.

pthread_mutex_unlock(&lock_e); i pace...

ListNode *node = mylist->head;

int i=0 . . .

TCSS422: Operating Systems [Spring 2025] ‘TCSS422: Operating Systems [Spring 2025)
‘ Lnllek) ks School of Engineering and Technology, University of Washington - Tacoma L9:56 ‘ Speil2572025) School of Engineering and Technology, University of Washington - Tacoma La.s7

56

57

= Does the lock work?
= Are critical sections mutually exclusive?

EVALUATING LOCK IMPLEMENTATIONS

What makes a
= Correctness goc/q lock?

BUILDING LOCKS

= Locks require hardware support
=To minimize overhead, ensure fairness and correctness

= Special “atomic-as a unit” instructions to support lock

. e
(atomic-as a unit?) implementation
= Atomic-as a unit exchange instruction

= Fairness
XCHG

= Do all threads that compete for a lock have a fair chance

of acquiring it? = Compare and exchange instruction

CMPXCHG
] overhead CMPXCHG8B
CMPXCHG16B
‘TCSS422: Operating Systems [Spring 2025] ‘TCS5422: Operating Systems [Spring 2025]
‘ April 29,2025 School of Engineering and Technology, University of Washington - Tacoma Lo-s8 April 25,2025 School of Engineering and Technology, University of Washington - Tacoma 19:59

58 59

HISTORICAL IMPLEMENTATION

OBJECTIVES - 4/29

= Questions from 4/24
= C Tutorial - Pointers, Strings, Exec in C - Due Wed Apr 30 AOE
= Assignment O - Closes Tue Apr 29 AOE | Assignment 1
Quiz 1 (Due Thur May 1 AOE) - Quiz 2 (Due Tue May 6 AOE)
Chapter 26: Concurrency: An Introduction
unlock() { racejcondition
EnableInterrupts(); * Critical section
} = Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
= Introduction, Lock Granularity
Tesl and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table

TCS5422: Operating Systems [Spring 2025] . TC55422: Operating Systems [Spring 2025]
‘ e School of Engineering and Technology, University of Washington - Tacoma L0 i School of Engineering and Technology, University of Washington - Tacoma e

= To implement mutual exclusion
= Disable interrupts upon entering critical sections

lock() |

L
DisableInterrupts () [

1
2
3 1
4

= Any thread could disable system-wide interrupt
= What if lock is never released?

= On a multiprocessor processor each CPU has its own interrupts
= Do we disable interrupts for all cores simultaneously?

= While interrupts are disabled, they could be lost
= If not queued...

60 61

Slides by Wes J. Lloyd L9.10

TCSS 422 A — Spring 2025

4/29/2025
School of Engineering and Technology

SPIN LOCK IMPLEMENTATION

= Operate without atomic-as a unit assembly instructions

= “Do-it-yourself” Locks
.

Is this lock implementation: (1)Correct? (2)Fair? (3)Performant?

1 “lack t { int flags } lock t
2
3 init(lock t *mutsx) {
a >
5 mutex->flag = 07
6)
8 lock(lo mutex) |
3 mutex->£lag == 1) TEST
10 ; t
1n mutex->flag = 1
12)
13
14 unlock(lock t *mutex) {
15 mutex->flag = 07
16)
TCSS422: Operating Systems [Spring 2025
‘ Lnllek) ks School of E:gmeengngyand 1e§\‘:mlfgy, Un]iversilv of Washington - Tacoma Lo.62

62

DIY: PERFORMANT?

void lock(lock_t *mutex)
{

// while Tock is unavailable, wait..
mutex->flag = 1;

= What is wrong with while(<cond>); ?

= Spin-waiting wastes time actively waiting for another thread
= while (1); will “peg” a CPU core at 100%

= Continuously loops, and evaluates mutex->flag value...

= Generates heat...

‘TCSS422: Operating Systems [Spring 2025]
‘ April 29,2025 School of Engineering and Technology, University of Washington - Tacoma Lo.64

64

TEST-AND-SET INSTRUCTION

= Hardware support required for working locks

= Book presents pseudo code of C implementation
= TEST-and-SET adds a simple check to the basic spin lock
= Assumption is this “C code” runs atomically on CPU:

AndSet (int *ptr, int new) {
old = *ptri
ptr =

)

= |lock() method checks that TestAndSet doesn’t return 1
= Comparison is in the caller

= Can implement the C version (non-atomic) and have some
success on a single-core VM

TCS5422: Operating Systems [Spring 2025]
‘ e School of Engineering and Technology, University of Washington - Tacoma 1960

66

Slides by Wes J. Lloyd

DIY: CORRECT?

= Correctness requires luck... (e.g. DIY lock is incorrect)

Threadl Thread2
call lock()

while (flag == 1)

interrupt: switch to Thread 2

call 1ock ()
while (flag == 1)
flag = 1;

interrupt: switch to Thread 1
flag =

= Here both threads have “acquired” the lock simultaneously

‘TCSS422: Operating Systems [Spring 2025)
‘ Speil2572025) School of Engineering and Technology, University of Washington - Tacoma 1963

63

OBJECTIVES - 4/29

= Questions from 4/24
= C Tutorial - Pointers, Strings, Exec in C - Due Wed Apr 30 AOE
= Assignment O - Closes Tue Apr 29 AOE | Assignment 1
® Quiz 1 (Due Thur May 1 AOE) - Quiz 2 (Due Tue May 6 AOE)
= Chapter 26: Concurrency: An Introduction
= Race condition
= Critical section
= Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
= Introduction, Lock Granularity
= Spin LocksCompare and Swap
= Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table

‘TCS5422: Operating Systems [Spring 2025]
‘ April 25,2025 School of Engineering and Technology, University of Washington - Tacoma 1965

65

DIY: TEST-AND-SET - 2

= C version: requires preemptive scheduler on single core system
® Lock is never released without a context switch
= single-core VM: occasionally will deadlock, doesn’t miscount

1 T lockt (
:
i
5 initileck_t *lockl (
a Lock->T1ag =
9 }
1
11 lock(lock_t *lock)
12 (TestAndSet (slock-»flag, 1) == 1}
13 ;
)
15
1 unlock(lock t *lockl
17 Lock->£lag = 0
T
. 7CS5422: Operating Systems [Spring 2025]
‘ REDEELET School of Engineering and Technology, University of Washington - Tacoma 1067

67

TCSS 422 A — Spring 2025

4/29/2025
School of Engineering and Technology

SPIN LOCK EVALUATION OBJECTIVES - 4/29

coee . = Questions from 4/24
- = C Tutorial - Pointers, Strings, Exec in C - Due Wed Apr 30 AOE
= Assignment O - Closes Tue Apr 29 AOE | Assignment 1
®= Quiz 1 (Due Thur May 1 AOE) - Quiz 2 (Due Tue May 6 AOE)
= Chapter 26: Concurrency: An Introduction
= Fairness: = Race condition
= Critical section
= No fairness guarantee. Once a thread has a lock, nothing forces it to = Chapter 27: Linux Thread API

relinquish it... = pthread_create/_join

= pthread_mutex_lock/_unlock/_trylock/_timelock

= Spin locks with atomic Test-and-Set:
Critical sections won’t be executed simultaneously by (2) threads

= Performance: = pthread_cond_wait/_signal/_broadcast

« Spin lock: £ “b iting” = Chapter 28: Locks

(LU CIETUETn Xy TR * Introduction, Lock Granularit
= Spin locks are best for short periods of waiting (< 1 time quantum) = Spin Locks, Test and Set,/Compare and Swap
= Performance is slow when multiple threads share a CPU = Chapter 29: Lock Based Data Structures
Especially if “spinning” for long periods = Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table
TCSS422: Operating Syste [Spring 2025] TCS5422: O ting Syste [Spring 2025])

‘ LATllEE) s school afE:;r:ele’:\gngy:nZ"}sechnL?ngw University of Washington - Tacoma Lo.68 ‘ Speil2572025) ‘ School of E::i’:ee’:igngvaned"}sech:ra::?gy, University of Washington - Tacoma 19:69

68 69

COMPARE AND SWAP COMPARE AND SWAP

= Checks that the lock variable has the expected value FIRST,
before changing its value P — o expected, in
= If so, make assignment t
= Return value at location

= Compare and Swap

E actual;
= Adds a comparison to TestAndSet

= Textbook presents C pseudo code = Spin | C implementation 1-core VM:
= Assumption is that the compare-and-swap method runs atomically pin foc count iS correct, no deadlock
’

= Useful for wait-free synchronization

= Supports implementation of shared data structures which can be I
updated atomically (as a unit) using the HW support
CompareAndSwap instruction

= Shared data structure updates become “wait-free”

= Upcoming in Chapter 32

= X86 provides “cmpxchgl” compare-and-exchange instruction
= cmpxchg8b
= cmpxchgléb

‘TCSS422: Operating Systems [Spring 2025] ‘TCS5422: Operating Systems [Spring 2025]
‘ April 29,2025 School of Engineering and Technology, University of Washington - Tacoma Lo.70 April 25,2025 School of Engineering and Technology, University of Washington - Tacoma

70 71

.I - . . - I.
When implementing locks in a high-level language TWO MORE “LOCK BUILDING”
(e.g. C), what is missing that prevents CPU INSTRUCTIONS
implementation of CORRECT locks? o :
= Cooperative instructions used together to support
synchronization on RISC systems
. No support on x86 processors
har vari -
Shared state variable = Supported by RISC: Alpha, PowerPC, ARM
Condition variables = Load-linked (LL)
= Loads value into register
ATOMIC instructions = Same as typical load
= Used as a mechanism to track competition
Fairness = Store-conditional (SC)
= Performs “mutually exclusive” store
None of the above = Allows only one thread to store value
-~ . : . I o

72 73

Slides by Wes J. Lloyd L9.12

TCSS 422 A — Spring 2025
School of Engineering and Technology

LL/SC LOCK

= LL instruction loads pointer value (ptr)

= Requires HW support
= C code is psuedo code

1 1t LoadLinked (int *ptr)

2 "ptr;

3 I

4

5 Storeconditional (int *ptr, imt valus)
€ {no one has updated *ptr since the LoadLinked to this address) |
7 *ptr = walue;

8 1z

3) {

10

11 1

1z}

= SC only stores if the load link pointer has not changed

TCSS422: Operating Systems [Spring 2025]

‘ LATllEE) s School of Engineering and Technology, University of Washington - Tacoma

19.74

74

CHAPTER 29 -
LOCK BASED
DATA STRUCTURES

TCSS422: Operating Systems [Spring 2025]

LAl School of Engineering and Technology, University of Washington -

76

LOCK-BASED

= Adding locks to data structures make them
thread safe.

= Considerations:
=Correctness
=Performance
=Lock granularity

CONCURRENT DATA STRUCTURES

TCS5422: Operating Systems [Spring 2025]

‘ e School of Engineering and Technology, University of Washington - Tacoma

1978

78

Slides by Wes J. Lloyd

4/29/2025

LL/SC LOCK - 2

1 Tock(lock_t *lock) [

2 (1)

3 (LoadLinked(slock->flag) == 1}
4 :

5 {StoreConditional (slock->flag, 1) == 1)
7

8 1

L]

10

1 unlack (lock_t *lock) [

12z lock->flag = 0:

13}

= Two instruction lock

‘TCSS422: Operating Systems [Spring 2025)

‘ (Bpal29/2025 School of Engineering and Technology, University of Washington - Tacoma 1975

75

OBJECTIVES - 4/29

= Questions from 4/24
= C Tutorial - Pointers, Strings, Exec in C - Due Wed Apr 30 AOE
= Assignment O - Closes Tue Apr 29 AOE | Assignment 1
® Quiz 1 (Due Thur May 1 AOE) - Quiz 2 (Due Tue May 6 AOE)
= Chapter 26: Concurrency: An Introduction
= Race condition
= Critical section
= Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
= Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table

TCSS422: O g Systems [Spring 2025]
‘ Are| 29,2025 ing and Technology, University of Washington - Tacoma 77

77

COUNTER STRUCTURE W/0 LOCK

= Synchronization weary --- not thread safe

1 __counter t |
2 t valuej
3) counter_t;
4
5 1 init(counter_t *cj {
€ c->value = 07
7 1
8
E) void increment(counter t *c) |
10 c->valuett:
11]
12
13 1 decrement (counter_t *c) [
14 c->value--7
15)
16
17 get (counter_t "c) [
18 1 c->values
19)
‘ April 29, 2025 TCS5422: Operating Systems [Spring 2025]

School of Engineering and Technology, University of Washington - Tacoma

1979

79

L9.13

TCSS 422 A — Spring 2025 4/29/2025
School of Engineering and Technology

CONCURRENT COUNTER

__counter_t |

| counter_t;

init(counter t *e) {

c->value =
Pthread mutex_init(&c->lock,

1 er t *c) |
1z mutex_lock(&c->1ock) i
13 uet+i

14 d_mutex_unlock(sc->lock) s
15)

16

= Add lock to the counter
= Require lock to change data

TCSS422: Operating Systems [Spring 2025]
‘ Lnllek) ks School of Engineering and Technology, University of Washington - Tacoma L9:80

CONCURRENT COUNTER - 2

= Decrease counter

= Get value
(Cont.)
17 decrement inter_t *c) {
18 Pth mutex_lock(ac->lock):
19 c->value--;
20 Pthread mutex unlock(sc->lock)s
21)
22
24 mutex_lock(sc->lock);
25 rc = c->value;
26 Pthread mutex unlock(sc->lock)s
21 res
28]

‘TCSS422: Operating Systems [Spring 2025) 1981

bl ks School of Engineering and Technology, University of Washington - Tacoma

80

CONCURRENT COUNTERS - PERFORMANCE

= iMac: four core Intel 2.7 GHz i5 CPU
= Each thread increments counter 1,000,000 times

i
g
H
Traditional vs. sloppy counter
1 2 a 4 Sloppy Threshold (S) = 1024
Threads
scales poorly
‘TCSS422: Operating Systems [Spring 2025]
‘ [Anl29,2025) School of Engineertng and Technalogy; Liniversity of Washington - Tacoma Lo:82

PERFECT SCALING

= Achieve (N) performance gain with (N) additional resources

= Throughput:
= Transactions per second (tps)

= 1 core
=N =100 tps
= 10 cores (x10)
=N =1000 tps (x10)
April 29, 2025 TCSS422: Operating Systems [Spring 2025] 19.83

School of Engineering and Technology, University of Washington - Tacoma

82

OBJECTIVES - 4/29

= Questions from 4/24
= C Tutorial - Pointers, Strings, Exec in C - Due Wed Apr 30 AOE
= Assignment O - Closes Tue Apr 29 AOE | Assignment 1
Quiz 1 (Due Thur May 1 AOE) - Quiz 2 (Due Tue May 6 AOE)
Chapter 26: Concurrency: An Introduction
= Race condition
= Critical section
= Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
= Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table

TCS5422: Operating Systems [Spring 2025] 984
School of Engineering and Technology, University of Washington - Tacoma

‘ April 29, 2025

SLOPPY COUNTER

= Provides single logical shared counter
= Implemented using local counters for each ~CPU core
4 CPU cores = 4 local counters & 1 global counter
Local counters are synchronized via local locks
= Global counter is updated periodically
Global counter has lock to protect global counter value

Sloppiness threshold (S):
Update threshold of global counter with local values

Small (S): more updates, more overhead
Large (S): fewer updates, more performant, less synchronized
= Why this implementation?
Why do we want counters local to each CPU Core?

. 7CS5422: Operating Systems [Spring 2025]
REDEELET School of Engineering and Technology, University of Washington - Tacoma 108

84 85

Slides by Wes J. Lloyd L9.14

TCSS 422

A — Spring 2025

School of Engineering and Technology

SLOPPY COUNTER - MAIN POINTS

= [dea of Sloppy Counter is to RELAX the synchronization
requirement for counting
= Instead of synchronizing global count variable each time:
counter=counter+l
= Synchronization occurs only every so often:
e.g. every 1000 counts

= Relaxing the synchronization requirement drastically
reduces locking APl overhead by trading-off split-second
accuracy of the counter

= Sloppy counter: trade-off accuracy for speed
= It's sloppy because it’s not so accurate (until the end)

TCSS422: Operating Systems [Spring 2025]

LATllEE) s School of Engineering and Technology, University of Washington - Tacoma

19.86

86

THRESHOLD VALUE S

= Consider 4 threads increment a counter 1000000 times each
= Low S > What is the consequence?
= High S - What is the consequence?

15

Time (seconds)

e

16 32 64 128 256 5121024
Sloppiness

1 2 4 8

‘TCSS422: Operating Systems [Spring 2025]

[Anl29,2025) School of Engineering and Technology, University of Washington - Tacoma.

L9.88

88

OBJECTIVES - 4/29

= Questions from 4/24
= C Tutorial - Pointers, Strings, Exec in C - Due Wed Apr 30 AOE
= Assignment O - Closes Tue Apr 29 AOE | Assignment 1
Quiz 1 (Due Thur May 1 AOE) - Quiz 2 (Due Tue May 6 AOE)
Chapter 26: Concurrency: An Introduction
= Race condition
= Critical section
= Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
= Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures
= Sloppy Counter

= Concurrent Structures: Linked List, Queue, Hash Table

TCS5422: Operating Systems [Spring 2025]

e School of Engineering and Technology, University of Washington - Tacoma

90

Slides by

Wes J. Lloyd

4/29/2025

SLOPPY COUNTER - 2

= Update threshold (S) =5
= Synchronized across four CPU cores
= Threads update local CPU counters

School of Engineering and Technology, University of Washington - Tacoma

Time | L, | L | L 1. G
0 o o o o 0
1 0 o 1 1 0
2 1 0 2 1 0
3 2 o 3 1 0
4 3 0 3 2 0
5 4 1 3 3 0
& 520 1 3 4 5 (from Ly}
7 o 2 4 530 10 (from L)

‘ A 232008 TC55422: Operating Systems [Spring 2025 087

87

SLOPPY COUNTER - EXAMPLE

= Example implementation

= Also with CPU affinity

TCS5422: Operating Systems [Spring 2025]

April 25,2025 School of Engineering and Technology, University of Washington - Tacoma

L9.89

89

CONCURRENT LINKED LIST - 1

= Simplification - only basic list operations shown
= Structs and initialization:

1
2 node_t |
3 key7
1 uct __node_t *next:
5]
7
8 _list_t |
9 node 1 th
10 pthread mutex t lock;
1) list_t;
12
13 List_In £) [
14 L
15 init(sL->lock, NUI
16]
7
(cant.)
‘ AFAATS 7CS5422: Operating Systems [Spring 2025]

School of Engineering and Technology, University of Washington - Tacoma

Le.91

91

L9.15

TCSS 422 A — Spring 2025
School of Engineering and Technology

CONCURRENT LINKED LIST - 2

" Insert - adds item to list
= Everything is critical!
= There are two unlocks

(Cont.)

18 List_Insert (list_t *L, key) |

19 | mutex_lock (& ck):

20 w zeof (node_t1)+
21

new->key = key:
>head;

new->next =

TCSS422: Operating Systems [Spring 2025]

‘ Lnllek) ks School of Engineering and Technology, University of Washington - Tacoma

19.92

9

2

CONCURRENT LINKED LIST

= First Implementation:
= Lock everything inside Insert() and Lookup()
= If malloc() fails lock must be released

Research has shown “exceptlon-based control flow” to be error
prone

40% of Linux OS bugs occur in rarely taken code paths

Unlocking in an exception handler is considered a poor coding
practice

There is nothing specifically wrong with this example however

= Second Implementation ...

‘TCSS422: Operating Systems [Spring 2025]

‘ [Anl29,2025) School of Engineering and Technology, University of Washington - Tacoma.

L9.94

94

CCL - SECOND IMPLEMENTATION - 2

= Lookup

(Cont..)
22 List Lookup(list t *L, key) {
23 =15
2 pthread_mutex_lock{sL->lock) i
2 node_t *curr = L->heads
2 teurr) {
2 (cure->key == key) {
2 =
31 curr = curr->next;
3 1]
33 pthread_mutex_unlock (sL->lack) s
B Tvi .
35 1

‘ Pl TCS5422: Operating Systems [Spring 2025]

19.96

School of Engineering and Technology, University of Washington - Tacoma

4/29/2025

CONCURRENT LINKED LIST - 3

= Lookup - checks list for existence of item with key
= Once again everything is critical
= Note - there are also two unlocks

(Cont.)

32

List_Lookup (list_t *L, int key) |
pthread_mutex_lock (sL->10ck) ¢

(curr->key == key)
MITex_Unlock (8L->10cK) i

CUrY = CUrr->next;

1
pthread mutex_unlock(sL->lock);

13

‘TCSS422: Operating Systems [Spring 2025)

‘ Speil2572025) School of Engineering and Technology, University of Washington - Tacoma

9

3

CCL - SECOND IMPLEMENTATION

= Init and Insert

1 (
B - N
1 pthread m nit(sL->lock, HUL
1
6 List_Insert(list_t *L, int key [
a node_t *new = malloc(sizeof (node_t])
3 (hew == ¥
10 perror ("malloc®] ;
1 :
12 1
13 new->key = keys
18
15
16
17
18
18 pthread_mutex_unlock(sL->lock):
20
2
‘ DA TCS5422: Operating Systems [Spring 2025

School of Engineering and Technology, University of Washington - Tacoma L9:95

95

CONCURRENT LINKED LIST PERFORMANCE

= Using a single lock for entire list is not very performant

= Users must “wait” in line for a single lock to access/modify
any item

= Hand-over-hand-locking (lock coupling)
= Introduce a lock for each node of a list

= Traversal involves handing over previous node’s lock,
acquiring the next node’s lock...

= Improves lock granularity
= Degrades traversal performance

= Consider hybrid approach
= Fewer locks, but more than 1
= Best lock-to-node distribution?

TC55422: Operating Systems [Spring 2025]

REDEELET School of Engineering and Technology, University of Washington - Tacoma

96

Slides by Wes J. Lloyd

97

L9.16

TCSS 422 A — Spring 2025
School of Engineering and Technology

4/29/2025

OBJECTIVES - 4/29

= Questions from 4/24
= C Tutorial - Pointers, Strings, Exec in C - Due Wed Apr 30 AOE
= Assignment O - Closes Tue Apr 29 AOE | Assignment 1
®= Quiz 1 (Due Thur May 1 AOE) - Quiz 2 (Due Tue May 6 AOE)
= Chapter 26: Concurrency: An Introduction
= Race condition
= Critical section
= Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
= Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Hash Table

TCSS422: Operating Systems [Spring 2025]

‘ Lnllek) ks School of Engineering and Technology, University of Washington - Tacoma

19.98

MICHAEL AND SCOTT CONCURRENT QUEUES

= Improvement beyond a single master lock for a queue (FIFO)
= Two locks:

= One for the head of the queue

= One for the tall
= Synchronize enqueue and dequeue operations

= Add a dummy node
= Allocated in the queue initialization routine
= Supports separation of head and tail operations

= |[tems can be added and removed by separate threads at the
same time

‘TCSS422: Operating Systems [Spring 2025) 19.99

‘ Speil2572025) School of Engineering and Technology, University of Washington - Tacoma

98

99

CONCURRENT QUEUE

= Remove from queue

1
_ node T *next:

11 } quens

(node_t))

(Cent..)

‘TCSS422: Operating Systems [Spring 2025]

‘ [Anl29,2025) School of Engineering and Technology, University of Washington - Tacoma.

19.100

CONCURRENT QUEUE - 2

= Add to queue

(Cont.)
21 value) |

(node_t))+

25 tmp->value =
tmp->next =

31

_mutex_unlock(sq->taillock);

(Cont.)

‘TCS5422: Operating Systems [Spring 2025]
‘ April 25,2025 School of Engineering and Technology, University of Washington - Tacoma Lo101

100

OBJECTIVES - 4/29

= Questions from 4/24
= C Tutorial - Pointers, Strings, Exec in C - Due Wed Apr 30 AOE
= Assignment O - Closes Tue Apr 29 AOE | Assignment 1
Quiz 1 (Due Thur May 1 AOE) - Quiz 2 (Due Tue May 6 AOE)
Chapter 26: Concurrency: An Introduction
= Race condition
= Critical section
= Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
= Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures
= Sloppy Counter

= Concurrent Structures: Linked List, Queue,|Hash Table

TCS5422: Operating Systems [Spring 2025]
e School of Engineering and Technology, University of Washington - Tacoma

10102

102

Slides by Wes J. Lloyd

101

CONCURRENT HASH TABLE

= Consider a simple hash table
=Fixed (static) size
=Hash maps to a bucket
Bucket is implemented using a concurrent linked list
One lock per hash (bucket)
Hash bucket is a linked lists

. 7CS5422: Operating Systems [Spring 2025]
REDEELET School of Engineering and Technology, University of Washington - Tacoma 19103

103

L9.17

TCSS 422 A — Spring 2025
School of Engineering and Technology

INSERT PERFORMANCE -

CONCURRENT HASH TABLE

= Four threads - 10,000 to 50,000 inserts
= iMac with four-core Intel 2.7 GHz CPU

15
© Simpie Cangunent List
% Cancurrent Hash Table
Rl
2
&
T
E 5
F
0+ ‘."/ - - -
o 10 20 30 40

Inserts (Thousands)

scales
magnificently
2025

Systems [Spring 2025,
School of Engineering and Technology, Uni

ity of Washington - Tacoma

104

"

‘Which is a major advantage of using concurrent data structures in your
programs?

Locks are encapsulated within data structure code ensuring thread safety

0%

Lock granularity tradeoff already optimized inside data structure

0%
Multipla threads can more easily share data

0%
All of the above

0%
Nane of the above

0%

.I April 29, 202!

TCSS422: Operating Systems [Spring 2025
oy

L
@0

L951..

106

LOCK-FREE DATA STRUCTURES

= Lock-free data structures in Java

= Java.util.concurrent.atomic package
= Classes:

= AtomicBoolean

= Atomicinteger

= AtomicintegerArray

= AtomicintegerFieldUpdater

= AtomicLong

= AtomicLongArray

= AtomicLongFieldUpdater

= AtomicReference

= See: ;39 s;//docs.oracle, com[en[lavaz|avase(11(docs[aplz

TCS5422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

April 29, 2025

108

Slides by Wes J. Lloyd

4/29/2025

1 BUCKETS (101)
2
3 __hash t {
4 List_t lists[BUCKETS]#
5 J hash_t:
7 Hash_Init(hash_t *H) [
8 Tt ir
s (i = 0 i< BUCKETS; i++)
10 ist_Init (sH->lists[i]):
1)
12)
13
14 Hash_Tnsert (hash_t *H, key) {
15 bucket = key % BUCKETS
16 1 List_Insert(si->1ists(bucket], key)
17)
18
135 t Hash_Lookup(hash_t *H, int key) {
20 Tint bucket = key % BUCKETS;
21 1 List_Lookup(sH->1ists [bucket], key):
22)
TCS5422: Operating Systems [Spring 2025
l (Bpal29/2025 School of E:;ineerigngvand Te«[:h:alaggy, Un!vers\’ty of Washington - Tacoma Lo105

105

POLL EV

= Which is a major advantage of using concurrent data
structures in your programs?

= (A) Locks are encapsulated within data structure code
ensuring thread safety

= (B) Lock granularity tradeoff already optimized inside data
structure

= (C) Multiple threads can more easily share data
= (D) All of the above
= (E) None of the above

‘TCS5422: Operating Systems [Spring 2025]

l April 29,2025 School of Engineering and Technology, University of Washington - Tacoma

19.107

107

QUESTIONS

109

L9.18

	Slide 1: TCSS 422: Operating Systems
	Slide 2: Tcss 422 – office hrs – Spring 2025
	Slide 3: OBJECTIVES – 4/29
	Slide 4: Online daily feedback survey
	Slide 5
	Slide 6: Material / pace
	Slide 8: Feedback from 4/24
	Slide 9: OBJECTIVES – 4/29
	Slide 10: OBJECTIVES – 4/29
	Slide 11: OBJECTIVES – 4/29
	Slide 12: OBJECTIVES – 4/29
	Slide 13: Quiz 1
	Slide 14: Quiz 2
	Slide 15: OBJECTIVES – 4/29
	Slide 16: Catch up from lecture 8
	Slide 17: locks
	Slide 18: Counter example
	Slide 19: Chapter 27 - Linux Thread API
	Slide 20: OBJECTIVES – 4/29
	Slide 21: Thread creation
	Slide 22: Pthread_create – pass any data
	Slide 23: Passing a single value
	Slide 24: Waiting for threads to finish
	Slide 25
	Slide 26
	Slide 27: ADDING CASTS
	Slide 28: Adding casts - 2
	Slide 29: OBJECTIVES – 4/29
	Slide 30: locks
	Slide 31: Locks - 2
	Slide 32: Lock initialization
	Slide 33: Locks - 3
	Slide 34
	Slide 35: POLL EV
	Slide 36
	Slide 37: Poll ev
	Slide 38: OBJECTIVES – 4/29
	Slide 39: Conditions and signals
	Slide 40: Conditions and signals - 2
	Slide 41: conditions and signals - 3
	Slide 42: Condition and SIGNALS - 4
	Slide 43: We will return at 5:00pm
	Slide 44: Pthreads library
	Slide 45: Sample Makefile
	Slide 46
	Slide 47: pollev
	Slide 48: Chapter 28 – LOCKS
	Slide 49: OBJECTIVES – 4/29
	Slide 50: Locks
	Slide 51: Locks - 2
	Slide 52: Locks - 3
	Slide 53: OBJECTIVES – 4/29
	Slide 54: Locks - 4
	Slide 55: Fine grained?
	Slide 56: Fine grained parallelism
	Slide 57: Lock granularity trade-off space
	Slide 58: Evaluating lock implementations
	Slide 59: Building locks
	Slide 60: Historical implementation
	Slide 61: OBJECTIVES – 4/29
	Slide 62: Spin lock implementation
	Slide 63: DIY: Correct?
	Slide 64: DIY: PERFORMANT?
	Slide 65: OBJECTIVES – 4/29
	Slide 66: Test-and-set instruction
	Slide 67: DIY: Test-and-set - 2
	Slide 68: Spin Lock evaluation
	Slide 69: OBJECTIVES – 4/29
	Slide 70: Compare and Swap
	Slide 71: Compare and swap
	Slide 72
	Slide 73: Two more “lock Building” CPU instructions
	Slide 74: LL/SC Lock
	Slide 75: LL/SC lock - 2
	Slide 76: Chapter 29 – LOCK Based data structures
	Slide 77: OBJECTIVES – 4/29
	Slide 78: Lock-based concurrent data structures
	Slide 79: Counter structure w/o lock
	Slide 80: concurrent counter
	Slide 81: Concurrent counter - 2
	Slide 82: Concurrent counters - Performance
	Slide 83: Perfect scaling
	Slide 84: OBJECTIVES – 4/29
	Slide 85: Sloppy counter
	Slide 86: Sloppy counter – main points
	Slide 87: Sloppy counter - 2
	Slide 88: Threshold value S
	Slide 89: Sloppy counter - example
	Slide 90: OBJECTIVES – 4/29
	Slide 91: Concurrent linked list - 1
	Slide 92: Concurrent linked list - 2
	Slide 93: Concurrent linked list - 3
	Slide 94: Concurrent linked list
	Slide 95: Ccl – second implementation
	Slide 96: Ccl – second implementation - 2
	Slide 97: Concurrent Linked list performance
	Slide 98: OBJECTIVES – 4/29
	Slide 99: Michael and scott concurrent queues
	Slide 100: Concurrent queue
	Slide 101: Concurrent queue - 2
	Slide 102: OBJECTIVES – 4/29
	Slide 103: Concurrent hash table
	Slide 104: Insert performance – concurrent hash table
	Slide 105: Concurrent hash table
	Slide 106
	Slide 107: Poll ev
	Slide 108: Lock-free data structures
	Slide 109: Questions

