
TCSS 422 A – Spring 2024
School of Engineering and Technology

4/23/2024

L9.1Slides by Wes J. Lloyd

April 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

Intro to Concurrency,
Linux Thread API, Locks,

Lock-based data structures

Wes J. Lloyd
School of Engineering and Technology

University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 Questions f rom 4/18

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 26

 Assignment 1 - Due Tue May 7

 Quiz 1 (Due Thur Apr 25) – Quiz 2 (Due Tue Apri l 30)

 Chapter 26: Concurrency: An Introduct ion

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks

▪ Introduction, Lock Granularity

▪ Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List, Queue, Hash Table

April 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.2

OBJECTIVES – 4/23

 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by ~ Wed @ 11:59p

 Thursday surveys: due ~ Mon @ 11:59p

April 23, 2024
TCSS422: Computer Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.3

ONLINE DAILY FEEDBACK SURVEY

April 23, 2024
TCSS422: Computer Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L9.4

 Please classify your perspective on material covered in today’s

class (31 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.58 ( - previous 6.93)

 Please rate the pace of today’s class:

 1-slow, 5-just r ight, 10-fast

 Average – 5.10 ( - previous 5.21)

April 23, 2024
TCSS422: Computer Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.5

MATERIAL / PACE

 How is the counter example implemented in the ordering

of threads?

 Without locks

 With locks

April 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.6

FEEDBACK FROM 4/18

1 2

3 4

5 6

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/23/2024

L9.2Slides by Wes J. Lloyd

 Zoom Bonus session:

Monday April 29 starting at 6:30pm

▪ Zoom link to be posted on Canvas

▪ Problems and solutions posted on “Schedule” tab of website

 A series of example scheduling problems will be solved:

▪ Focus on: FIFO, SJF, STCF, RR, MLFQ

April 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.7

ZOOM BONUS SESSION –

EXAMPLE SCHEDULER PROBLEMS

 Questions from 4/18

 C Tutorial - Po inters, S trings, Exec in C - Due Fr i Apr 26

 Assignment 1 - Due Tue May 7

 Quiz 1 (Due Thur Apr 25) – Quiz 2 (Due Tue Apri l 30)

 Chapter 26: Concurrency: An Introduct ion

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks

▪ Introduction, Lock Granularity

▪ Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List, Queue, Hash Table

April 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.8

OBJECTIVES – 4/23

 Quest ions from 4/18

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 26

 Assignment 1 - Due Tue May 7

 Quiz 1 (Due Thur Apr 25) – Quiz 2 (Due Tue Apri l 30)

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks

▪ Introduction, Lock Granularity

▪ Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List, Queue, Hash Table

April 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.9

OBJECTIVES – 4/23

 Quest ions from 4/18

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 26

 Assignment 1 - Due Tue May 7

 Quiz 1 (Due Thur Apr 25) – Quiz 2 (Due Tue Apr i l 30)

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks

▪ Introduction, Lock Granularity

▪ Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List, Queue, Hash Table

April 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.10

OBJECTIVES – 4/23

 Active reading on Chapter 9 – Proportional Share Schedulers

 Posted in Canvas

 Due Thursday April 25 th at 11:59pm

 Link:

 ht tps://faculty.washington.edu/wlloyd/courses/tcss422/quiz/TCSS

422_s2024_quiz_1.pdf

April 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.11

QUIZ 1

 Canvas Quiz – Pract ice CPU Scheduling Problems

 Posted in Canvas

 Unlimited attempts permitted

 Provides CPU scheduling practice problems

▪ FIFO, SJF, STCF, RR, MLFQ (Ch. 7 & 8)

 Multiple choice and fill - in the blank

 Quiz automatically scored by Canvas

▪ Please report any grading problems

 Due Tuesday Apri l 30 th at 11:59pm

 Link:

 ht tps://canvas.uw.edu/courses/1728244/quizzes/2030525

April 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.12

QUIZ 2

7 8

9 10

11 12

http://faculty.washington.edu/wlloyd/courses/tcss422/TCSS422_s2024_quiz_1.pdf
http://faculty.washington.edu/wlloyd/courses/tcss422/quiz/TCSS422_s2024_quiz_1.pdf
http://faculty.washington.edu/wlloyd/courses/tcss422/quiz/TCSS422_s2024_quiz_1.pdf
https://canvas.uw.edu/courses/1728244/quizzes/2030525

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/23/2024

L9.3Slides by Wes J. Lloyd

 Questions from 4/18

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 26

 Assignment 1 - Due Tue May 7

 Quiz 1 (Due Thur Apr 25) – Quiz 2 (Due Tue Apri l 30)

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks

▪ Introduction, Lock Granularity

▪ Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List, Queue, Hash Table

April 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.13

OBJECTIVES – 4/23

 To demonstrate how critical section(s) can be executed

“atomically -as a unit” Chapter 27 & beyond introduce LOCKS

 Counter example revisited

April 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.14

LOCKS

 With locks

▪ 2 threads count to 16 million

▪ ~1.4 seconds

▪ COUNT IS CORRECT – no data loss

 Without locks

▪ 2 threads count to 16 million

▪ ~0.03 seconds

▪ COUNT IS INCORRECT - DATA IS LOST

 Correct version is 46.6 x slower

▪ Cost is ~16 million Lock & Unlock API calls

April 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.15

COUNTER EXAMPLE

CHAPTER 27 -

LINUX

THREAD API

April 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L9.16

 Quest ions from 4/18

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 26

 Assignment 1 - Due Tue May 7

 Quiz 1 (Due Thur Apr 25) – Quiz 2 (Due Tue Apri l 30)

 Chapter 26: Concurrency: An Introduct ion

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks

▪ Introduction, Lock Granularity

▪ Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List, Queue, Hash Table

April 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.17

OBJECTIVES – 4/23

 pthread_create

 thread: thread struct

 attr : stack size, scheduling priority… (optional)

 start_routine: function pointer to thread routine

 arg: argument to pass to thread routine (optional)

April 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.18

THREAD CREATION

13 14

15 16

17 18

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/23/2024

L9.4Slides by Wes J. Lloyd

April 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.19

PTHREAD_CREATE – PASS ANY DATA

 Here we “cast” the pointer to pass/return a primitive data type

April 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.20

PASSING A SINGLE VALUE

Using this approach on your Ubuntu VM,
How large (in bytes) can the primitive data type be?

How large (in bytes) can the primitive data type
be on a 32-bit operating system?

 thread: which thread?

 value_ptr: pointer to return value

 type is dynamic / agnostic

 Returned values *must* be on the heap

 Thread stacks destroyed upon thread termination (join)

 Pointers to thread stack memory addresses are invalid

▪May appear as gibberish or lead to crash (seg fault)

 Not all threads join – What would be Examples ??

April 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.21

WAITING FOR THREADS TO FINISH

April 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L9.22

struct myarg {
 int a;
 int b;
};

void *worker(void *arg)
{
 struct myarg *input = (struct myarg *) arg;
 printf("a=%d b=%d\n",input->a, input->b);
 struct myarg output;
 output.a = 1;
 output.b = 2;
 return (void *) &output;
}

int main (int argc, char * argv[])
{
 pthread_t p1;
 struct myarg args;
 struct myarg *ret_args;
 args.a = 10;
 args.b = 20;
 pthread_create(&p1, NULL, worker, &args);
 pthread_join(p1, (void *)&ret_args);
 printf("returned %d %d\n", ret_args->a, ret_args->b);
 return 0;
}

What will this code do?

How can this code be fixed?

$./pthread_struct
a=10 b=20
Segmentation fault (core dumped)

Data on thread stack

April 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L9.23

struct myarg {
 int a;
 int b;
};

void *worker(void *arg)
{
 struct myarg *input = (struct myarg *) arg;
 printf("a=%d b=%d\n",input->a, input->b);
 input->a = 1;
 input->b = 2;
 return (void *) &input;
}

int main (int argc, char * argv[])
{
 pthread_t p1;
 struct myarg args;
 struct myarg *ret_args;
 args.a = 10;
 args.b = 20;
 pthread_create(&p1, NULL, worker, &args);
 pthread_join(p1, (void *)&ret_args);
 printf("returned %d %d\n", ret_args->a, ret_args->b);
 return 0;
}

$./pthread_struct
a=10 b=20
returned 1 2

How about this code?

 Casting

 Suppresses compiler warnings when passing “typed” data

where (void) or (void *) is called for

 Example: uncasted capture in pthread_join
pthread_int.c: In function ‘main’:

pthread_int.c:34:20: warning: passing argument 2 of ‘pthread_join’
from incompatible pointer type [-Wincompatible-pointer-types]

 pthread_join(p1, &p1val);

 Example: uncasted return
In file included from pthread_int.c:3:0:

/usr/include/pthread.h:250:12: note: expected ‘void **’ but argument
is of type ‘int **’

 extern int pthread_join (pthread_t __th, void **__thread_return);

April 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.24

ADDING CASTS

19 20

21 22

23 24

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/23/2024

L9.5Slides by Wes J. Lloyd

 pthread_join

 int * p1val;

 int * p2val;

 pthread_join(p1, (void *)&p1val);

 pthread_join(p2, (void *)&p2val);

 return from thread function

 int * counterval = malloc(sizeof(int));

 *counterval = counter;

 return (void *) counterval;

April 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.25

ADDING CASTS - 2

 Questions from 4/18

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 26

 Assignment 1 - Due Tue May 7

 Quiz 1 (Due Thur Apr 25) – Quiz 2 (Due Tue Apri l 30)

 Chapter 26: Concurrency: An Introduct ion

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks

▪ Introduction, Lock Granularity

▪ Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List, Queue, Hash Table

April 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.26

OBJECTIVES – 4/23

 pthread_mutex_t data type

 /usr/include/bits/pthread_types.h

April 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.27

LOCKS

// Global Address Space
static volatile int counter = 0;
pthread_mutex_t lock;

void *worker(void *arg)
{
 int i;
 for (i=0;i<10000000;i++) {
 int rc = pthread_mutex_lock(&lock);
 assert(rc==0);
 counter = counter + 1;
 pthread_mutex_unlock(&lock);
 }
 return NULL;
}

 Ensure critical sections are executed atomically -as a unit

▪ Provides implementation of “Mutual Exclusion”

 API

 Example w/o initialization & error checking

▪ Blocks forever until lock can be obtained

▪ Enters critical section once lock is obtained

▪ Releases lock

April 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.28

LOCKS - 2

 Assigning the constant

 API call:

 Initializes mutex with attributes specified by 2 nd argument

 If NULL, then default attributes are used

 Upon initialization, the mutex is initialized and unlocked

April 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.29

LOCK INITIALIZATION

 Error checking wrapper

 What if lock can’t be obtained?

 trylock – returns immediately (fails) if lock is unavailable

 timelock – tr ies to obtain a lock for a specified duration

April 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.30

LOCKS - 3

25 26

27 28

29 30

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/23/2024

L9.6Slides by Wes J. Lloyd

April 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L9.31 April 23, 2024

TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L9.32

 Quest ions from 4/18

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 26

 Assignment 1 - Due Tue May 7

 Quiz 1 (Due Thur Apr 25) – Quiz 2 (Due Tue Apri l 30)

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks

▪ Introduction, Lock Granularity

▪ Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List, Queue, Hash Table

April 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.33

OBJECTIVES – 4/23

 Condition variables support “signaling”
between threads

 pthread_cont_t datatype

 pthread_cond_wait()

▪ Puts thread to “sleep” (waits) (THREAD is BLOCKED)

▪ Threads added to >FIFO queue<, lock is released

▪ Waits (listens) for a “signal” (NON-BUSY WAITING, no polling)

▪ When signal occurs, interrupt fires, wakes up first thread,
(THREAD is RUNNING), lock is provided to thread

April 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.34

CONDITIONS AND SIGNALS

 pthread_cond_signal()

▪ Called to send a “signal” to wake -up first thread in FIFO “wait” queue

▪ The goal is to unblock a thread to respond to the signal

 pthread_cond_broadcast()

▪ Unblocks all threads in FIFO “wait” queue , currently blocked on the
specified condition variable

▪ Broadcast is used when all threads should wake-up for the signal

 Which thread is unblocked first?

▪ Determined by OS scheduler (based on priority)

▪ Thread(s) awoken based on placement order in FIFO wait queue

▪ When awoken threads acquire lock as in pthread_mutex_lock()

April 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.35

CONDITIONS AND SIGNALS - 2

int pthread_cond_signal(pthread_cond_t * cond);

int pthread_cond_broadcast(pthread_cond_t * cond);

 Wait example:

 wait puts thread to sleep, releases lock

 when awoken, lock reacquired (but then released by this code)

 When initialized, another thread signals

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;

pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

pthread_mutex_lock(&lock);

while (initialized == 0)

 pthread_cond_wait(&cond, &lock);

// Perform work that requires lock

a = a + b;

pthread_mutex_unlock(&lock);

April 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.36

CONDITIONS AND SIGNALS - 3

State variable set,
Enables other thread(s)

to proceed above.

31 32

33 34

35 36

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/23/2024

L9.7Slides by Wes J. Lloyd

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;

pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

pthread_mutex_lock(&lock);

while (initialized == 0)

 pthread_cond_wait(&cond, &lock);

// Perform work that requires lock

a = a + b;

pthread_mutex_unlock(&lock);

 Why do we wait inside a while loop?

 The while ensures upon awakening the condition is rechecked

▪ A signal is raised, but the pre-conditions required to proceed may

have not been met. **MUST CHECK STATE VARIABLE**

▪ Without checking the state variable the thread may proceed to

execute when it should not. (e.g. too early)

April 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.37

CONDITION AND SIGNALS - 4

WE WILL RETURN AT

5:00PM

April 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L9.38

 Compilation:

gcc requires special option to require programs with pthreads:

▪ gcc –pthread pthread.c –o pthread

▪ Explicitly links library with compiler flag

▪ RECOMMEND: using makefile to provide compiler arguments

 List of pthread manpages

▪ man –k pthread

April 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.39

PTHREADS LIBRARY

 Example builds multiple single file programs

▪ All target

 pthread_mult

▪ Example if multiple source files should produce a single executable

 clean target

April 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.40

SAMPLE MAKEFILE

CC=gcc
CFLAGS=-pthread -I. -Wall

binaries=pthread pthread_int pthread_lock_cond pthread_struct

all: $(binaries)

pthread_mult: pthread.c pthread_int.c
 $(CC) $(CFLAGS) $^ -o $@

clean:
 $(RM) -f $(binaries) *.o

April 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L9.41

CHAPTER 28 –

LOCKS

April 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L9.42

37 38

39 40

41 42

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/23/2024

L9.8Slides by Wes J. Lloyd

 Questions from 4/18

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 26

 Assignment 1 - Due Tue May 7

 Quiz 1 (Due Thur Apr 25) – Quiz 2 (Due Tue Apri l 30)

 Chapter 26: Concurrency: An Introduct ion

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks

▪ Introduction, Lock Granularity

▪ Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List, Queue, Hash Table

April 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.43

OBJECTIVES – 4/23

 Ensure critical section(s) are executed atomically -as a unit

▪ Only one thread is allowed to execute a critical section at any given

time

▪ Ensures the code snippets are “mutually exclusive”

 Protect a global counter:

 A “critical section”:

April 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.44

LOCKS

 Lock variables are called “MUTEX”

▪ Short for mutual exclusion (that’s what they guarantee)

 Lock variables store the state of the lock

 States

▪ Locked (acquired or held)

▪ Unlocked (available or free)

 Only 1 thread can hold a lock

April 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.45

LOCKS - 2

 pthread_mutex_lock(&lock)

▪ Try to acquire lock

▪ If lock is free, calling thread will acquire the lock

▪ Thread with lock enters critical section

▪ Thread “owns” the lock

 No other thread can acquire the lock before the owner

releases it.

April 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.46

LOCKS - 3

 Quest ions from 4/18

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 26

 Assignment 1 - Due Tue May 7

 Quiz 1 (Due Thur Apr 25) – Quiz 2 (Due Tue Apri l 30)

 Chapter 26: Concurrency: An Introduct ion

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks

▪ Introduction, Lock Granularity

▪ Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List, Queue, Hash Table

April 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.47

OBJECTIVES – 4/23

 Program can have many mutex (lock) variables to

“serialize” many critical sections

 Locks are also used to protect data structures

▪ Prevent multiple threads from changing the same data

simultaneously

▪ Programmer can make sections of code “granular”

▪ Fine grained – means just one grain of sand at a time through an

hour glass

▪ Similar to relational database transactions

▪ DB transactions prevent multiple users from modifying a table,

row, field

April 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.48

LOCKS - 4

43 44

45 46

47 48

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/23/2024

L9.9Slides by Wes J. Lloyd

 Is this code a good example of “f ine grained parallelism”?

April 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.49

FINE GRAINED?

pthread_mutex_lock(&lock);
a = b++;
b = a * c;
*d = a + b +c;
FILE * fp = fopen ("file.txt", “r");
fscanf(fp, "%s %s %s %d", str1, str2, str3, &e);
ListNode *node = mylist->head;
Int i=0
while (node) {
 node->title = str1;
 node->subheading = str2;
 node->desc = str3;
 node->end = *e;
 node = node->next;
 i++
}
e = e – i;
pthread_mutex_unlock(&lock);

April 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.50

FINE GRAINED PARALLELISM

pthread_mutex_lock(&lock_a);
pthread_mutex_lock(&lock_b);
a = b++;
pthread_mutex_unlock(&lock_b);
pthread_mutex_unlock(&lock_a);

pthread_mutex_lock(&lock_b);
b = a * c;
pthread_mutex_unlock(&lock_b);

pthread_mutex_lock(&lock_d);
*d = a + b +c;
pthread_mutex_unlock(&lock_d);

FILE * fp = fopen ("file.txt", “r");
pthread_mutex_lock(&lock_e);
fscanf(fp, "%s %s %s %d", str1, str2, str3, &e);
pthread_mutex_unlock(&lock_e);

ListNode *node = mylist->head;
int i=0 . . .

April 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.51

LOCK GRANULARITY TRADE-OFF SPACE

Many Lock (kernel) calls Few Lock (kernel) calls

More overhead from
excessive locking

Low overhead from
minimal locking

FINE-GRAINED COARSE-GRAINED

More parallelism Less parallelism

Higher code complexity
& debugging

Low code complexity
& simpler debugging

Every program
implementation

lies someplace along
the trade-off space…

 Correctness

▪ Does the lock work?

▪ Are critical sections mutually exclusive?

(atomic-as a unit?)

 Fairness

▪ Do all threads that compete for a lock have a fair chance

of acquiring it?

Overhead

April 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.52

EVALUATING LOCK IMPLEMENTATIONS

What makes a
good lock?

 Locks require hardware support

▪ To minimize overhead, ensure fairness and correctness

▪ Special “atomic-as a unit” instructions to support lock

implementation

▪ Atomic-as a unit exchange instruction

▪ XCHG

▪ Compare and exchange instruction

▪ CMPXCHG

▪ CMPXCHG8B

▪ CMPXCHG16B

April 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.53

BUILDING LOCKS

 To implement mutual exclusion

▪ Disable interrupts upon entering critical sections

 Any thread could disable system-wide interrupt

▪ What if lock is never released?

 On a mult iprocessor processor each CPU has its own interrupts

▪ Do we disable interrupts for all cores simultaneously?

 While interrupts are disabled, they could be lost

▪ If not queued…

April 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.54

HISTORICAL IMPLEMENTATION

49 50

51 52

53 54

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/23/2024

L9.10Slides by Wes J. Lloyd

 Questions from 4/18

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 26

 Assignment 1 - Due Tue May 7

 Quiz 1 (Due Thur Apr 25) – Quiz 2 (Due Tue Apri l 30)

 Chapter 26: Concurrency: An Introduct ion

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks

▪ Introduction, Lock Granularity

▪ Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List, Queue, Hash Table

April 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.55

OBJECTIVES – 4/23

April 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.56

SPIN LOCK IMPLEMENTATION

 Operate without atomic-as a unit assembly instructions

 “Do- it-yourself” Locks

 Is this lock implementation: (1)Correct? (2)Fair? (3)Performant?

 Correctness requires luck… (e.g. DIY lock is incorrect)

 Here both threads have “acquired” the lock simultaneously

April 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.57

DIY: CORRECT?

 What is wrong with while(<cond>); ?

 Spin-waiting wastes time actively waiting for another thread

 while (1); will “peg” a CPU core at 100%

▪ Continuously loops, and evaluates mutex->flag value…

▪ Generates heat…

April 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.58

DIY: PERFORMANT?

void lock(lock_t *mutex)
{
 while (mutex->flag == 1); // while lock is unavailable, wait…
 mutex->flag = 1;
}

 Quest ions from 4/18

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 26

 Assignment 1 - Due Tue May 7

 Quiz 1 (Due Thur Apr 25) – Quiz 2 (Due Tue Apri l 30)

 Chapter 26: Concurrency: An Introduct ion

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks

▪ Introduction, Lock Granularity

▪ Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List, Queue, Hash Table

April 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.59

OBJECTIVES – 4/23

 Hardware support required for working locks

 Book presents pseudo code of C implementation

▪ TEST-and-SET adds a simple check to the basic spin lock

▪ Assumption is this “C code” runs atomically on CPU:

 lock() method checks that TestAndSet doesn’t return 1

 Comparison is in the caller

 Can implement the C version (non-atomic) and have some
success on a single-core VM

April 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.60

TEST-AND-SET INSTRUCTION

55 56

57 58

59 60

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/23/2024

L9.11Slides by Wes J. Lloyd

 C version: requires preemptive scheduler on single core system

 Lock is never released without a context switch

 single-core VM: occasionally will deadlock, doesn’t miscount

April 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.61

DIY: TEST-AND-SET - 2

 Correctness:

▪ Spin locks with atomic Test-and-Set:

Critical sections won’t be executed simultaneously by (2) threads

 Fairness:

▪ No fairness guarantee. Once a thread has a lock, nothing forces it to

relinquish it…

 Performance:

▪ Spin locks perform “busy waiting”

▪ Spin locks are best for short periods of waiting (< 1 time quantum)

▪ Performance is slow when multiple threads share a CPU

▪ Especially if “spinning” for long periods

April 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.62

SPIN LOCK EVALUATION

 Quest ions from 4/18

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 26

 Assignment 1 - Due Tue May 7

 Quiz 1 (Due Thur Apr 25) – Quiz 2 (Due Tue Apri l 30)

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks

▪ Introduction, Lock Granularity

▪ Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List, Queue, Hash Table

April 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.63

OBJECTIVES – 4/23

 Checks that the lock variable has the expected value FIRST,
before changing its value

▪ If so, make assignment

▪ Return value at location

 Adds a comparison to TestAndSet

▪ Textbook presents C pseudo code

▪ Assumption is that the compare-and-swap method runs atomically

 Useful for wait -free synchronization

▪ Supports implementation of shared data structures which can be
updated atomically (as a unit) using the HW support
CompareAndSwap instruction

▪ Shared data structure updates become “wait -free”

▪ Upcoming in Chapter 32

April 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.64

COMPARE AND SWAP

 Compare and Swap

 Spin lock usage

 X86 provides “cmpxchgl” compare-and-exchange instruction

▪ cmpxchg8b

▪ cmpxchg16b

April 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.65

COMPARE AND SWAP

C implementation 1-core VM:
Count is correct, no deadlock

April 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L9.66

61 62

63 64

65 66

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/23/2024

L9.12Slides by Wes J. Lloyd

 Cooperative instructions used together to support
synchronization on RISC systems

 No support on x86 processors

▪ Supported by RISC: Alpha, PowerPC, ARM

 Load-linked (LL)

▪ Loads value into register

▪ Same as typical load

▪ Used as a mechanism to track competition

 Store-conditional (SC)

▪ Performs “mutually exclusive” store

▪ Allows only one thread to store value

April 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.67

TWO MORE “LOCK BUILDING”

CPU INSTRUCTIONS

 LL instruction loads pointer value (ptr)

 SC only stores if the load link pointer has not changed

 Requires HW support

▪ C code is psuedo code

April 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.68

LL/SC LOCK

 Two instruction lock

April 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.69

LL/SC LOCK - 2

CHAPTER 29 –

LOCK BASED

DATA STRUCTURES

April 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L9.70

 Quest ions from 4/18

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 26

 Assignment 1 - Due Tue May 7

 Quiz 1 (Due Thur Apr 25) – Quiz 2 (Due Tue Apri l 30)

 Chapter 26: Concurrency: An Introduct ion

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks

▪ Introduction, Lock Granularity

▪ Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List, Queue, Hash Table

April 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.71

OBJECTIVES – 4/23

Adding locks to data structures make them

thread safe.

Considerations:

▪Correctness

▪Performance

▪Lock granularity

April 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.72

LOCK-BASED

CONCURRENT DATA STRUCTURES

67 68

69 70

71 72

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/23/2024

L9.13Slides by Wes J. Lloyd

April 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.73

COUNTER STRUCTURE W/O LOCK

 Synchronization weary -- - not thread safe

 Add lock to the counter

 Require lock to change data

April 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.74

CONCURRENT COUNTER

 Decrease counter

 Get value

April 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.75

CONCURRENT COUNTER - 2

 iMac: four core Intel 2.7 GHz i5 CPU

 Each thread increments counter 1,000,000 times

April 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.76

CONCURRENT COUNTERS - PERFORMANCE

Traditional vs. sloppy counter
Sloppy Threshold (S) = 1024

Synchronized counter scales poorly.

 Achieve (N) performance gain with (N) additional resources

 Throughput:

 Transactions per second (tps)

 1 core

 N = 100 tps

 10 cores (x10)

 N = 1000 tps (x10)

April 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.77

PERFECT SCALING

 Quest ions from 4/18

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 26

 Assignment 1 - Due Tue May 7

 Quiz 1 (Due Thur Apr 25) – Quiz 2 (Due Tue Apri l 30)

 Chapter 26: Concurrency: An Introduct ion

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks

▪ Introduction, Lock Granularity

▪ Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List, Queue, Hash Table

April 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.78

OBJECTIVES – 4/23

73 74

75 76

77 78

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/23/2024

L9.14Slides by Wes J. Lloyd

 Provides single logical shared counter

▪ Implemented using local counters for each ~CPU core

▪ 4 CPU cores = 4 local counters & 1 global counter

▪ Local counters are synchronized via local locks

▪ Global counter is updated periodically

▪ Global counter has lock to protect global counter value

▪ Sloppiness threshold (S):

Update threshold of global counter with local values

▪ Small (S): more updates, more overhead

▪ Large (S): fewer updates, more performant, less synchronized

 Why this implementation?

Why do we want counters local to each CPU Core?

April 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.79

SLOPPY COUNTER

 Idea of Sloppy Counter is to RELAX the synchronization

requirement for counting

▪ Instead of synchronizing global count variable each time:

counter=counter+1

▪ Synchronization occurs only every so often:

e.g. every 1000 counts

 Relaxing the synchronization requirement drastically

reduces locking API overhead by trading -off split-second

accuracy of the counter

 Sloppy counter: trade-off accuracy for speed

▪ It’s sloppy because it’s not so accurate (until the end)

April 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.80

SLOPPY COUNTER – MAIN POINTS

 Update threshold (S) = 5

 Synchronized across four CPU cores

 Threads update local CPU counters

April 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.81

SLOPPY COUNTER - 2

 Consider 4 threads increment a counter 1000000 times each

 Low S → What is the consequence?

 High S → What is the consequence?

April 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.82

THRESHOLD VALUE S

 Example implementation

 Also with CPU affinity

April 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.83

SLOPPY COUNTER - EXAMPLE

 Quest ions from 4/18

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 26

 Assignment 1 - Due Tue May 7

 Quiz 1 (Due Thur Apr 25) – Quiz 2 (Due Tue Apri l 30)

 Chapter 26: Concurrency: An Introduct ion

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks

▪ Introduction, Lock Granularity

▪ Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List , Queue, Hash Table

April 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.84

OBJECTIVES – 4/23

79 80

81 82

83 84

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/23/2024

L9.15Slides by Wes J. Lloyd

 Simplification - only basic list operations shown

 Structs and initialization:

April 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.85

CONCURRENT LINKED LIST - 1

 Insert – adds item to list

 Everything is critical!

▪ There are two unlocks

April 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.86

CONCURRENT LINKED LIST - 2

}

 Lookup – checks list for existence of item with key

 Once again everything is critical

▪ Note - there are also two unlocks

April 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.87

CONCURRENT LINKED LIST - 3

 First Implementation:

▪ Lock everything inside Insert() and Lookup()

▪ If malloc() fails lock must be released

▪ Research has shown “exception-based control flow” to be error

prone

▪ 40% of Linux OS bugs occur in rarely taken code paths

▪ Unlocking in an exception handler is considered a poor coding

practice

▪ There is nothing specifically wrong with this example however

 Second Implementation …

April 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.88

CONCURRENT LINKED LIST

 Init and Insert

April 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.89

CCL – SECOND IMPLEMENTATION

 Lookup

April 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.90

CCL – SECOND IMPLEMENTATION - 2

85 86

87 88

89 90

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/23/2024

L9.16Slides by Wes J. Lloyd

 Using a single lock for entire list is not very performant

 Users must “wait” in line for a single lock to access/modify

any item

 Hand-over-hand-locking (lock coupling)

▪ Introduce a lock for each node of a list

▪ Traversal involves handing over previous node’s lock,

acquiring the next node’s lock…

▪ Improves lock granularity

▪ Degrades traversal performance

 Consider hybrid approach

▪ Fewer locks, but more than 1

▪ Best lock-to-node distribution?

April 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.91

CONCURRENT LINKED LIST PERFORMANCE

 Questions from 4/18

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 26

 Assignment 1 - Due Tue May 7

 Quiz 1 (Due Thur Apr 25) – Quiz 2 (Due Tue Apri l 30)

 Chapter 26: Concurrency: An Introduct ion

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks

▪ Introduction, Lock Granularity

▪ Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List, Queue, Hash Table

April 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.92

OBJECTIVES – 4/23

 Improvement beyond a single master lock for a queue (FIFO)

 Two locks:

▪ One for the head of the queue

▪ One for the tail

 Synchronize enqueue and dequeue operations

 Add a dummy node

▪ Allocated in the queue initialization routine

▪ Supports separation of head and tail operations

 Items can be added and removed by separate threads at the

same time

April 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.93

MICHAEL AND SCOTT CONCURRENT QUEUES

 Remove from queue

April 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.94

CONCURRENT QUEUE

 Add to queue

April 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.95

CONCURRENT QUEUE - 2

 Quest ions from 4/18

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 26

 Assignment 1 - Due Tue May 7

 Quiz 1 (Due Thur Apr 25) – Quiz 2 (Due Tue Apri l 30)

 Chapter 26: Concurrency: An Introduct ion

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks

▪ Introduction, Lock Granularity

▪ Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List, Queue, Hash Table

April 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.96

OBJECTIVES – 4/23

91 92

93 94

95 96

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/23/2024

L9.17Slides by Wes J. Lloyd

Consider a simple hash table

▪Fixed (static) size

▪Hash maps to a bucket

▪ Bucket is implemented using a concurrent linked list

▪ One lock per hash (bucket)

▪ Hash bucket is a linked lists

April 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.97

CONCURRENT HASH TABLE

 Four threads – 10,000 to 50,000 inserts

▪ iMac with four-core Intel 2.7 GHz CPU

April 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.98

INSERT PERFORMANCE –

CONCURRENT HASH TABLE

The simple concurrent hash table scales
magnificently.

April 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.99

CONCURRENT HASH TABLE

April 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.10
0

 Lock-free data structures in Java

 Java.uti l .concurrent.atomic package

 Classes:

▪ AtomicBoolean

▪ AtomicInteger

▪ AtomicIntegerArray

▪ AtomicIntegerFieldUpdater

▪ AtomicLong

▪ AtomicLongArray

▪ AtomicLongFieldUpdater

▪ AtomicReference

 See: https://docs.oracle.com/en/java/javase/11/docs/api/

java.base/java/util/concurrent/atomic/package-summary.html

April 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.101

LOCK-FREE DATA STRUCTURES QUESTIONS

97 98

99 100

101 102

	Slide 1: TCSS 422: Operating Systems
	Slide 2: OBJECTIVES – 4/23
	Slide 3: Online daily feedback survey
	Slide 4
	Slide 5: Material / pace
	Slide 6: Feedback from 4/18
	Slide 7: Zoom Bonus session – example scheduler problems
	Slide 8: OBJECTIVES – 4/23
	Slide 9: OBJECTIVES – 4/23
	Slide 10: OBJECTIVES – 4/23
	Slide 11: Quiz 1
	Slide 12: Quiz 2
	Slide 13: OBJECTIVES – 4/23
	Slide 14: locks
	Slide 15: Counter example
	Slide 16: Chapter 27 - Linux Thread API
	Slide 17: OBJECTIVES – 4/23
	Slide 18: Thread creation
	Slide 19: Pthread_create – pass any data
	Slide 20: Passing a single value
	Slide 21: Waiting for threads to finish
	Slide 22
	Slide 23
	Slide 24: ADDING CASTS
	Slide 25: Adding casts - 2
	Slide 26: OBJECTIVES – 4/23
	Slide 27: locks
	Slide 28: Locks - 2
	Slide 29: Lock initialization
	Slide 30: Locks - 3
	Slide 31
	Slide 32
	Slide 33: OBJECTIVES – 4/23
	Slide 34: Conditions and signals
	Slide 35: Conditions and signals - 2
	Slide 36: conditions and signals - 3
	Slide 37: Condition and SIGNALS - 4
	Slide 38: We will return at 5:00pm
	Slide 39: Pthreads library
	Slide 40: Sample Makefile
	Slide 41
	Slide 42: Chapter 28 – LOCKS
	Slide 43: OBJECTIVES – 4/23
	Slide 44: Locks
	Slide 45: Locks - 2
	Slide 46: Locks - 3
	Slide 47: OBJECTIVES – 4/23
	Slide 48: Locks - 4
	Slide 49: Fine grained?
	Slide 50: Fine grained parallelism
	Slide 51: Lock granularity trade-off space
	Slide 52: Evaluating lock implementations
	Slide 53: Building locks
	Slide 54: Historical implementation
	Slide 55: OBJECTIVES – 4/23
	Slide 56: Spin lock implementation
	Slide 57: DIY: Correct?
	Slide 58: DIY: PERFORMANT?
	Slide 59: OBJECTIVES – 4/23
	Slide 60: Test-and-set instruction
	Slide 61: DIY: Test-and-set - 2
	Slide 62: Spin Lock evaluation
	Slide 63: OBJECTIVES – 4/23
	Slide 64: Compare and Swap
	Slide 65: Compare and swap
	Slide 66
	Slide 67: Two more “lock Building” CPU instructions
	Slide 68: LL/SC Lock
	Slide 69: LL/SC lock - 2
	Slide 70: Chapter 29 – LOCK Based data structures
	Slide 71: OBJECTIVES – 4/23
	Slide 72: Lock-based concurrent data structures
	Slide 73: Counter structure w/o lock
	Slide 74: concurrent counter
	Slide 75: Concurrent counter - 2
	Slide 76: Concurrent counters - Performance
	Slide 77: Perfect scaling
	Slide 78: OBJECTIVES – 4/23
	Slide 79: Sloppy counter
	Slide 80: Sloppy counter – main points
	Slide 81: Sloppy counter - 2
	Slide 82: Threshold value S
	Slide 83: Sloppy counter - example
	Slide 84: OBJECTIVES – 4/23
	Slide 85: Concurrent linked list - 1
	Slide 86: Concurrent linked list - 2
	Slide 87: Concurrent linked list - 3
	Slide 88: Concurrent linked list
	Slide 89: Ccl – second implementation
	Slide 90: Ccl – second implementation - 2
	Slide 91: Concurrent Linked list performance
	Slide 92: OBJECTIVES – 4/23
	Slide 93: Michael and scott concurrent queues
	Slide 94: Concurrent queue
	Slide 95: Concurrent queue - 2
	Slide 96: OBJECTIVES – 4/23
	Slide 97: Concurrent hash table
	Slide 98: Insert performance – concurrent hash table
	Slide 99: Concurrent hash table
	Slide 100
	Slide 101: Lock-free data structures
	Slide 102: Questions

