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TCSS 422: OPERATING SYSTEMS

 Questions f rom 4/18

 C Tutorial  -  Pointers,  Strings,  Exec in C -  Due Fri  Apr 26

 Assignment  1 -  Due Tue May 7

 Quiz 1 (Due Thur Apr 25) –  Quiz  2 (Due Tue Apri l  30)

 Chapter 26: Concurrency:  An Introduct ion

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks

▪ Introduction, Lock Granularity

▪ Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List, Queue, Hash Table
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OBJECTIVES – 4/23

 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by ~ Wed @ 11:59p

 Thursday surveys: due ~ Mon @ 11:59p

April 23, 2024
TCSS422: Computer Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.3

ONLINE DAILY FEEDBACK SURVEY
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 Please classify your perspective on material covered in today’s 

class (31 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average –  6.58   (  -  previous 6.93) 

 Please rate the pace of today’s class:

 1-slow, 5-just r ight, 10-fast

 Average –  5.10 (  -  previous 5.21)
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MATERIAL / PACE

 How is the counter example implemented in the ordering 

of threads?

 Without locks

 With locks
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FEEDBACK FROM 4/18
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 Zoom Bonus session:

Monday April 29 starting at 6:30pm

▪ Zoom link to be posted on Canvas

▪ Problems and solutions posted on “Schedule” tab of website

 A series of example scheduling problems will be solved:

▪ Focus on: FIFO, SJF, STCF, RR, MLFQ
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ZOOM BONUS SESSION – 

EXAMPLE SCHEDULER PROBLEMS

 Questions from 4/18

 C Tutorial  -  Po inters,  S trings,  Exec in  C  -  Due Fr i  Apr  26

 Assignment  1 -  Due Tue May 7

 Quiz 1 (Due Thur Apr 25) –  Quiz  2 (Due Tue Apri l  30)

 Chapter 26: Concurrency:  An Introduct ion

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks

▪ Introduction, Lock Granularity

▪ Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List, Queue, Hash Table
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OBJECTIVES – 4/23
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OBJECTIVES – 4/23
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OBJECTIVES – 4/23

 Active reading on Chapter 9 – Proportional Share Schedulers

 Posted in Canvas

 Due Thursday April 25 th at 11:59pm

 Link:

 ht tps://faculty.washington.edu/wlloyd/courses/tcss422/quiz/TCSS

422_s2024_quiz_1.pdf
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QUIZ 1

 Canvas Quiz –  Pract ice CPU Scheduling Problems

 Posted in Canvas

 Unlimited attempts permitted

 Provides CPU scheduling practice problems

▪ FIFO, SJF, STCF, RR, MLFQ (Ch. 7 & 8)

 Multiple choice and fill - in the blank

 Quiz automatically scored by Canvas

▪ Please report any grading problems

 Due Tuesday Apri l  30 th at  11:59pm

 Link:

 ht tps://canvas.uw.edu/courses/1728244/quizzes/2030525  
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QUIZ 2

7 8

9 10

11 12

http://faculty.washington.edu/wlloyd/courses/tcss422/TCSS422_s2024_quiz_1.pdf
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 Questions from 4/18

 C Tutorial  -  Pointers,  Strings,  Exec in C -  Due Fri  Apr 26

 Assignment  1 -  Due Tue May 7

 Quiz 1 (Due Thur Apr 25) –  Quiz  2 (Due Tue Apri l  30)

 Chapter 26:  Concurrency:  An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks

▪ Introduction, Lock Granularity

▪ Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List, Queue, Hash Table

April 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington  -  Tacoma

L9.13

OBJECTIVES – 4/23

 To demonstrate how critical section(s) can be executed 

“atomically -as a unit” Chapter 27 & beyond introduce LOCKS

 Counter example revisited
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LOCKS

 With locks

▪ 2 threads count to 16 million

▪ ~1.4 seconds

▪ COUNT IS CORRECT – no data loss

 Without locks

▪ 2 threads count to 16 million

▪ ~0.03 seconds

▪ COUNT IS INCORRECT  - DATA IS LOST

 Correct version is 46.6 x slower

▪ Cost is ~16 million Lock & Unlock API calls
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COUNTER EXAMPLE

CHAPTER 27 -

LINUX

THREAD API
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OBJECTIVES – 4/23

 pthread_create

 thread: thread struct

 attr :  stack size, scheduling priority…  ( optional)

 start_routine: function pointer to thread routine

 arg: argument to pass to thread routine ( optional)
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THREAD CREATION
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15 16

17 18
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PTHREAD_CREATE – PASS ANY DATA

 Here we “cast” the pointer to pass/return a primitive data type
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PASSING A SINGLE VALUE

Using this approach on your Ubuntu VM,
How large (in bytes) can the primitive data type be?

How large (in bytes) can the primitive data type 
be on a 32-bit operating system?

 thread: which thread?

 value_ptr: pointer to return value

  type is dynamic / agnostic

 Returned values *must* be on the heap

 Thread stacks destroyed upon thread termination (join)

 Pointers to thread stack memory addresses are invalid 

▪May appear as gibberish or lead to crash (seg fault)

 Not all threads join –  What would be Examples ??
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WAITING FOR THREADS TO FINISH
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struct myarg {
  int a;
  int b;
};

void *worker(void *arg)
{
  struct myarg *input = (struct myarg *) arg;
  printf("a=%d b=%d\n",input->a, input->b);
  struct myarg output;
  output.a = 1;
  output.b = 2;
  return (void *) &output;
}

int main (int argc, char * argv[])
{
  pthread_t p1;
  struct myarg args;
  struct myarg *ret_args;
  args.a = 10;
  args.b = 20;
  pthread_create(&p1, NULL, worker, &args);
  pthread_join(p1, (void *)&ret_args);
  printf("returned %d %d\n", ret_args->a, ret_args->b);
  return 0;
}

What will this code do?

How can this code be fixed?

$ ./pthread_struct 
a=10 b=20
Segmentation fault (core dumped)

Data on thread stack
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struct myarg {
  int a;
  int b;
};

void *worker(void *arg)
{
  struct myarg *input = (struct myarg *) arg;
  printf("a=%d b=%d\n",input->a, input->b);
  input->a = 1;
  input->b = 2;
  return (void *) &input;
}

int main (int argc, char * argv[])
{
  pthread_t p1;
  struct myarg args;
  struct myarg *ret_args;
  args.a = 10;
  args.b = 20;
  pthread_create(&p1, NULL, worker, &args);
  pthread_join(p1, (void *)&ret_args);
  printf("returned %d %d\n", ret_args->a, ret_args->b);
  return 0;
}

$ ./pthread_struct 
a=10 b=20
returned 1 2

How about this code?

 Casting 

 Suppresses compiler warnings when passing “typed” data

where (void) or (void *) is called for

 Example: uncasted capture in pthread_join
pthread_int.c: In function ‘main’:

pthread_int.c:34:20: warning: passing argument 2 of ‘pthread_join’ 
from incompatible pointer type [-Wincompatible-pointer-types]

   pthread_join(p1, &p1val);

 Example: uncasted return
In file included from pthread_int.c:3:0:

/usr/include/pthread.h:250:12: note: expected ‘void **’ but argument 
is of type ‘int **’

 extern int pthread_join (pthread_t __th, void **__thread_return);
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ADDING CASTS
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 pthread_join

  int * p1val;

  int * p2val;

  pthread_join(p1, (void *)&p1val);

  pthread_join(p2, (void *)&p2val);

 return from thread function

  int * counterval = malloc(sizeof(int));

  *counterval = counter;

  return (void *) counterval;
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ADDING CASTS - 2

 Questions from 4/18

 C Tutorial  -  Pointers,  Strings,  Exec in C -  Due Fri  Apr 26

 Assignment  1 -  Due Tue May 7

 Quiz 1 (Due Thur Apr 25) –  Quiz  2 (Due Tue Apri l  30)

 Chapter 26: Concurrency:  An Introduct ion

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks

▪ Introduction, Lock Granularity

▪ Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List, Queue, Hash Table

April 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington  -  Tacoma

L9.26

OBJECTIVES – 4/23

 pthread_mutex_t  data type

 /usr/include/bits/pthread_types.h
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LOCKS

// Global Address Space
static volatile int counter = 0; 
pthread_mutex_t lock;

void *worker(void *arg)
{
  int i;
  for (i=0;i<10000000;i++)  {
    int rc = pthread_mutex_lock(&lock);
    assert(rc==0);
    counter = counter + 1;
    pthread_mutex_unlock(&lock);
  }
  return NULL;
}

 Ensure critical sections are executed atomically -as a unit

▪ Provides implementation of “Mutual Exclusion”

 API

 Example w/o initialization & error checking

▪ Blocks forever until lock can be obtained

▪ Enters critical section once lock is obtained

▪ Releases lock
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LOCKS - 2

 Assigning the constant

 API call:

 Initializes mutex with attributes specified by 2 nd argument

 If  NULL, then default attributes are used

 Upon initialization, the mutex is initialized and unlocked
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LOCK INITIALIZATION

 Error checking wrapper

 What if lock can’t be obtained?

 trylock – returns immediately (fails) if  lock is unavailable

 timelock – tr ies to obtain a lock for a specified duration

April 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.30

LOCKS - 3
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 Quiz 1 (Due Thur Apr 25) –  Quiz  2 (Due Tue Apri l  30)

 Chapter 26: Concurrency:  An Introduction
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▪ Critical section

 Chapter 27: Linux Thread API
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▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks

▪ Introduction, Lock Granularity
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 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List, Queue, Hash Table
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OBJECTIVES – 4/23

 Condition variables support “signaling”
between threads

 pthread_cont_t datatype

 pthread_cond_wait()

▪ Puts thread to “sleep” (waits)    (THREAD is BLOCKED)

▪ Threads added to >FIFO queue<, lock is released 

▪ Waits (listens) for a “signal”   (NON-BUSY WAITING, no polling)

▪ When signal occurs, interrupt fires, wakes up first thread,
(THREAD is RUNNING), lock is provided to thread
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CONDITIONS AND SIGNALS

 pthread_cond_signal()

▪ Called to send a “signal” to wake -up first thread in FIFO “wait” queue

▪ The goal is to unblock a thread to respond to the signal

 pthread_cond_broadcast()

▪ Unblocks all  threads in FIFO “wait” queue , currently blocked on the 
specified condition variable

▪ Broadcast is used when all threads should wake-up for the signal

 Which thread is unblocked first?

▪ Determined by OS scheduler (based on priority)

▪ Thread(s) awoken based on placement order in FIFO wait queue

▪ When awoken threads acquire lock as in pthread_mutex_lock()

April 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.35

CONDITIONS AND SIGNALS - 2

int pthread_cond_signal(pthread_cond_t * cond);

int pthread_cond_broadcast(pthread_cond_t * cond);

 Wait example:

 wait puts thread to sleep, releases lock

 when awoken, lock reacquired (but then released by this code)

 When initialized, another thread signals

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;

pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

pthread_mutex_lock(&lock);

while (initialized == 0)

 pthread_cond_wait(&cond, &lock);

// Perform work that requires lock

a = a + b;

pthread_mutex_unlock(&lock);
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CONDITIONS AND SIGNALS - 3

State variable set, 
Enables other thread(s) 

to proceed above.

31 32

33 34

35 36
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pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;

pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

pthread_mutex_lock(&lock);

while (initialized == 0)

 pthread_cond_wait(&cond, &lock);

// Perform work that requires lock

a = a + b;

pthread_mutex_unlock(&lock);

 Why do we wait inside a while loop?

 The while ensures upon awakening the condition is rechecked

▪ A signal is raised, but the pre-conditions required to proceed may 

have not been met.  **MUST CHECK STATE VARIABLE**

▪ Without checking the state variable the thread may proceed to 

execute when it should not.  (e.g. too early)
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CONDITION AND SIGNALS - 4

WE WILL RETURN AT 

5:00PM
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 Compilation:

gcc requires special option to require programs with pthreads:

▪ gcc –pthread pthread.c –o pthread

▪ Explicitly links library with compiler flag

▪ RECOMMEND: using makefile to provide compiler arguments

 List of pthread manpages

▪ man –k pthread
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PTHREADS LIBRARY

 Example builds multiple single file programs

▪ All target

 pthread_mult

▪ Example if multiple source files should produce a single executable

 clean target
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SAMPLE MAKEFILE

CC=gcc
CFLAGS=-pthread -I. -Wall

binaries=pthread pthread_int pthread_lock_cond pthread_struct 

all: $(binaries)

pthread_mult: pthread.c pthread_int.c
 $(CC) $(CFLAGS) $^ -o $@

clean:
 $(RM) -f $(binaries) *.o
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CHAPTER 28 –

LOCKS
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 Questions from 4/18

 C Tutorial  -  Pointers,  Strings,  Exec in C -  Due Fri  Apr 26

 Assignment  1 -  Due Tue May 7

 Quiz 1 (Due Thur Apr 25) –  Quiz  2 (Due Tue Apri l  30)

 Chapter 26: Concurrency:  An Introduct ion

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks

▪ Introduction, Lock Granularity

▪ Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List, Queue, Hash Table
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OBJECTIVES – 4/23

 Ensure critical section(s) are executed atomically -as a unit

▪ Only one thread is allowed to execute a critical section at any given 

time

▪ Ensures the code snippets are “mutually exclusive”

 Protect a global counter:

 A “critical section”:
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LOCKS

 Lock variables are called “MUTEX”

▪ Short for mutual exclusion (that’s what they guarantee)

 Lock variables store the state of the lock

 States

▪ Locked  (acquired or held)

▪ Unlocked (available or free)

 Only 1 thread can hold a lock
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LOCKS - 2

 pthread_mutex_lock(&lock)

▪ Try to acquire lock

▪ If lock is free, calling thread will acquire the lock

▪ Thread with lock enters critical section

▪ Thread “owns” the lock

 No other thread can acquire the lock before the owner 

releases it.

April 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma
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LOCKS - 3

 Quest ions from 4/18

 C Tutorial  -  Pointers,  Strings,  Exec in C -  Due Fri  Apr 26

 Assignment  1 -  Due Tue May 7

 Quiz 1 (Due Thur Apr 25) –  Quiz  2 (Due Tue Apri l  30)

 Chapter 26: Concurrency:  An Introduct ion

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks

▪ Introduction, Lock Granularity

▪ Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List, Queue, Hash Table
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OBJECTIVES – 4/23

 Program can have many mutex (lock) variables to 

“serialize” many critical sections

 Locks are also used to protect data structures

▪ Prevent multiple threads from changing the same data 

simultaneously

▪ Programmer can make sections of code “granular”

▪ Fine grained – means just one grain of sand at a time through an 

hour glass

▪ Similar to relational database transactions

▪ DB transactions prevent multiple users from modifying a table, 

row, field
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LOCKS - 4
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 Is  this code a good example of “f ine grained parallelism”?
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FINE GRAINED?

pthread_mutex_lock(&lock);
a = b++;
b = a * c;
*d = a + b +c;
FILE * fp = fopen ("file.txt", “r");
fscanf(fp, "%s %s %s %d", str1, str2, str3, &e);
ListNode *node = mylist->head;
Int i=0
while (node) {
  node->title = str1;
  node->subheading = str2;
  node->desc = str3;
  node->end = *e;
  node = node->next;
  i++
}
e = e – i;
pthread_mutex_unlock(&lock); 

April 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L9.50

FINE GRAINED PARALLELISM

pthread_mutex_lock(&lock_a);
pthread_mutex_lock(&lock_b);
a = b++;
pthread_mutex_unlock(&lock_b); 
pthread_mutex_unlock(&lock_a); 

pthread_mutex_lock(&lock_b);
b = a * c;
pthread_mutex_unlock(&lock_b); 

pthread_mutex_lock(&lock_d);
*d = a + b +c;
pthread_mutex_unlock(&lock_d); 

FILE * fp = fopen ("file.txt", “r");
pthread_mutex_lock(&lock_e);
fscanf(fp, "%s %s %s %d", str1, str2, str3, &e);
pthread_mutex_unlock(&lock_e); 

ListNode *node = mylist->head;
int i=0 . . .
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LOCK GRANULARITY TRADE-OFF SPACE

Many Lock (kernel) calls Few Lock (kernel) calls

More overhead from
excessive locking

Low overhead from 
minimal locking

FINE-GRAINED COARSE-GRAINED

More parallelism Less parallelism

Higher code complexity
& debugging

Low code complexity
& simpler debugging

Every program
implementation 

lies someplace along
the trade-off space…

 Correctness

▪ Does the lock work?  

▪ Are critical sections mutually exclusive?  

(atomic-as a unit?)

 Fairness

▪ Do all threads that compete for a lock have a fair chance 

of acquiring it?

Overhead
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EVALUATING LOCK IMPLEMENTATIONS

What makes a 
good lock?

 Locks require hardware support

▪ To minimize overhead, ensure fairness and correctness

▪ Special “atomic-as a unit” instructions to support lock 

implementation

▪ Atomic-as a unit exchange instruction 

▪ XCHG

▪ Compare and exchange instruction

▪ CMPXCHG

▪ CMPXCHG8B

▪ CMPXCHG16B
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BUILDING LOCKS

 To implement mutual exclusion

▪ Disable interrupts upon entering critical sections

 Any thread could disable system-wide interrupt

▪ What if lock is never released?

 On a mult iprocessor processor each CPU has its own interrupts

▪ Do we disable interrupts for all cores simultaneously?

 While interrupts are disabled, they could be lost

▪ If not queued…
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HISTORICAL IMPLEMENTATION
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 Questions from 4/18

 C Tutorial  -  Pointers,  Strings,  Exec in C -  Due Fri  Apr 26

 Assignment  1 -  Due Tue May 7

 Quiz 1 (Due Thur Apr 25) –  Quiz  2 (Due Tue Apri l  30)

 Chapter 26: Concurrency:  An Introduct ion

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks

▪ Introduction, Lock Granularity

▪ Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List, Queue, Hash Table

April 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington  -  Tacoma

L9.55

OBJECTIVES – 4/23
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SPIN LOCK IMPLEMENTATION

 Operate without atomic-as a unit  assembly instructions

 “Do- it-yourself” Locks

 Is this lock implementation: (1)Correct? (2)Fair? (3)Performant?

 Correctness requires luck…  (e.g. DIY lock is incorrect)

 Here both threads have “acquired” the lock simultaneously 
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DIY: CORRECT?

 What is wrong with while(<cond>);  ?

 Spin-waiting wastes time actively waiting for another thread

 while (1); will “peg” a CPU core at 100%

▪ Continuously loops, and evaluates mutex->flag value…

▪ Generates heat…
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DIY: PERFORMANT?

void lock(lock_t *mutex)
{
  while (mutex->flag == 1);   // while lock is unavailable, wait…
  mutex->flag = 1;
}

 Quest ions from 4/18

 C Tutorial  -  Pointers,  Strings,  Exec in C -  Due Fri  Apr 26

 Assignment  1 -  Due Tue May 7

 Quiz 1 (Due Thur Apr 25) –  Quiz  2 (Due Tue Apri l  30)

 Chapter 26: Concurrency:  An Introduct ion

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks

▪ Introduction, Lock Granularity

▪ Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List, Queue, Hash Table
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OBJECTIVES – 4/23

 Hardware support required for working locks

 Book presents pseudo code of C implementation 

▪ TEST-and-SET adds a simple check to the basic spin lock

▪ Assumption is this “C code” runs atomically on CPU:

 lock() method checks that TestAndSet doesn’t return 1

 Comparison is in the caller

 Can implement the C version (non-atomic) and have some 
success on a single-core VM
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TEST-AND-SET INSTRUCTION
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 C version: requires preemptive scheduler on  single  core system

 Lock is never released without a context switch

 single-core VM: occasionally will deadlock, doesn’t miscount
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DIY: TEST-AND-SET - 2

 Correctness:

▪ Spin locks with atomic Test-and-Set: 

Critical sections won’t be executed simultaneously by (2) threads

 Fairness:

▪ No fairness guarantee.  Once a thread has a lock, nothing forces it to 

relinquish it…

 Performance:

▪ Spin locks perform “busy waiting”

▪ Spin locks are best for short periods of waiting (< 1 time quantum)

▪ Performance is slow when multiple threads share a CPU

▪ Especially if “spinning” for long periods 
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SPIN LOCK EVALUATION

 Quest ions from 4/18

 C Tutorial  -  Pointers,  Strings,  Exec in C -  Due Fri  Apr 26

 Assignment  1 -  Due Tue May 7

 Quiz 1 (Due Thur Apr 25) –  Quiz  2 (Due Tue Apri l  30)

 Chapter 26: Concurrency:  An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks

▪ Introduction, Lock Granularity

▪ Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List, Queue, Hash Table
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OBJECTIVES – 4/23

 Checks that the lock variable has the expected value FIRST, 
before changing its value

▪ If so, make assignment

▪ Return value at location

 Adds a comparison to TestAndSet

▪ Textbook presents C pseudo code

▪ Assumption is that the compare-and-swap method runs atomically  

 Useful for wait -free synchronization

▪ Supports implementation of shared data structures which can be 
updated atomically (as a unit) using the HW support 
CompareAndSwap instruction

▪ Shared data structure updates become “wait -free” 

▪ Upcoming in Chapter 32
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COMPARE AND SWAP

 Compare and Swap

 Spin lock usage

 X86 provides “cmpxchgl” compare-and-exchange instruction

▪ cmpxchg8b

▪ cmpxchg16b
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COMPARE AND SWAP

C implementation 1-core VM:
Count is correct, no deadlock
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 Cooperative instructions used together to support 
synchronization on RISC systems

 No support on x86 processors

▪ Supported by RISC: Alpha, PowerPC, ARM

 Load-linked (LL)

▪ Loads value into register

▪ Same as typical load

▪ Used as a mechanism to track competition

 Store-conditional (SC)

▪ Performs “mutually exclusive” store

▪ Allows only one thread to store value
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L9.67

TWO MORE “LOCK BUILDING”

CPU INSTRUCTIONS

 LL instruction loads pointer value (ptr)

 SC only stores if the load link pointer has not changed

 Requires HW support

▪ C code is psuedo code
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LL/SC LOCK

 Two instruction lock
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LL/SC LOCK - 2

CHAPTER 29 –

LOCK BASED

DATA STRUCTURES
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 Quest ions from 4/18

 C Tutorial  -  Pointers,  Strings,  Exec in C -  Due Fri  Apr 26

 Assignment  1 -  Due Tue May 7

 Quiz 1 (Due Thur Apr 25) –  Quiz  2 (Due Tue Apri l  30)

 Chapter 26: Concurrency:  An Introduct ion

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks

▪ Introduction, Lock Granularity

▪ Spin Locks, Test and Set, Compare and Swap

 Chapter 29:  Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List, Queue, Hash Table
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OBJECTIVES – 4/23

Adding locks to data structures make them 

thread safe.

Considerations:

▪Correctness 

▪Performance

▪Lock granularity
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LOCK-BASED

CONCURRENT DATA STRUCTURES
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April 23, 2024
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COUNTER STRUCTURE W/O LOCK

 Synchronization weary -- -  not thread safe

 Add lock to the counter

 Require lock to change data
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CONCURRENT COUNTER

 Decrease counter

 Get value
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CONCURRENT COUNTER - 2

 iMac: four core Intel 2.7 GHz i5 CPU

 Each thread increments counter 1,000,000 times
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CONCURRENT COUNTERS - PERFORMANCE

Traditional vs. sloppy counter
Sloppy Threshold (S) = 1024

Synchronized counter scales poorly.

 Achieve (N) performance gain with (N) additional resources

 Throughput:

 Transactions per second ( tps)

 1 core

 N = 100 tps

 10 cores  (x10)

 N = 1000 tps (x10)
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PERFECT SCALING

 Quest ions from 4/18

 C Tutorial  -  Pointers,  Strings,  Exec in C -  Due Fri  Apr 26

 Assignment  1 -  Due Tue May 7

 Quiz 1 (Due Thur Apr 25) –  Quiz  2 (Due Tue Apri l  30)

 Chapter 26: Concurrency:  An Introduct ion

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks

▪ Introduction, Lock Granularity

▪ Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List, Queue, Hash Table
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OBJECTIVES – 4/23
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 Provides single logical shared counter

▪ Implemented using local counters for each ~CPU core

▪ 4 CPU cores = 4 local counters & 1 global counter

▪ Local counters are synchronized via local locks

▪ Global counter is updated periodically 

▪ Global counter has lock to protect global counter value

▪ Sloppiness threshold (S):

Update threshold of global counter with local values

▪ Small (S): more updates, more overhead

▪ Large (S): fewer updates, more performant, less synchronized

 Why this implementation?  

Why do we want counters local to each CPU Core?
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SLOPPY COUNTER

 Idea of Sloppy Counter is to RELAX  the synchronization 

requirement for counting

▪ Instead of synchronizing global count variable each time:

counter=counter+1

▪ Synchronization occurs only every so often:

e.g. every 1000 counts

 Relaxing the synchronization requirement drastically  

reduces locking API overhead by trading -off split-second 

accuracy of the counter

 Sloppy counter: trade-off accuracy for speed

▪ It’s sloppy because it’s not so accurate (until the end)
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SLOPPY COUNTER – MAIN POINTS

 Update threshold (S)  = 5

 Synchronized across four CPU cores

 Threads update local CPU counters
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SLOPPY COUNTER - 2

 Consider 4 threads increment a counter 1000000 times each

 Low S  →  What is the consequence?

 High S   →  What is the consequence?
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THRESHOLD VALUE S

 Example implementation

 Also with CPU affinity
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SLOPPY COUNTER - EXAMPLE

 Quest ions from 4/18

 C Tutorial  -  Pointers,  Strings,  Exec in C -  Due Fri  Apr 26

 Assignment  1 -  Due Tue May 7

 Quiz 1 (Due Thur Apr 25) –  Quiz  2 (Due Tue Apri l  30)

 Chapter 26: Concurrency:  An Introduct ion

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks

▪ Introduction, Lock Granularity

▪ Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List , Queue, Hash Table
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OBJECTIVES – 4/23
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 Simplification -  only basic list operations shown

 Structs and initialization:
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CONCURRENT LINKED LIST - 1

 Insert – adds item to list

 Everything is critical!

▪ There are two unlocks
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CONCURRENT LINKED LIST - 2

}

 Lookup – checks list for existence of item with key

 Once again everything is critical

▪ Note - there are also two unlocks 
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CONCURRENT LINKED LIST - 3

 First Implementation:

▪ Lock everything inside Insert() and Lookup()

▪ If malloc() fails lock must be released

▪ Research has shown “exception-based control flow” to be error 

prone

▪ 40% of Linux OS bugs occur in rarely taken code paths

▪ Unlocking in an exception handler is considered a poor coding 

practice

▪ There is nothing specifically wrong with this example however

 Second Implementation …
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CONCURRENT LINKED LIST

 Init and Insert
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CCL – SECOND IMPLEMENTATION

 Lookup
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CCL – SECOND IMPLEMENTATION - 2
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 Using a single lock for entire list is not very performant

 Users must “wait” in line for a single lock to access/modify 

any item

 Hand-over-hand-locking (lock coupling)

▪ Introduce a lock for each node of a list

▪ Traversal involves handing over previous node’s lock,

acquiring the next node’s lock…

▪ Improves lock granularity

▪ Degrades traversal performance

 Consider hybrid approach

▪ Fewer locks, but more than 1

▪ Best lock-to-node distribution?
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CONCURRENT LINKED LIST PERFORMANCE

 Questions from 4/18

 C Tutorial  -  Pointers,  Strings,  Exec in C -  Due Fri  Apr 26

 Assignment  1 -  Due Tue May 7

 Quiz 1 (Due Thur Apr 25) –  Quiz  2 (Due Tue Apri l  30)

 Chapter 26: Concurrency:  An Introduct ion

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks

▪ Introduction, Lock Granularity

▪ Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List, Queue, Hash Table

April 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington  -  Tacoma

L9.92

OBJECTIVES – 4/23

 Improvement beyond a single master lock for a queue (FIFO)

 Two locks:

▪ One for the head of the queue

▪ One for the tail

 Synchronize enqueue and dequeue operations

 Add a dummy node

▪ Allocated in the queue initialization routine

▪ Supports separation of head and tail operations

 Items can be added and removed by separate threads at the 

same time
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MICHAEL AND SCOTT CONCURRENT QUEUES

 Remove from queue
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CONCURRENT QUEUE

 Add to queue
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CONCURRENT QUEUE - 2

 Quest ions from 4/18

 C Tutorial  -  Pointers,  Strings,  Exec in C -  Due Fri  Apr 26

 Assignment  1 -  Due Tue May 7

 Quiz 1 (Due Thur Apr 25) –  Quiz  2 (Due Tue Apri l  30)

 Chapter 26: Concurrency:  An Introduct ion

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks

▪ Introduction, Lock Granularity

▪ Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List, Queue, Hash Table
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OBJECTIVES – 4/23
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Consider a simple hash table

▪Fixed (static) size

▪Hash maps to a bucket

▪ Bucket is implemented using a concurrent linked list 

▪ One lock per hash (bucket)

▪ Hash bucket is a linked lists
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CONCURRENT HASH TABLE

 Four threads – 10,000 to 50,000 inserts

▪ iMac with four-core Intel 2.7 GHz CPU
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INSERT PERFORMANCE – 

CONCURRENT HASH TABLE

The simple concurrent hash table scales 
magnificently.
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CONCURRENT HASH TABLE
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 Lock-free data structures in Java

 Java.uti l .concurrent.atomic  package

 Classes:

▪ AtomicBoolean

▪ AtomicInteger

▪ AtomicIntegerArray

▪ AtomicIntegerFieldUpdater

▪ AtomicLong

▪ AtomicLongArray

▪ AtomicLongFieldUpdater

▪ AtomicReference

 See: https://docs.oracle.com/en/java/javase/11/docs/api/

java.base/java/util/concurrent/atomic/package-summary.html 
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LOCK-FREE DATA STRUCTURES QUESTIONS
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